
Chapter III:
Ranking Principles

Information Retrieval & Data Mining
Universität des Saarlandes, Saarbrücken
Wintersemester 2013/14

IR&DM ’13/’14

Chapter III: Ranking Principles

III.1 Boolean Retrieval & Document Processing  
 Boolean Retrieval, Tokenization, Stemming, Lemmatization

III.2 Basic Ranking & Evaluation Measures 
 TF*IDF, Vector Space Model, Precision/Recall, F-Measure, etc.

III.3 Probabilistic Retrieval Models  
 Probabilistic Ranking Principle, Binary Independence Model, BM25

III.4 Statistical Language Models  
 Unigram Language Models, Smoothing, Extended Language Models

III.5 Latent Topic Models  
 (Probabilistic) Latent Semantic Indexing, Latent Dirichlet Allocation

III.6 Advanced Query Types  
 Relevance Feedback, Query Expansion, Novelty & Diversity

!2

IR&DM ’13/’14

III.1 Boolean Retrieval & Document Processing

1. Definition of Information Retrieval

2. Boolean Retrieval

3. Document Processing

4. Spelling Correction and Edit Distances  
 
 
 
 
 
 
 
 
 
Based on MRS Chapters 1 & 3

!3

IR&DM ’13/’14

Shakespeare…

• Which plays of Shakespeare mention  
Brutus and Caesar but not Calpurnia? 
 
(i) Get all of Shakespeare’s plays from  
 Project Gutenberg in plain text  
 
(ii) Use UNIX utility grep to determine  
 files that match Brutus and Caesar  
 but not Calpurnia

!4

William Shakespeare

http://www.gutenberg.org
http://en.wikipedia.org/wiki/William_Shakespeare

IR&DM ’13/’14

1. Definition of Information Retrieval

• Finding documents (e.g., articles, web pages, e-mails, user
profiles) as opposed to creating additional data (e.g., statistics)

• Unstructured data (e.g., text) w/o easy-for-computer structure  
as opposed to structured data (e.g., relational database)

• Information need of a user, usually expressed through a query,
needs to be satisfied which implies effectiveness of methods

• Large collections (e.g., Web, e-mails, company documents)
demand scalability & efficiency of methods

!5

Information retrieval is finding material (usually documents)  
of an unstructured nature (usually text)  

that satisfies an information need  
from within large collections (usually stored on computers).

IR&DM ’13/’14

2. Boolean Retrieval Model

• Boolean variables indicate presence of words in documents

• Boolean operators AND, OR, and NOT

• Boolean queries are arbitrarily complex compositions of those

• Brutus AND Caesar AND NOT Calpurnia

• NOT ((Duncan AND Macbeth) OR (Capulet AND Montague))

• …

• Query result is (unordered) set of documents satisfying the query

!6

IR&DM ’13/’14

Incidence Matrix

• Binary word-by-document matrix indicating presence of words

• Each column is a binary vector: which document contains which words?

• Each row is a binary vector: which word occurs in which documents?

• To answer a Boolean query, we take the rows corresponding to  
the query words and apply the Boolean operators column-wise

!7

Online edition (c) 2009 Cambridge UP

4 1 Boolean retrieval

Antony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
. . .

! Figure 1.1 A term-document incidence matrix. Matrix element (t, d) is 1 if the
play in column d contains the word in row t, and is 0 otherwise.

them as words, but the information retrieval literature normally speaks of
terms because some of them, such as perhaps I-9 or Hong Kong are not usually
thought of as words. Now, depending on whether we look at the matrix rows
or columns, we can have a vector for each term, which shows the documents
it appears in, or a vector for each document, showing the terms that occur in
it.2

To answer the query Brutus AND Caesar AND NOT Calpurnia, we take the
vectors for Brutus, Caesar and Calpurnia, complement the last, and then do a
bitwise AND:

110100 AND 110111 AND 101111 = 100100

The answers for this query are thus Antony and Cleopatra and Hamlet (Fig-
ure 1.2).

The Boolean retrieval model is a model for information retrieval in which weBOOLEAN RETRIEVAL
MODEL can pose any query which is in the form of a Boolean expression of terms,

that is, in which terms are combined with the operators AND, OR, and NOT.
The model views each document as just a set of words.

Let us now consider a more realistic scenario, simultaneously using the
opportunity to introduce some terminology and notation. Suppose we have
N = 1 million documents. By documents we mean whatever units we haveDOCUMENT

decided to build a retrieval system over. They might be individual memos
or chapters of a book (see Section 2.1.2 (page 20) for further discussion). We
will refer to the group of documents over which we perform retrieval as the
(document) collection. It is sometimes also referred to as a corpus (a body ofCOLLECTION

CORPUS texts). Suppose each document is about 1000 words long (2–3 book pages). If

2. Formally, we take the transpose of the matrix to be able to get the terms as column vectors.

IR&DM ’13/’14

Extended Boolean Retrieval Model

• Boolean retrieval used to be the standard and is still common  
in certain domains (e.g., library systems, patent search)

• Plain Boolean queries are too restricted

• Queries look for words anywhere in the document

• Words have to be exactly as specified in the query

• Extensions of the Boolean retrieval model

• Proximity operators to demand that words occur close to each other
(e.g., with at most k words or sentences between them)

• Wildcards (e.g., Ital*) for a more flexible matching

• Fields/Zones (e.g., title, abstract, body) for more fine-grained matching

• …

!8

https://opac.sulb.uni-saarland.de/libero/WebOpac.cls?VERSION=2&ACTION=LANGEN&RSN=0&DATA=SUB&TOKEN=Ui6rTLOwhV4886&Z=1
http://appft.uspto.gov/netahtml/PTO/search-bool.html

IR&DM ’13/’14

Boolean Ranking

• Boolean query can be satisfied by many zones of a document

• Results can be ranked based on how many zones satisfy query

• Zones are given weights (that sum to 1)

• Score is the sum of weights of those fields that satisfy the query

• Example: Query Shakespeare in title, author, and body

• Title with weight 0.3, author with weight 0.2, body with weight 0.5

• Document that contains Shakespeare in title and body but not in title gets score 0.8

!9

IR&DM ’13/’14

3. Document Processing

• How to convert natural language documents into an  
easy-for-computer format?

• Words can be simply misspelled or in various forms

• plural/singular (e.g., car, cars, foot, feet, mouse, mice)

• tense (e.g., go, went, say, said)

• adjective/adverb (e.g., active, actively, rapid, rapidly)

• …

• Issues and solutions are often highly language-specific  
(e.g., diacritics and inflection in German, accents in French)

• Important first step in IR

!10

IR&DM ’13/’14

What is a Document?

• If data is not in linear plain-text format (e.g., ASCII, UTF-8), 
it needs to be converted (e.g., from PDF, Word, HTML)

• Data has to be divided into documents as retrievable units

• Should the book “Complete Works of Shakespeare” be considered a single
document? Or, should each act of each play be a document?

• UNIX mbox format stores all e-mails in a single file. Separate them?

• Should one-page-per-section HTML pages be concatenated?

!11

IR&DM ’13/’14

Tokenization

• Tokenization splits a text into tokens

!

!

• A type is a class of all tokens with the same character sequence

• A term is a (possibly normalized) type that is included into  
an IR system’s dictionary and thus indexed by the system

• Basic tokenization  
(i) Remove punctuation (e.g., commas, fullstops)  
(ii) Split at white spaces (e.g., spaces, tabulators, newlines)

!12

Two households, both alike in dignity, in fair Verona, where

Two households both alike in dignity in fair Verona where

IR&DM ’13/’14

Issues with Tokenization

• Language- and content-dependent

• Boys’ => Boys vs. can’t => can t

• http://www.mpi-inf.mpg.de and support@ebay.com

• co-ordinates vs. good-looking man

• straight forward, white space, Los Angeles

• l’ensemble and un ensemble

• Compounds: Lebensversicherungsgesellschaftsangestellter

• No spaces at all (e.g., major East Asian languages)

!13

IR&DM ’13/’14

Stopwords

• Stopwords are very frequent words that carry no information  
and are thus excluded from the system’s dictionary  
(e.g., a, the, and, are, as, be, by, for, from)

• Can be defined explicitly (e.g., with a list)  
or implicitly (e.g., as the k most frequent terms in the collection)

• Do not seem to help with ranking documents

• Removing them saves significant space but can cause problems

• to be or not to be, the who, etc.

• “president of the united states”, “with or without you”, etc.

• Current trend towards shorter or no stopword lists

!14

IR&DM ’13/’14

Stemming

• Variations of words could be grouped together  
(e.g., plurals, adverbial forms, verb tenses)

• A crude heuristic is to cut the ends of words  
(e.g., ponies => poni, individual => individu)

• Word stem is not necessarily a proper word

• Variations of the same word ideally map to same unique stem

• Popular stemming algorithms for English

• Porter (http://tartarus.org/martin/PorterStemmer/)

• Krovetz

• For English stemming has little impact on retrieval effectiveness

!15

http://tartarus.org/martin/PorterStemmer/

IR&DM ’13/’14

Porter Stemming Example

!16

Two households, both alike in dignity,
In fair Verona, where we lay our scene,

From ancient grudge break to new mutiny,
Where civil blood makes civil hands unclean.

From forth the fatal loins of these two foes

Two household, both alik in digniti,  
In fair Verona, where we lay our scene,  

From ancient grudg break to new mutini,  
Where civil blood make civil hand unclean.  

From forth the fatal loin of these two foe

IR&DM ’13/’14

Lemmatization

• Lemmatizer conducts full morphological analysis of the word to
identify the lemma (i.e., dictionary form) of the word

• Example: For the word saw, a stemmer may return s or saw,
whereas a lemmatizer tries to find out whether the word is  
a noun (return saw) or a verb (return to see)

• For English lemmatization does not achieve considerable
improvements over stemming in terms of retrieval effectiveness

!17

IR&DM ’13/’14

Other Ideas

• Diacritics (e.g., ü, ø, à, ð)

• Remove/normalize diacritics: ü => u, å => a, ø => o

• Queries often do not include diacritics (e.g., les miserables)

• Diacritics are sometimes typed using multiple characters: für => fuer

• Lower/upper-casing

• Discard case information (e.g., United States => united states)

• n-grams as sequences of n characters (inter- or intra-word) are
useful for Asian (CJK) languages without clear word spaces

!18

IR&DM ’13/’14

What’s the Effect?

• Depends on the language; effect is typically limited with English

• Results for 8 European languages [Hollink et al. 2004]

• Diacritic removal helped with Finnish, French, and Swedish

• Stemming helped with Finnish (30% improvement) but only little with
English (0-5% improvement and even less with lemmatization)

• Compound splitting helped with Swedish (25%) and German (5%)

• Intra-word 4-grams helped with Finnish (32%), Swedish (27%),  
and German (20%)

• Larger benefits for morphologically richer languages

!19

IR&DM ’13/’14

Zipf’s Law (after George Kingsley Zipf)

• The collection frequency cfi of the i-th most frequent word in the
document collection is inversely proportional to the rank i 

!

• For the relative collection frequency with language-specific
constant c (for English c ≈ 0.1) we obtain  
 
 

• In an English document collection,  
we can thus expect the most frequent word  
to account for 10% of all term occurrences  

!20

cfi /
1

i

cfiP
j cfj

/ c

i

George Kingsley Zipf

IR&DM ’13/’14

Zipf’s Law (cont’d)

!21

IR&DM ’13/’14

Heaps’ Law (after Harold Stanley Heaps)

• The number of distinct words |V | in a document collection  
(i.e., the size of the vocabulary) relates to the total number of
word occurrences as  
 
 
 
 
with collection-specific constants k and b

• We can thus expect the size of the vocabulary to grow with  
the size of the document collection – with ramifications on the
implementation of IR systems

!22

|V | / k

X

v2V

cf(v)

!b

IR&DM ’13/’14

Heaps’ Law (cont’d)

!23

IR&DM ’13/’14

4. Spelling Correction and Edit Distances

• Users don’t know how to spell!

• When the user types in an unknown,  
potentially misspelled word, we can  
try to map it to the “closest” term  
in our dictionary

• We need a notion of distance between terms

• adding extra character (e.g., hoouse vs. house)

• omitting character (e.g., huse)

• using wrong character (e.g., hiuse)

• as-heard spelling (e.g., kwia vs. choir)

!24

Amit Singhal: SIGIR ’05 Keynote

http://singhal.info

IR&DM ’13/’14

Hamming Edit Distance

• Distances should satisfy triangle inequality

• d(x, z) ≦ d(x,y) + d(y, z) for strings x, y, z and distance d

• Hamming edit distance is the number of positions  
at which the two strings x and y are different

• Strings of different lengths are compared by padding the shorter
one with null characters (e.g., house vs. hot => house vs. hot _ _)

• Hamming edit distance counts wrong characters

• Examples:

• d(car, cat) = 1

• d(house, hot) = 3

• d(house, hoouse) = 4

!25

IR&DM ’13/’14

Longest Common Subsequence

• A subsequence of two strings x and y is a string s such that all
characters from s occur in x and y in the same order but not
necessarily contiguously

• Longest common subsequence (LCS) distance defined as  
 
 
 
with S(x, y) as the set of all subsequences of x and y 
and string lengths |x|, |y|, and |s|

• LCS distance counts omitted characters

• Examples:

• d(house, huse) = 1

• d(banana, atana) = 2

!26

d(x, y) = max(|x|, |y|)� max

s2S(x,y)
|s|

IR&DM ’13/’14

Levenshtein Edit Distance

• Levenshtein edit distance between two strings x and y is the
minimal number of edit operations (insert, replace, delete)
required to transform x into y

• The minimal number of operations m[i, j] to transform the prefix
substring x[1:i] into y[1:j] is defined via the recurrence  
 
 
 

• Examples:

• d(hoouse, house) = 1

• d(house, rose) = 2

• d(house, hot) = 3

!27

m[i, j] = min

8
<

:

m[i� 1, j � 1] + (x[i] = y[j] ? 0 : 1) (replace x[i]?)
m[i� 1, j] + 1 (delete x[i])
m[i, j � 1] + 1 (insert y[j])

IR&DM ’13/’14

Levenshtein Edit Distance (cont’d)

• Levenshtein edit distance between two strings x and y corresponds
to m[|x|, |y|] and can be computed using dynamic programming 
in time and space O(|x| |y|)

• Example: cat vs. kate

!

!

!

• Edit operations can be weighted  
(e.g., based on letter frequency)

!28

_ k a t e
_ 0 1 2 3 4
c 1 1 2 3 4
a 2 2 1 2 3
t 3 3 2 1 2

m[i, j] = min

8
<

:

m[i� 1, j � 1] + (x[i] = y[j] ? 0 : 1) (replace x[i]?)
m[i� 1, j] + 1 (delete x[i])
m[i, j � 1] + 1 (insert y[j])

IR&DM ’13/’14

Levenshtein Edit Distance (cont’d)

• Levenshtein edit distance between two strings x and y corresponds
to m[|x|, |y|] and can be computed using dynamic programming 
in time and space O(|x| |y|)

• Example: cat vs. kate

!

!

!

• Edit operations can be weighted  
(e.g., based on letter frequency)

!28

_ k a t e
_ 0 1 2 3 4
c 1 1 2 3 4
a 2 2 1 2 3
t 3 3 2 1 2

m[i, j] = min

8
<

:

m[i� 1, j � 1] + (x[i] = y[j] ? 0 : 1) (replace x[i]?)
m[i� 1, j] + 1 (delete x[i])
m[i, j � 1] + 1 (insert y[j])

IR&DM ’13/’14

Levenshtein Edit Distance (cont’d)

• Levenshtein edit distance between two strings x and y corresponds
to m[|x|, |y|] and can be computed using dynamic programming 
in time and space O(|x| |y|)

• Example: cat vs. kate

!

!

!

• Edit operations can be weighted  
(e.g., based on letter frequency)

!28

_ k a t e
_ 0 1 2 3 4
c 1 1 2 3 4
a 2 2 1 2 3
t 3 3 2 1 2

m[i, j] = min

8
<

:

m[i� 1, j � 1] + (x[i] = y[j] ? 0 : 1) (replace x[i]?)
m[i� 1, j] + 1 (delete x[i])
m[i, j � 1] + 1 (insert y[j])

IR&DM ’13/’14

Levenshtein Edit Distance (cont’d)

• Levenshtein edit distance between two strings x and y corresponds
to m[|x|, |y|] and can be computed using dynamic programming 
in time and space O(|x| |y|)

• Example: cat vs. kate

!

!

!

• Edit operations can be weighted  
(e.g., based on letter frequency)

!28

_ k a t e
_ 0 1 2 3 4
c 1 1 2 3 4
a 2 2 1 2 3
t 3 3 2 1 2

m[i, j] = min

8
<

:

m[i� 1, j � 1] + (x[i] = y[j] ? 0 : 1) (replace x[i]?)
m[i� 1, j] + 1 (delete x[i])
m[i, j � 1] + 1 (insert y[j])

IR&DM ’13/’14

Levenshtein Edit Distance (cont’d)

• Levenshtein edit distance between two strings x and y corresponds
to m[|x|, |y|] and can be computed using dynamic programming 
in time and space O(|x| |y|)

• Example: cat vs. kate

!

!

!

• Edit operations can be weighted  
(e.g., based on letter frequency)

!28

_ k a t e
_ 0 1 2 3 4
c 1 1 2 3 4
a 2 2 1 2 3
t 3 3 2 1 2

m[i, j] = min

8
<

:

m[i� 1, j � 1] + (x[i] = y[j] ? 0 : 1) (replace x[i]?)
m[i� 1, j] + 1 (delete x[i])
m[i, j � 1] + 1 (insert y[j])

IR&DM ’13/’14

Levenshtein Edit Distance (cont’d)

• Levenshtein edit distance between two strings x and y corresponds
to m[|x|, |y|] and can be computed using dynamic programming 
in time and space O(|x| |y|)

• Example: cat vs. kate

!

!

!

• Edit operations can be weighted  
(e.g., based on letter frequency)

!28

_ k a t e
_ 0 1 2 3 4
c 1 1 2 3 4
a 2 2 1 2 3
t 3 3 2 1 2

m[i, j] = min

8
<

:

m[i� 1, j � 1] + (x[i] = y[j] ? 0 : 1) (replace x[i]?)
m[i� 1, j] + 1 (delete x[i])
m[i, j � 1] + 1 (insert y[j])

IR&DM ’13/’14

Levenshtein Edit Distance (cont’d)

• Levenshtein edit distance between two strings x and y corresponds
to m[|x|, |y|] and can be computed using dynamic programming 
in time and space O(|x| |y|)

• Example: cat vs. kate

!

!

!

• Edit operations can be weighted  
(e.g., based on letter frequency)

!28

_ k a t e
_ 0 1 2 3 4
c 1 1 2 3 4
a 2 2 1 2 3
t 3 3 2 1 2

m[i, j] = min

8
<

:

m[i� 1, j � 1] + (x[i] = y[j] ? 0 : 1) (replace x[i]?)
m[i� 1, j] + 1 (delete x[i])
m[i, j � 1] + 1 (insert y[j])

IR&DM ’13/’14

Levenshtein Edit Distance (cont’d)

• Levenshtein edit distance between two strings x and y corresponds
to m[|x|, |y|] and can be computed using dynamic programming 
in time and space O(|x| |y|)

• Example: cat vs. kate

!

!

!

• Edit operations can be weighted  
(e.g., based on letter frequency)

!28

_ k a t e
_ 0 1 2 3 4
c 1 1 2 3 4
a 2 2 1 2 3
t 3 3 2 1 2

m[i, j] = min

8
<

:

m[i� 1, j � 1] + (x[i] = y[j] ? 0 : 1) (replace x[i]?)
m[i� 1, j] + 1 (delete x[i])
m[i, j � 1] + 1 (insert y[j])

IR&DM ’13/’14

Levenshtein Edit Distance (cont’d)

• Levenshtein edit distance between two strings x and y corresponds
to m[|x|, |y|] and can be computed using dynamic programming 
in time and space O(|x| |y|)

• Example: cat vs. kate

!

!

!

• Edit operations can be weighted  
(e.g., based on letter frequency)

!28

_ k a t e
_ 0 1 2 3 4
c 1 1 2 3 4
a 2 2 1 2 3
t 3 3 2 1 2

m[i, j] = min

8
<

:

m[i� 1, j � 1] + (x[i] = y[j] ? 0 : 1) (replace x[i]?)
m[i� 1, j] + 1 (delete x[i])
m[i, j � 1] + 1 (insert y[j])

IR&DM ’13/’14

Levenshtein Edit Distance (cont’d)

• Levenshtein edit distance between two strings x and y corresponds
to m[|x|, |y|] and can be computed using dynamic programming 
in time and space O(|x| |y|)

• Example: cat vs. kate

!

!

!

• Edit operations can be weighted  
(e.g., based on letter frequency)

!28

_ k a t e
_ 0 1 2 3 4
c 1 1 2 3 4
a 2 2 1 2 3
t 3 3 2 1 2

m[i, j] = min

8
<

:

m[i� 1, j � 1] + (x[i] = y[j] ? 0 : 1) (replace x[i]?)
m[i� 1, j] + 1 (delete x[i])
m[i, j � 1] + 1 (insert y[j])

IR&DM ’13/’14

Levenshtein Edit Distance (cont’d)

• Levenshtein edit distance between two strings x and y corresponds
to m[|x|, |y|] and can be computed using dynamic programming 
in time and space O(|x| |y|)

• Example: cat vs. kate

!

!

!

• Edit operations can be weighted  
(e.g., based on letter frequency)

!28

_ k a t e
_ 0 1 2 3 4
c 1 1 2 3 4
a 2 2 1 2 3
t 3 3 2 1 2

m[i, j] = min

8
<

:

m[i� 1, j � 1] + (x[i] = y[j] ? 0 : 1) (replace x[i]?)
m[i� 1, j] + 1 (delete x[i])
m[i, j � 1] + 1 (insert y[j])

IR&DM ’13/’14

Levenshtein Edit Distance (cont’d)

• Levenshtein edit distance between two strings x and y corresponds
to m[|x|, |y|] and can be computed using dynamic programming 
in time and space O(|x| |y|)

• Example: cat vs. kate

!

!

!

• Edit operations can be weighted  
(e.g., based on letter frequency)

!28

_ k a t e
_ 0 1 2 3 4
c 1 1 2 3 4
a 2 2 1 2 3
t 3 3 2 1 2

m[i, j] = min

8
<

:

m[i� 1, j � 1] + (x[i] = y[j] ? 0 : 1) (replace x[i]?)
m[i� 1, j] + 1 (delete x[i])
m[i, j � 1] + 1 (insert y[j])

IR&DM ’13/’14

Levenshtein Edit Distance (cont’d)

• Levenshtein edit distance between two strings x and y corresponds
to m[|x|, |y|] and can be computed using dynamic programming 
in time and space O(|x| |y|)

• Example: cat vs. kate

!

!

!

• Edit operations can be weighted  
(e.g., based on letter frequency)

!28

_ k a t e
_ 0 1 2 3 4
c 1 1 2 3 4
a 2 2 1 2 3
t 3 3 2 1 2

m[i, j] = min

8
<

:

m[i� 1, j � 1] + (x[i] = y[j] ? 0 : 1) (replace x[i]?)
m[i� 1, j] + 1 (delete x[i])
m[i, j � 1] + 1 (insert y[j])

IR&DM ’13/’14

Levenshtein Edit Distance (cont’d)

• Levenshtein edit distance between two strings x and y corresponds
to m[|x|, |y|] and can be computed using dynamic programming 
in time and space O(|x| |y|)

• Example: cat vs. kate

!

!

!

• Edit operations can be weighted  
(e.g., based on letter frequency)

!28

_ k a t e
_ 0 1 2 3 4
c 1 1 2 3 4
a 2 2 1 2 3
t 3 3 2 1 2

m[i, j] = min

8
<

:

m[i� 1, j � 1] + (x[i] = y[j] ? 0 : 1) (replace x[i]?)
m[i� 1, j] + 1 (delete x[i])
m[i, j � 1] + 1 (insert y[j])

IR&DM ’13/’14

Levenshtein Edit Distance (cont’d)

• Levenshtein edit distance between two strings x and y corresponds
to m[|x|, |y|] and can be computed using dynamic programming 
in time and space O(|x| |y|)

• Example: cat vs. kate

!

!

!

• Edit operations can be weighted  
(e.g., based on letter frequency)

!28

_ k a t e
_ 0 1 2 3 4
c 1 1 2 3 4
a 2 2 1 2 3
t 3 3 2 1 2

m[i, j] = min

8
<

:

m[i� 1, j � 1] + (x[i] = y[j] ? 0 : 1) (replace x[i]?)
m[i� 1, j] + 1 (delete x[i])
m[i, j � 1] + 1 (insert y[j])

IR&DM ’13/’14

Levenshtein Edit Distance (cont’d)

• Levenshtein edit distance between two strings x and y corresponds
to m[|x|, |y|] and can be computed using dynamic programming 
in time and space O(|x| |y|)

• Example: cat vs. kate

!

!

!

• Edit operations can be weighted  
(e.g., based on letter frequency)

!28

_ k a t e
_ 0 1 2 3 4
c 1 1 2 3 4
a 2 2 1 2 3
t 3 3 2 1 2

m[i, j] = min

8
<

:

m[i� 1, j � 1] + (x[i] = y[j] ? 0 : 1) (replace x[i]?)
m[i� 1, j] + 1 (delete x[i])
m[i, j � 1] + 1 (insert y[j])

IR&DM ’13/’14

Levenshtein Edit Distance (cont’d)

• Levenshtein edit distance between two strings x and y corresponds
to m[|x|, |y|] and can be computed using dynamic programming 
in time and space O(|x| |y|)

• Example: cat vs. kate

!

!

!

• Edit operations can be weighted  
(e.g., based on letter frequency)

!28

_ k a t e
_ 0 1 2 3 4
c 1 1 2 3 4
a 2 2 1 2 3
t 3 3 2 1 2

m[i, j] = min

8
<

:

m[i� 1, j � 1] + (x[i] = y[j] ? 0 : 1) (replace x[i]?)
m[i� 1, j] + 1 (delete x[i])
m[i, j � 1] + 1 (insert y[j])

IR&DM ’13/’14

Levenshtein Edit Distance (cont’d)

• Levenshtein edit distance between two strings x and y corresponds
to m[|x|, |y|] and can be computed using dynamic programming 
in time and space O(|x| |y|)

• Example: cat vs. kate

!

!

!

• Edit operations can be weighted  
(e.g., based on letter frequency)

!28

_ k a t e
_ 0 1 2 3 4
c 1 1 2 3 4
a 2 2 1 2 3
t 3 3 2 1 2

m[i, j] = min

8
<

:

m[i� 1, j � 1] + (x[i] = y[j] ? 0 : 1) (replace x[i]?)
m[i� 1, j] + 1 (delete x[i])
m[i, j � 1] + 1 (insert y[j])

IR&DM ’13/’14

Levenshtein Edit Distance (cont’d)

• Levenshtein edit distance between two strings x and y corresponds
to m[|x|, |y|] and can be computed using dynamic programming 
in time and space O(|x| |y|)

• Example: cat vs. kate

!

!

!

• Edit operations can be weighted  
(e.g., based on letter frequency)

!28

_ k a t e
_ 0 1 2 3 4
c 1 1 2 3 4
a 2 2 1 2 3
t 3 3 2 1 2

m[i, j] = min

8
<

:

m[i� 1, j � 1] + (x[i] = y[j] ? 0 : 1) (replace x[i]?)
m[i� 1, j] + 1 (delete x[i])
m[i, j � 1] + 1 (insert y[j])

IR&DM ’13/’14

Levenshtein Edit Distance (cont’d)

• Levenshtein edit distance between two strings x and y corresponds
to m[|x|, |y|] and can be computed using dynamic programming 
in time and space O(|x| |y|)

• Example: cat vs. kate

!

!

!

• Edit operations can be weighted  
(e.g., based on letter frequency)

!28

_ k a t e
_ 0 1 2 3 4
c 1 1 2 3 4
a 2 2 1 2 3
t 3 3 2 1 2

m[i, j] = min

8
<

:

m[i� 1, j � 1] + (x[i] = y[j] ? 0 : 1) (replace x[i]?)
m[i� 1, j] + 1 (delete x[i])
m[i, j � 1] + 1 (insert y[j])

IR&DM ’13/’14

Levenshtein Edit Distance (cont’d)

• Levenshtein edit distance between two strings x and y corresponds
to m[|x|, |y|] and can be computed using dynamic programming 
in time and space O(|x| |y|)

• Example: cat vs. kate

!

!

!

• Edit operations can be weighted  
(e.g., based on letter frequency)

!28

_ k a t e
_ 0 1 2 3 4
c 1 1 2 3 4
a 2 2 1 2 3
t 3 3 2 1 2

m[i, j] = min

8
<

:

m[i� 1, j � 1] + (x[i] = y[j] ? 0 : 1) (replace x[i]?)
m[i� 1, j] + 1 (delete x[i])
m[i, j � 1] + 1 (insert y[j])

IR&DM ’13/’14

Levenshtein Edit Distance (cont’d)

• Levenshtein edit distance between two strings x and y corresponds
to m[|x|, |y|] and can be computed using dynamic programming 
in time and space O(|x| |y|)

• Example: cat vs. kate

!

!

!

• Edit operations can be weighted  
(e.g., based on letter frequency)

!28

_ k a t e
_ 0 1 2 3 4
c 1 1 2 3 4
a 2 2 1 2 3
t 3 3 2 1 2

m[i, j] = min

8
<

:

m[i� 1, j � 1] + (x[i] = y[j] ? 0 : 1) (replace x[i]?)
m[i� 1, j] + 1 (delete x[i])
m[i, j � 1] + 1 (insert y[j])

IR&DM ’13/’14

Levenshtein Edit Distance (cont’d)

• Levenshtein edit distance between two strings x and y corresponds
to m[|x|, |y|] and can be computed using dynamic programming 
in time and space O(|x| |y|)

• Example: cat vs. kate

!

!

!

• Edit operations can be weighted  
(e.g., based on letter frequency)

!28

_ k a t e
_ 0 1 2 3 4
c 1 1 2 3 4
a 2 2 1 2 3
t 3 3 2 1 2

m[i, j] = min

8
<

:

m[i� 1, j � 1] + (x[i] = y[j] ? 0 : 1) (replace x[i]?)
m[i� 1, j] + 1 (delete x[i])
m[i, j � 1] + 1 (insert y[j])

IR&DM ’13/’14

Levenshtein Edit Distance (cont’d)

• Levenshtein edit distance between two strings x and y corresponds
to m[|x|, |y|] and can be computed using dynamic programming 
in time and space O(|x| |y|)

• Example: cat vs. kate

!

!

!

• Edit operations can be weighted  
(e.g., based on letter frequency)

!28

_ k a t e
_ 0 1 2 3 4
c 1 1 2 3 4
a 2 2 1 2 3
t 3 3 2 1 2

m[i, j] = min

8
<

:

m[i� 1, j � 1] + (x[i] = y[j] ? 0 : 1) (replace x[i]?)
m[i� 1, j] + 1 (delete x[i])
m[i, j � 1] + 1 (insert y[j])

IR&DM ’13/’14

Levenshtein Edit Distance (cont’d)

• Levenshtein edit distance between two strings x and y corresponds
to m[|x|, |y|] and can be computed using dynamic programming 
in time and space O(|x| |y|)

• Example: cat vs. kate

!

!

!

• Edit operations can be weighted  
(e.g., based on letter frequency)

!28

_ k a t e
_ 0 1 2 3 4
c 1 1 2 3 4
a 2 2 1 2 3
t 3 3 2 1 2

m[i, j] = min

8
<

:

m[i� 1, j � 1] + (x[i] = y[j] ? 0 : 1) (replace x[i]?)
m[i� 1, j] + 1 (delete x[i])
m[i, j � 1] + 1 (insert y[j])

IR&DM ’13/’14

Levenshtein Edit Distance (cont’d)

• Levenshtein edit distance between two strings x and y corresponds
to m[|x|, |y|] and can be computed using dynamic programming 
in time and space O(|x| |y|)

• Example: cat vs. kate

!

!

!

• Edit operations can be weighted  
(e.g., based on letter frequency)

!28

_ k a t e
_ 0 1 2 3 4
c 1 1 2 3 4
a 2 2 1 2 3
t 3 3 2 1 2

m[i, j] = min

8
<

:

m[i� 1, j � 1] + (x[i] = y[j] ? 0 : 1) (replace x[i]?)
m[i� 1, j] + 1 (delete x[i])
m[i, j � 1] + 1 (insert y[j])

IR&DM ’13/’14

Soundex

• Soundex algorithm tries to map homophones (i.e., words with
same pronunciation) to canonical representation based on rules
• Keep the first letter

• Replace letters A, E, I, O, U, H, W, and Y by number 0

• Replace letters B, F, and P by number 1

• Replace letters C, G, J, K, Q, S, X, and Z by number 2

• Replace letters D and T by number 3

• Replace letter L by number 4

• Replace letters M and N by number 5

• Replace letter R by number 6

• Coalesce sequences of the same number (e.g., 33311 => 31)

• Remove all 0s and append 000

• Keep the first four characters as canonical representation

!29

IR&DM ’13/’14

Soundex (Examples)

• Examples:

• lightening => L0g0t0n0ng => L020t0n0n2 => L02030n0n2 
 => L020305052 => L23552000 => L235

• lightning => L0g0tn0ng => L020tn0n2 => L0203n0n2  
 => L02035052 => L23552000 => L235

!30

IR&DM ’13/’14

Summary of III.1

• Boolean retrieval  
supports precise-yet-limited querying of document collections

• Stemming and lemmatization  
to deal with syntactic diversity (e.g., inflection, plural/singular)

• Zipf’s law  
about the frequency distribution of terms

• Heaps’ law  
about the number of distinct terms

• Edit distances  
to handle spelling errors and allow for vagueness

!31

IR&DM ’13/’14

Additional Literature for III.1

• V. Hollink, J. Kamps, C. Monz, and M. de Rijke: Monolingual document retrieval for
European languages, IR 7(1):33-52, 2004

• A. Singhal: Challenges in running a commercial search engine, SIGIR 2005

!32

IR&DM ’13/’14

III.2 Basic Ranking & Evaluation

1. Vector Space Model

2. TF*IDF

3. IR Evaluation  
 
 
 
 
 
 
 
 
 
 
 
Based on MRS Chapters 6 & 8

!33

IR&DM ’13/’14

1. Vector Space Model (VSM)

• Boolean retrieval model provides no (or only rudimentary) 
ranking of results – severe limitation for large result sets

• Vector space model views documents and queries as vectors in
a |V |-dimensional vector space (i.e., one dimension per term)

• Cosine similarity between two vectors q and d  
is the cosine of the angle between them

!34

sim(q,d) =
q · d

kqk kdk

=

P|V |
i=1 qi diqP|V |

i=1 q
2
i

qP|V |
i=1 d

2
i

=
q

kqk
d

kdk

q

d

IR&DM ’13/’14

2. TF*IDF

• How to set the vector components dt and qt?

• Incidence matrix from Boolean retrieval model suggests 0/1

• documents should be favored if they contain a query term often

• query terms should be weighted (e.g., edward snowden movie)

• Term frequency tft,d as  
the number of times the term t occurs in document d

• Document frequency dft as  
the number of documents that contain the term t

• Inverse document frequency idft as  
 
 
 
with |D| as the number of documents in the collection

!35

idft =
|D|
dft

IR&DM ’13/’14

TF*IDF (cont’d)

• The tf.idf weight of term t in document d is then defined as

!

• The weight tf.idft,d is…

• larger when t occurs often in d and/or not in many documents

• smaller when t occurs not often in d and/or in many documents

• When using the VSM, we can set the vector components as

!

• Slightly simpler scoring of documents for query q as

!36

tf.idft,d = tft,d ⇥ idft

dt = tf.idft,d qt = tf.idft,q

score(q,d) =
X

t2q

tf.idft,d

IR&DM ’13/’14

Dampening, Length Normalization, etc.

• Many variations of the basic TF*IDF weighting scheme exist

• Logarithmic dampening of inverse document frequency  
 
 
 
avoids putting too much weight on exotic terms

• Sublinear scaling of term frequency  
 
 

• Length normalization and max-tf normalization  
 
 
 
 
avoids favoring long documents

!37

idft = log

|D|
dft

wtft,d =

⇢
1 + log tft,d : tft,d > 0

0 : otherwise

ntft,d =
tft,d

max

v2d
tfv,d

rtft,d =
tft,dP

v2d tfv,d

IR&DM ’13/’14

3. IR Evaluation

• How to systematically evaluate/compare different IR methods

• which variant of TF*IDF performs best?

• does stemming help? How about stopword removal?

• We need a document collection, a set of topics and  
relevance assessments, and effectiveness measures

• IR evaluation has been driven a lot by benchmark initiatives

• TREC (http://trec.nist.gov) – diverse & changing tasks

• CLEF (http://www.clef-initiative.eu) – original focus: cross-lingual IR

• NTCIR (http://research.nii.ac.jp/ntcir) – original focus: Asian languages

• INEX (https://inex.mmci.uni-saarland.de) – original focus: XML-IR

!38

http://trec.nist.gov
http://livepage.apple.com/
http://research.nii.ac.jp/ntcir
https://inex.mmci.uni-saarland.de

IR&DM ’13/’14

Documents, Topics, and Relevance Assessments

• Document collection (e.g., a collection of newspaper articles)

• Topics are descriptions of concrete information needs  
 
 
 
 
 
 

• Queries are derived from topics (e.g., using only the title)

• Relevance assessments are (topic, document, label) tuples  
with binary (1 : relevant, 0 : irrelevant) or graded labels  
often determined by trained experts

• Parameter tuning mandates splitting into training & test topics  

!39

<num> Number: 310!
<title> Radio Waves and Brain Cancer!
!
<desc> Description:!
Evidence that radio waves from radio towers or car phones affect!
brain cancer occurrence.!
!
<narr> Narrative:!
Persons living near radio towers and more recently persons using!
car phones have been diagnosed with brain cancer. The argument!
rages regarding the direct association of one with the other.!
The incidence of cancer among the groups cited is considered…

IR&DM ’13/’14

Classifying the Results

• We can classify documents for a given information need as

!40

relevant irrelevant

retrieved true positives (tp) false positives (fp)

not retrieved false negatives (fn) true negatives (tn)

Relevant

Retrieved

IR&DM ’13/’14

Classifying the Results

• We can classify documents for a given information need as

!40

relevant irrelevant

retrieved true positives (tp) false positives (fp)

not retrieved false negatives (fn) true negatives (tn)

tptp

Relevant

Retrieved

IR&DM ’13/’14

Classifying the Results

• We can classify documents for a given information need as

!40

relevant irrelevant

retrieved true positives (tp) false positives (fp)

not retrieved false negatives (fn) true negatives (tn)

fp

fp fp fp

tptp

Relevant

Retrieved

IR&DM ’13/’14

Classifying the Results

• We can classify documents for a given information need as

!40

relevant irrelevant

retrieved true positives (tp) false positives (fp)

not retrieved false negatives (fn) true negatives (tn)

fp

fp fp fp

tptp

fn fn fn

fn

fnfnfn
Relevant

Retrieved

IR&DM ’13/’14

Classifying the Results

• We can classify documents for a given information need as

!40

relevant irrelevant

retrieved true positives (tp) false positives (fp)

not retrieved false negatives (fn) true negatives (tn)

tn tn tn tn tn tn

tn tn

tn tn

tn

tn

tn tn tn tn tn tn

tn tn

tn

tn

tn

fp

fp fp fp

tptp

fn fn fn

fn

fnfnfn
Relevant

Retrieved

IR&DM ’13/’14

• Precision P is the fraction of retrieved documents that is relevant

!

!

• Recall R is the fraction of relevant results that is retrieved

!

!

• Accuracy A is the fraction of correctly classified documents

Precision, Recall, and Accuracy

!41

P =
tp

tp+ fp

R =
tp

tp+ fn

A =
tp+ tn

tp+ fp+ tn+ fn

IR&DM ’13/’14

• Precision P is the fraction of retrieved documents that is relevant

!

!

• Recall R is the fraction of relevant results that is retrieved

!

!

• Accuracy A is the fraction of correctly classified documents

Precision, Recall, and Accuracy

!41

P =
tp

tp+ fp

R =
tp

tp+ fn

A =
tp+ tn

tp+ fp+ tn+ fnNot appropriate

for IR

IR&DM ’13/’14

F-Measure

• Some tasks focus on precision (e.g., web search),  
others only on recall (e.g., library search), but  
usually a balance between the two is sought

• F-measure combines precision and recall in a single measure  
 
 
 
with β as trade-off parameter

• β = 1 is balanced

• β < 1 emphasizes precision

• β > 1 emphasizes recall  

!42

F� =
(�2 + 1)P R

�2 P +R

0 0,25 0,5 0,75 1 1,25 1,5 1,75 2 2,25

0,5

1

P = 0.8, R = 0.3
P = 0.6, R = 0.6
P = 0.2, R = 0.9

IR&DM ’13/’14

(Mean) Average Precision

• Precision, recall, and F-measure ignore the order of results

• Average precision (AP) averages over retrieved relevant results

• Let {d1, …, dmj} be the set of relevant results for the query qj

• Let Rjk be the set of ranked retrieval results for the query qj  
from top until you get to the relevant result dk 
 
 
 

• Mean average precision (MAP) averages over multiple queries

!43

AP(qj) =
1

mj

mjX

k=1

Precision(Rjk)

MAP(Q) =
1

|Q|

|Q|X

j=1

AP(qj)

IR&DM ’13/’14

Precision@k

• It is unrealistic to assume that users inspect the entire query result

• Often (e.g., in web search) users would only look at top-k results

• Precision@k (P@k) is the precision achieved by the top-k results

• Typical values of k are 5, 10, 20

!44

IR&DM ’13/’14

(Normalized) Discounted Cumulative Gain

• What if we have graded labels as relevance assessments?  
(e.g., 0 : not relevant, 1 : marginally relevant, 2 : relevant)

• Discounted cumulative gain (DCG) for query q 
 
 
 
 
with R(q, m) ∈ {0, …, 2} as label of m-th retrieved result

• Normalized discounted cumulative gain (NDCG) 
 
 
 
normalized by idealized discounted cumulative gain (IDCG)

!45

DCG(q, k) =
kX

m=1

2R(q,m) � 1

log(1 +m)

NDCG(q, k) =
DCG(q, k)

IDCG(q, k)

IR&DM ’13/’14

(Normalized) Discounted Cumulative Gain (cont’d)

• IDCG(q, k) is the best-possible value DCG(q, k) achievable  
for the query q on the document collection at hand

• Example: Let R(q, m) ∈ {0, …, 2} and assume that two  
documents have been labeled with 2, two with 1, all others with 0.
The best-possible top-5 result thus has labels <2, 2, 1, 1, 0> and
determines the value of IDCG(q, k) for this query

• NDCG also considers rank at which relevant results are retrieved

• NDCG is typically average over multiple queries

!46

NDCG(Q, k) =
1

|Q|
X

q2Q

NDCG(q, k)

IR&DM ’13/’14

Summary of III.2

• Vector space model 
maps queries and documents into a common vector space

• Cosine similarity  
to compare query vectors and document vectors

• TF*IDF  
weights terms based on term frequency and document frequency

• Documents, queries, relevance assessments  
as essential building blocks of IR evaluation

• Effectiveness measures (Precision, Recall, MAP, nDCG, etc.)  
assess the quality of results taking into account order, labels, etc.  

!47

