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Friendship Networks, Citation Networks, ...

* Link analysis studies the relationships (e.g., friendship, citation)
between objects (e.g., people, publications) to find out about their
characteristics (e.g., popularity, impact)

e Social Network Analysis (e.g., on a friendship network)

e Closeness centrality of a person v 1s the fraction of shortest paths
between any two persons (u, w) that pass through v

e Bibliometrics (e.g., on a citation network)
e Co-citation measures how many papers cite both u and v

e Co-reference measures how many common papers both u and v refer to
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..., and the Web?

* World Wide Web can be seen as directed graph G(V, £)

* web pages correspond to vertices (or, nodes) V

* hyperlinks between them correspond to edges £

 Link analysis on the Web graph can give us clues about
« which web pages are important and should thus be ranked higher
« which pairs of web pages are similar to each other

« which web pages are probably spam and should be ignored
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IV.1 The World Wide Web as a Graph

1. How Big is the Web?

2. Degree Distributions

3. Random-Graph Models
4. Bow-Tie Structure
Based on MRS Chapter 21
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1. How Big is the Web?

* How big 1s the entire World Wide Web?

 quasi-infinite when you consider all (dynamic) URLs (e.g., of calendars)

* Indexed Web 1s a more reasonable notion to look at
e [Gulli and Signori ’05] estimated it as 11.5 billions (10%) in 2005
« Google claimed to know about more than 1 trillion (10'?) URLSs in 2008

» WorldWideWebSize.com provides daily estimates obtained by
extrapolating from the number of results returned by Google and Bing
on the basis of Zipf’s law (currently: 3.6 billion — 38 billion)
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2. Degree Distributions

* What 1s the distribution of in-/out-degrees on the Web graph?
* in-degree(v) of vertex v 1s the number of incoming edges (u, v)

* out-degree(v) of vertex v 1s the number of outgoing edges (v, w)

 Zipfian distribution has probability mass function
1/k®
ot 1/

with rank k, parameter s, and total number of objects N

f(k;s,N) =

 provides good model of many real-world phenomena, e.g., word
frequencies, city populations, corporation sizes, income rankings

* appear as straight line with slope -s 1n log-log-plot
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Degree Distributions
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 Full details: [Broder et al. ‘00]
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3. Random-Graph Models

* Generative models of undirected or undirected graphs

* Erdos-Renyi Model G(n, p) generates a graph consisting of »
vertices; each possible edge (1, w) exists with probability p

» Barabasi-Albert Model generates a graph by successively
adding vertices u with m edges; the edge (u, v) attaches to vertex v
with probability proportional to deg(v)

* Preferential attachment (“the rich get richer’) in the Barabasi-
Albert Model yields graphs with properties similar to Web graph

 Full details: [Barabasi and Albert *99]
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4. Bow-Tie Structure

» The Web graph looks a lot like a bow tie [Broder et al. *00]

* Strongly Connected Component (SCC) of web pages that are
reachable from each other by following a few hyperlinks

 IN consisting of web pages from which SCC 1s reachable

* OUT consisting of web pages reachable from SCC
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1V.2 PageRank

* Hyperlinks distinguish the Web from other document collections
and can be interpreted as endorsements for the target web page

* In-degree as a measure of the importance/authority/popularity
of a web page v 1s easy to manipulate and does not consider the
importance of the source web pages

* PageRank considers a web page v important
if many important web pages link to it

e Random surfer model

Larry Page & Sergey Brin

* follows a uniform random outgoing link with probability (1-¢)

* jumps to a uniform random web page with probability ¢

* Intuition: Important web pages are the ones that are visited often
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Markov Chains
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Stochastic Processes & Markov Chains

 Discrete stochastic process 1s a family of random variables
{X: |teT}
with 7= {0, 1, 2 ...} as discrete time domain

 Stochastic process 1s a Markov chain 1f

P[Xt:CE|Xt_1:’w,...,X():CL]
— P[Xt:a:|Xt_1:w]

holds, 1.e., 1t 1s memoryless

* Markov chain 1s time-homogeneous 1f for all times ¢
PXi1=z| Xy =w|=PXy=2| X;_1 =w

holds, 1.e., transition probabilities do not depend on time
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State Space & Transition Probability Matrix

e State space of a Markov chain { X;|t& T} 1s
the countable set S of all values that X; can assume

e X;: Q— §
e Markov chain is in state s at time 7 1f X; = s

« Markov chain { X; | ¢t &€ T } 1s finite 1f 1t has a finite state space

 If a Markov chain { X; | ¢t & T } 1s finite and time-homogeneous,
its transition probabilities can be described as a matrix P = (p;))

pij = P\ Xy =j | Xi—1 = 1

* For |S| = n the transition probability matrix P is a
n-by-n right-stochastic matrix (1.e., its rows sum up to 1)

Vi : Zpijzl
J
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Properties of Markov Chains

* State i 1s reachable from state j 1f there exists a n > 0 such that
(P");; > 0 (with P* = P x ... X P as n-th exponent of P)

o States i and j communicate if i 1s reachable from j and vice versa

« Markov chain 1s irreducible 1f all states i, j € S communicate

* Markov chain 1s positive recurrent if the recurrence probability
1s 1 and the mean recurrence time 1s finite for every state i

Y PIXp=iAVI<j<k:X;#i|Xo=1i=1
k=1

Y kPXp=iAVI<j<k:X;#i|Xo=1i] <o
k=1
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Properties of Markov Chains

* Markov chain 1s aperiodic if every state i has period 1 defined as
ged{k : P X =1AV1I<j<k:X;#i|Xo=1>0}

* Markov chain 1s ergodic 1f it 1s time-homogeneous, 1rreducible,
positive recurrent, and aperiodic

* The 1-by-n vector m 1s the stationary state distribution of the
Markov chain described by P i1f n; > 0, X m; = 1, and

TP =m
e 7; 1S the limit probability that Markov chain 1s in state i

* 1/m; reflects the average time until the Markov chain returns to state i

* Theorem: If a Markov chain 1s finite and ergodic, then there
exists a unique stationary state distribution nt
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Markov Chain (Example Revisited)
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Markov Chain (Example Revisited)
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Markov Chain (Example Revisited)

0.0 0.5 0.0 05 0.0
0.0 0.0 0.5 0.5 0.0
P—=1(1.0 0.0 0.0 0.0 0.0

@..":?..»@ 0.0 0.0 0.0 0.0 1.0
05 AN e 0.0 0.0 1.0 0.0 0.0
L™ L 7%=1[1.0 0.0 0.0 00 0.0

05 "A,,l;q,,,@ ' =[00 05 0.0 05 0.0
w*=1[0.0 0.0 025 0.25 0.5]
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Markov Chain (Example Revisited)
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Markov Chain (Example Revisited)

0.0 0.5 0.0 05 0.0
0.0 0.0 0.5 0.5 0.0
P—=1(1.0 0.0 0.0 0.0 0.0

@..":?..»@ 0.0 0.0 0.0 0.0 1.0
05 AN e 0.0 0.0 1.0 0.0 0.0
..A ........ 10 A j __
L™ L 7%=1[1.0 0.0 0.0 00 0.0
05 "A,,l;q,,,@ ' =[00 05 0.0 05 0.0
w° =100 0.0 0.25 0.25 0.5
v
v

°=1025 0.0 05 0.0 0.25
*=105 0.125 0.25 0.125 0]
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Markov Chain (Example Revisited)

0.0 0.5 0.0 05 0.0
0.0 0.0 0.5 0.5 0.0
P—=1(1.0 0.0 0.0 0.0 0.0

@.9.-5...@ 0.0 00 0.0 00 10
05 YN 0.0 0.0 1.0 0.0 0.0
..A ........ 10 A j __
L™ L.0: °=[1.0 00 00 0.0 0.0

"=10.0 05 0.0 05 0.0
=100 0.0 025 0.25 0.5
°=1025 0.0 05 0.0 0.25
*=105 0.125 0.25 0.125 0]

> =10.25 0.25 0.0625 0.3125 0.125]

[R&DM °13/°14 18



Markov Chain (Example Revisited)

0.0 0.5 0.0 05 0.0
0.0 0.0 0.5 0.5 0.0
P—=1(1.0 0.0 0.0 0.0 0.0

@.9.-5...@ 0.0 00 0.0 00 10
05 YN 0.0 0.0 1.0 0.0 0.0
..A ........ 10 A j __
L™ L.0: °=[1.0 00 00 0.0 0.0

"=10.0 05 0.0 05 0.0
=100 0.0 025 0.25 0.5
°=1025 0.0 05 0.0 0.25
*=105 0.125 0.25 0.125 0]

> =10.25 0.25 0.0625 0.3125 0.125]

=025 0.125 0.25 0.1875 0.1875
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Computing  (Method 1)

* Stationary state distribution 1s the limit distribution

« Idea: Compute k-step state probabilities 7% until they converge

 Power (iteration) method
« select arbitrary initial state probability distribution xt°
« compute ¥ = 4! P until they converge (e.g., | € - r-1 | <¢)

e report last ¥ as stationary state distribution 7t

* Power (iteration) method basically simulates the Markov chain and
1s the method of choice in practice when dealing with huge state spaces,
exploiting that matrix-vector multiplication 1s easy to parallelize

[R&DM °13/°14
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Computing  (Method 2)

* Stationary state distribution 7t fulfills 1 =n P,

which can be cast into a system of linear equations

7w =00XxXxm7m +00Xxm+1.0xXxmw34+0.0xmy+0.0X 715
o =050 Xm +0.0X 7 +0.0Xx 73+ 0.0x my +0.0 X 75
w3 =00Xm7T +05Xm +00xXxmwm3+0.0xmy+1.0X 75
7wy =05 Xm +0.95X 7 +0.0xXm3+0.0xmy+0.0X 75
s = 00X 7w +00X 7 +00x7m3+1.0xmy +0.0 X 75

1=10xm +10Xxme+10Xxmwm3+1.0x 7y +1.0 X 715

 Solutions can be found, e.g., using Gauss elimination
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Computing 7t (Method 3)

 Stationary state probability distribution 7 1s the left eigenvector
of the transition probability matrix P for the eigenvalue A = 1

TP =\

» Can be computed using the characteristic polynomial

(P—=AI) =0

[R&DM °13/°14
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PageRank as a Markov Chain

* Random surfer model
e follows a uniform random outgoing link with probability (1-¢)

* jumps to a uniform random web page with probability ¢

* Let A be the adjacency matrix of the Web graph, matrix T
captures following of a uniform random outgoing link

T, _ 1/out(i) : (i,j) € E
o 0 . otherwise

@ ______ @ 01 0 1 0 0 1/2 0 1/2
SN X 00 1 10 0 0 1/2 1/2
@ . A=|100 0 0l T=|1/1 0 0 0
@ ...... @ 0000 1 0 0 0 O
0010 0 0 0 1/1 0
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PageRank as a Markov Chain

e Random surfer model

e follows a uniform random outgoing link with probability (1-¢)

* Vector j captures jumping to a uniform random web page

j; =1/|V|
N 0 1 0 1 0
B 00 1 1 0
Ja? A=1[1 00 0 0
o A'//fv\ ...... f// O O O O 1
43 0010 0

* Transition probability matrix of Markov chain then obtained as

P=(1-¢T+el|l ... I}Tj
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PageRank as a Markov Chain

e With £ = 0.15 we obtain 10.030 0.455 0.030 0.455 0.030°
0.030 0.030 0.455 0.455 0.030
P = [0.880 0.030 0.030 0.030 0.030

0.030 0.030 0.030 0.030 0.880
o) "\ 0.030 0.030 0.880 0.030 0.030

m = [0.24079 0.13234 0.24799 0.18858 0.19029]
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PageRank as a Markov Chain

* Transition probability matrix of Markov chain then obtained as

}T.

P=(1-¢T+e|l ... 1] ]
i = 1 — € 7Tj L
=079 2 GGy T

* We need to deal with dangling nodes (having out-degree zero)
« Re-normalize 7* such that | a¥ | = 1 after every iteration of power method

* Make P truly right stochastic by defining matrix T as

1/out(i) : (i,5) € F

= s e —o [ (4)

0 . Ootherwise
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PageRank as a Markov Chain (Is It Ergodic?)

* Markov chain defined by transition probability matrix T 1s
e finite (only finite number of web pages)
e time-homogeneous (by design)
e irreducible (random surfer can jump from every state i to every state j)
e positive recurrent (random surfer can “yump up” on state i)

e aperiodic (period of every state 1s 1 because of “jump up” on state i)

...1t 1s thus ergodic and unique stationary state probabilities & exist

 Random jump 1s essential to make the Markov chain ergodic
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PageRank & Queries

 Random jump probability typically set as € =0.15

(1.e., random surfer follows on average about seven links 1n a row)

» PageRank determines a static global ranking of web pages,
1s query-independent, and orthogonal to textual relevance

» Combination of PageRank score and retrieval models, €.g., as
* linear combination of cosine similarity and PageRank score
a x sim(q,d) + (1 — a) X pr(d)
e document prior in a query-likelihood language model

P(q|d) x P(d)

 together with many other features in machine-learned ranking model

[R&DM °13/°14
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Summary of IV.2

* Markov chains
as a kind of stochastic process useful to describe random walks

e Stationary state distribution
1s guaranteed to exist 1f the Markov chain 1s finite and ergodic
can be computed using (1) power iteration (i1) solving a system of
linear equations or (111) determining an eigenvector of a matrix

 PageRank
as Google’s mitial secret of success
1s based on a random surfer model
can be described as a finite and ergodic Markov chain
yields a static query-independent importance score
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