III.3 Probabilistic Retrieval Models

- 1. Probabilistic Ranking Principle
- 2. Binary Independence Model
- 3. Okapi BM25
- 4. Tree Dependence Model
- 5. Bayesian Networks for IR

Based on MRS Chapter 11

TF*IDF vs. Probabilistic IR vs. Statistical LMs

- **TF*IDF** and **VSM** produce sufficiently good results in practice but often criticized for being "too ad-hoc" or "not principled"
- Typically outperformed by **probabilistic retrieval models** and **statistical language models** in IR benchmarks (e.g., TREC)
- Probabilistic retrieval models
 - use generative models of documents as bags-of-words
 - explicitly model **probability of relevance** P[R | d, q]
- Statistical language models
 - use generative models of documents and queries as sequences-of-words
 - consider **likelihood** of generating query from document model or **divergence** of document model and query model (e.g., Kullback-Leibler)

Probabilistic Information Retrieval

- Generative model
 - probabilistic mechanism for producing documents (or queries)
 - usually based on a family of parameterized probability distributions

- **Powerful model** but restricted through practical limitations
 - often strong independence assumptions required for tractability
 - **parameter estimation** has to deal with **sparseness** of available data (e.g., collection with *M* terms has 2^M distinct possible documents, but model parameters need to be estimated from $N \ll 2^M$ documents)

Multivariate Bernoulli Model

- For generating document **d** from joint (multivariate) term distribution Φ
 - consider **binary random variables**: $d_t = 1$ if term in **d**, 0 otherwise
 - postulate **independence** among these random variables

$$P[d|\Phi] = \prod_{t \in V} \phi_t^{d_t} (1 - \phi_t^{1-d_t})$$

$$\phi_t = P[\text{term } t \text{ occurs in a document}]$$

- <u>Problems</u>:
 - underestimates probability of short documents
 - product for absent terms underestimates probability of likely documents
 - too much probability mass given to very unlikely term combinations

1. Probability Ranking Principle (PRP)

"If a reference retrieval system's response to each request is a ranking of the documents in the collection in order of decreasing **probability of relevance** to the user who submitted the request, where the probabilities are **estimated as accurately as possible** on the basis of whatever data have been made available to the system for this purpose, **the overall effectiveness of the system** to its user **will be the best** that is obtainable on the basis of those data."

[van Rijsbergen 1979]

• **PRP with costs** [Robertson 1977] defines cost of retrieving *d* as the next result in a ranked list for query *q* as

 $cost(d,q) = C_1 P[R|d,q] + C_0 P[\bar{R}|d,q]$

with cost constants

- *C*₁ as cost of retrieving a **relevant document**
- C₂ as cost of retrieving an **irrelevant document**
- For $C_1 < C_0$, cost is minimized by choosing $\underset{d}{arg max} P[R|d,q]$

Derivation of Probability Ranking Principle

• Consider document *d* to be retrieved next, because it is preferred (i.e, has lower cost) over all other candidate documents *d*'

 $cost(d,q) \leq cost(d',q)$

- $\Leftrightarrow C_1 P[R|d,q] + C_0 P[\bar{R}|d,q] \leq C_1 P[R|d',q] + C_0 P[\bar{R}|d',q]$
- $\Leftrightarrow C_1 P[R|d,q] + C_0 (1 P[R|d,q]) \leq C_1 P[R|d',q] + C_0 (1 P[R|d',q])$
- $\Leftrightarrow \quad C_1 P[R|d,q] C_0 P[R|d,q]$
- $\Leftrightarrow \quad (C_1 C_0) P[R|d,q]$
- $\Leftrightarrow P[R|d,q]$

- $\leq C_1 P[R|d',q] C_0 P[R|d',q]$
- $\leq (C_1 C_0) P[R|d',q]$
- $\geq P[R|d',q]$ (assuming $C_1 < C_0$)

Probability Ranking Principle (cont'd)

- Probability ranking principle makes **two strong assumptions**
 - P[R | d, q] can be determined accurately
 - P[R | d, q] and P[R | d', q] are **pairwise independent** for documents d, d'
- **PRP without costs** (based on Bayes' optimal decision rule)
 - returns set of documents *d* for which P[R | d, q] > (1 P[R | d, q])
 - minimizes the **expected loss** (aka. Bayes' risk) under the 1/0 loss function

2. Binary Independence Model (BIM)

- **Binary independence model** [Robertson and Spärck-Jones 1976] has traditionally been used with the probabilistic ranking principle
- <u>Assumptions</u>:
 - relevant and irrelevant documents **differ in their term distribution**
 - probabilities of term occurrences are **pairwise independent**
 - documents are sets of terms, i.e., binary term weights in {0,1}
 - **non-query terms** have the same probability of occurring in relevant and non-relevant documents
 - relevance of a document is independent of relevance others document

Ranking Proportional to Relevance Odds

$$O(R|d) = \frac{P[R|d]}{P[R|d]}$$
(odds for ranking)

$$= \frac{P[d|R] \times P[R]}{P[d|R] \times P[R]}$$
(Bayes' theorem)

$$\propto \frac{P[d|R]}{P[d|R]}$$
(rank equivalence)

$$= \prod_{t \in V} \frac{P[d_t|R]}{P[d_t|R]}$$
(independence assumption

$$= \prod_{t \in q} \frac{P[d_t|R]}{P[d_t|R]}$$
(non-query terms)

$$= \prod_{\substack{t \in q}} \frac{P[D_t|R]}{P[D_t|R]} \times \prod_{\substack{t \notin d \\ t \in q}} \frac{P[D_t|R]}{P[D_t|R]}$$

with d_t indicating if **document** d includes **term** tand D_t indicating if **random document** includes **term** t

IR&DM '13/'14

Ranking Proportional to Relevance Odds (cont'd)

$$= \prod_{\substack{t \in d \\ t \in q}} \frac{P[D_t|R]}{P[D_t|\bar{R}]} \times \prod_{\substack{t \notin d \\ t \in q}} \frac{P[\bar{D}_t|R]}{P[\bar{D}_t|\bar{R}]}$$

$$= \prod_{\substack{t \in d \\ t \in q}} \frac{p_t}{q_t} \times \prod_{\substack{t \notin d \\ t \in q}} \frac{(1-p_t)}{1-q_t}$$

(shortcuts p_t and q_t)

$$= \prod_{t \in q} \frac{p_t^{d_t}}{q_t^{d_t}} \times \prod_{t \in q} \frac{(1-p_t)^{1-d_t}}{(1-q_t)^{1-d_t}}$$

$$\propto \sum_{t \in q} \log \left(\frac{p_t^{d_t} (1 - p_t)}{(1 - p_t)^{d_t}} \right) - \log \left(\frac{q_t^{d_t} (1 - q_t)}{(1 - q_t)^{d_t}} \right)$$

$$= \sum_{t \in q} d_t \log \frac{p_t}{1 - p_t} + \sum_{t \in q} d_t \log \frac{1 - q_t}{q_t} + \sum_{t \in q} \log \frac{1 - p_t}{1 - q_t}$$

$$\propto \sum_{t \in q} d_t \log \frac{p_t}{1 - p_t} + \sum_{t \in q} d_t \log \frac{1 - q_t}{q_t}$$
(invariant of d)

Estimating p_t and q_t with a Training Sample

- We can estimate p_t and q_t based on a **training sample** obtained by evaluating the query q on a **small sample of the corpus** and asking the user for **relevance feedback** about the results
- Let N be the # documents in our sample
 R be the # relevant documents in our sample
 nt be the # documents in our sample that contain t
 rt be the # relevant documents in our sample that contain t
 we estimate

$$p_t = \frac{r_t}{R} \qquad q_t = \frac{n_t - r_t}{N - R}$$

or with **Lidstone smoothing** ($\lambda = 0.5$)

$$p_t = \frac{r_t + 0.5}{R+1} \qquad q_t = \frac{n_t - r_t + 0.5}{N - R + 1}$$

Smoothing (with Uniform Prior)

- Probabilities *p_t* and *q_t* for term *t* are estimated by
 MLE for Binomial distribution
 - repeated coin tosses for term *t* in relevant documents (p_t)
 - repeated coin tosses for term t in irrelevant documents (q_t)
- Avoid **overfitting** to the training sample by **smoothing estimates**
 - Laplace smoothing (based on Laplace's law of succession)

$$p_t = \frac{r_t + 1}{R + 2}$$
 $q_t = \frac{n_t - r_t + 1}{N - R + 2}$

• Lidstone smoothing (heuristic generalization with $\lambda > 0$)

$$p_t = \frac{r_t + \lambda}{R + 2\lambda}$$
 $q_t = \frac{n_t - r_t + \lambda}{N - R + 2\lambda}$

Binary Independence Model (Example)

• Consider query $q = \{t_1, ..., t_6\}$ and sample of four documents

	<i>t</i> ₁	<i>t</i> ₂	<i>t</i> ₃	t 4	t 5	<i>t</i> ₆	R	
<i>d</i> ₁	1	0	1	1	0	0	1	R=2
d_2	1	1	0	1	1	0	1	N=4
<i>d</i> ₃	0	0	0	1	1	0	0	
d 4	0	0	1	0	0	0	0	
n t	2	1	2	3	2	0		
r _t	2	1	1	2	1	0		
<i>p</i> _t	5/6	1/2	1/2	5/6	1/2	1/6		
q_t	1/6	1/6	1/2	1/2	1/2	1/6		

• For document $d_6 = \{t_1, t_2, t_6\}$ we obtain

$$P[R|d_6,q] \propto \log 5 + \log 1 + \log \frac{1}{5} + \log 5 + \log 5 + \log 5 + \log 5$$

Estimating p_t and q_t without a Training Sample

• When **no training sample** is available, we estimate p_t and q_t as

$$p_t = (1 - p_t) = \frac{1}{2}$$
 $q_t = \frac{df_t}{|D|}$

- p_t reflects that we have **no information about relevant documents**
- *q_t* under the assumption that **# relevant documents** <<< **# documents**
- When we plug in these estimates of p_t and q_t , we obtain

$$P[R|d,q] = \sum_{t \in q} d_t \log 1 + \sum_{t \in q} d_t \log \frac{|D| - df_t}{df_t} \approx \sum_{t \in q} d_t \log \frac{|D|}{df_t}$$

which **can be seen as TF*IDF** with binary term frequencies and logarithmically dampened inverse document frequencies

Poisson Model

- For generating document **d** from joint (multivariate) term distribution Φ
 - consider counting random variables: $d_t = tf_{t,d}$
 - postulate independence among these random variables
- **Poisson model** with term-specific parameters μ_t :

$$P[d|\mu] = \prod_{t \in V} \frac{e^{-\mu_t} \cdot \mu_t^{d_t}}{d_t!} = e^{-\sum_{t \in V} \mu_t} \prod_{t \in d} \frac{\mu_t^{d_t}}{d_t!}$$

- MLE for μ_t from *n* sample documents $\{d_1, ..., d_n\}$: $\hat{\mu}_t = \frac{1}{n} \sum_{i=1}^n t f_{t,d_i}$
 - no penalty for absent words
 - no control of document length

3. Okapi BM25

• Generalizes term weight

$$w = \log \frac{p(1-q)}{q(1-p)}$$

into

$$w = \log \frac{p_{tf}q_0}{q_{tf}p_0}$$

where p_i and q_i denote the probability that **term occurs** *i* **times** in a relevant or irrelevant document, respectively

• Postulates Poisson (or 2-Poisson-mixture) distributions for terms

$$p_{tf} = e^{-\lambda} \frac{\lambda^{tf}}{tf!} \qquad q_{tf} = e^{-\mu} \frac{\mu^{tf}}{tf!}$$

Okapi BM25 (cont'd)

• Reduces the number of parameters that have to be learned and **approximates Poisson model** by similarly-shaped function

$$w = \frac{tf}{k_1 + tf} \log \frac{p(1-q)}{q(1-p)}$$

• Finally leads to Okapi BM25 as **state-of-the-art retrieval model** (with top-ranked results in TREC)

$$w_{t,d} = \frac{(k_1 + tf_{t,d})}{k_1((1-b) + b\frac{|d|}{avdl}) + tf_{t,d}} \log \frac{|D| - df_j + 0.5}{df_j + 0.5}$$

- k_1 controls **impact of term frequency** (common choice $k_1 = 1.2$)
- *b* controls **impact of document length** (common choice b = 0.75)

Okapi BM25 (Example)

- 3D plot of a simplified 100° BM25 scoring function using $k_1 = 1.2$ as parameter (DF mirrored for better readability)
- Scores for $df_t > N/2$ are negative

$$w_t = \frac{(k_1 + 1) t f_{t,d}}{k_1 + t f_{t,d}} \log \frac{|D| - df_t + 0.5}{df_t + 0.5}$$

4. Tree Dependence Model

• Consider term correlations in documents (with binary $\operatorname{RV} X_i$) requires estimating *m*-dimensional probability distribution

$$P[X_1 = ..., X_m = ..] = f_X(X_1, ..., X_m)$$

- Tree dependence model [van Rijsbergen 1979]
 - considers only 2-dimensional probabilities for term pairs (*i*, *j*)

$$f_{ij}(X_i, X_j) = P[X_i = ..., X_j = ...]$$

= $\sum_{X_1} \dots \sum_{X_{i-1}} \sum_{X_{i+1}} \dots \sum_{X_{j-1}} \sum_{X_{j+1}} \dots \sum_{X_m} P[X_1 = ..., X_m = ..]$

- estimates for each (*i*, *j*) the error made by independence assumptions
- constructs a tree with **terms as nodes** and *m*-1 weighted edges connecting the highest-error term pairs

Two-Dimensional Term Correlations

• **Kullback-Leibler divergence** estimates error of approximating *f* by *g* assuming pairwise term independence

$$\epsilon(f,g) = \sum_{\mathbf{X} \in \{0,1\}^m} f(\mathbf{X}) \log \frac{f(\mathbf{X})}{g(\mathbf{X})} = \sum_{\mathbf{X} \in \{0,1\}^m} f(\mathbf{X}) \log \frac{f(\mathbf{X})}{\prod_{i=1}^m g(X_i)}$$

• Correlation coefficient for term pairs

$$\rho(X_i, X_j) = \frac{Cov(X_i, X_j)}{\sqrt{Var(X_i)}\sqrt{Var(X_j)}}$$

• *p*-values of X^2 test of independence

Kullback-Leibler Divergence (Example)

- Given are documents $d_1=(1,1), d_2=(0,0), d_3=(1,1), d_4=(0,1)$
- 2-dimensional probability distribution *f*: $f(1,1) = P[X_1 = 1, X_2 = 1] = 2/4$ f(0,0) = 1/4, f(0,1) = 1/4, f(1,0) = 0
- 1-dimensional marginal distributions g_1 and g_2 $g_1(1) = P[X_1=1] = 2/4, g_1(0) = 2/4$ $g_2(1) = P[X_2=1] = 3/4, g_2(0) = 1/4$
- 2-dimensional probability distribution assuming independence $g(1,1) = g_1(1) g_2(1) = 3/8$ g(0,0) = 1/8, g(0,1) = 3/8, g(1,0) = 1/8
- approximation error ε (Kullback-Leibler divergence) $\varepsilon = 2/4 \log 4/3 + 1/4 \log 2 + 1/4 \log 2/3 + 0$

Constructing the Term Dependence Tree

- <u>Input</u>: Complete graph (V, E) with m nodes $X_i \in V$ and m^2 undirected edges $(i, j) \in E$ with weights ε
- <u>Output</u>: Spanning tree (V, E') with maximum total edge weight
- <u>Algorithm</u>:
 - Sort m^2 edges in descending order of weights
 - $E' = \emptyset$
 - **Repeat until** |E'| = m-1
 - $E' = E' \cup$ { $(i, j) \in E \setminus E' \mid (i, j)$ has maximal weight and E' remains acyclic}

Estimation with Term Dependence Tree

• Given a term dependence tree ($V = \{X_1, ..., X_m\}, E'$) with preorderlabeled nodes (i.e., X_1 is root) and assuming that X_i and X_j are independent for $(i, j) \notin E'$

$$P[X_1 = \dots, X_m = \dots]$$

=
$$P[X_1 = ..] P[X_2 = ..., X_m = ..|X_1 = ..]$$
 (conditional probability)

$$= \prod_{i=1}^{m} P[X_i = ..|X_1 = .., X_{i-1} = ..]$$
 (chain rule)

$$= P[X_1] \prod_{(i,j)\in E'} P[X_j|X_i]$$

 $= P[X_1] \prod_{(i,j)\in E'} \frac{P[X_j,X_i]}{P[X_i]}$

 \mathbf{m}

(independence assumption)

(conditional probability)

P[web, net, surf, swim] = P[web] P[net|web] P[surf|web] P[swim|surf]

5. Bayesian Networks

- A Bayesian network (BN) is a **directed**, acyclic graph (V, E) with
 - Vertices V representing random variables
 - Edges *E* representing **dependencies**
 - For a root $R \in V$ the BN captures the **prior probability** P[R = ...]
 - For a vertex $X \in V$ with **parents** $parents(x) = \{P_1, ..., P_k\}$ the BN captures the **conditional probability** $P[X|P_1, ..., P_k]$
 - The vertex X is **conditionally independent** of a non-parent node Y given its parents $parents(x) = \{P_1, ..., P_k\}, i.e.:$

$$P[X|P_1,\ldots,P_k,Y] = P[X|P_1,\ldots,P_k]$$

Bayesian Networks (cont'd)

- We can determine any joint probability using the BN $P[X_1, \ldots, X_n]$
- $= P[X_1|X_2,\ldots,X_n] P[X_2,\ldots,X_n]$
- $= \prod_{i=1}^{n} P[X_i | X_{i+1}, \dots, X_n]$ (chain rule)
- = $\prod_{i=1}^{n} P[X_i | parents(X_i), other nodes]$ (conditional independence)
- $= \prod_{i=1}^{n} P[X_i | parents(X_i)]$

Bayesian Networks (Example)

 $P[C, S, \bar{R}, W] = P[C] P[S|C] P[\bar{R}|C] P[W|S, \bar{R}] = 0.5 \times 0.1 \times 0.2 \times 0.9$

Bayesian Networks for IR

$$P[q, d_j] = \sum_{\substack{(t_1, \dots, t_M) \\ (t_1, \dots, t_M)}} P[q, d_j, t_1, \dots, t_M] P[d_j, t_1, \dots, t_M]}$$

=
$$\sum_{\substack{(t_1, \dots, t_M) \\ (t_1, \dots, t_M)}} P[q|t_1, \dots, t_M] P[t_1, \dots, t_M|d_j] P[d_j]$$

Advanced Bayesian Networks for IR

• BN **not widely adopted** in IR due to challenges in parameter estimation, representation, efficiency, and practical effectiveness

Summary of III.3

- **Probabilistic IR** as a family of (more) principled approaches relying on generative models of documents as bags of words
- **Probabilistic ranking principle** as the foundation establishing that ranking documents by P[R|d,q] is optimal
- **Binary independence model** puts that principle into practice based on a multivariate Bernoulli model
- **Smoothing** to avoid overfitting to the training sample
- Okapi BM25 as a state-of-the-art retrieval model based on an approximation of a 2-Poisson mixture model
- **Term dependence model** and **Bayesian networks** can consider term correlations (but are often intractable)

Additional Literature for III.3

- F. Crestani, M. Lalmas, C. J. Van Rijsbergen, and I. Campbell: "Is This Document Relevant? ... Probably": A Survey of Probabilistic Models in Information Retrieval, ACM Computing Surveys 30(4):528-552, 1998
- S.E. Robertson, K. Spärck Jones: *Relevance Weighting of Search Terms*, JASIS 27(3), 1976
- S.E. Robertson, S. Walker: Some Simple Effective Approximations to the 2-Poisson Model for Probabilistic Weighted Retrieval, SIGIR 1994
- **T. Roelleke**: *Information Retrieval Models: Foundations and Relationships* Morgan & Claypool Publishers, 2013
- K. Spärck-Jones, S. Walter, S. E. Robertson: A probabilistic model of information retrieval: development and comparative experiments, IP&M 36:779-840, 2000
- K. J. van Rijsbergen: *Information Retrieval*, University of Glasgow, 1979 <u>http://www.dcs.gla.ac.uk/Keith/Preface.html</u>