Chapter IV: Link Analysis

Information Retrieval & Data Mining Universität des Saarlandes, Saarbrücken Wintersemester 2013/14

Friendship Networks, Citation Networks, ...

• Link analysis studies the relationships (e.g., friendship, citation) between objects (e.g., people, publications) to find out about their characteristics (e.g., popularity, impact)

- Social Network Analysis (e.g., on a friendship network)
 - Closeness centrality of a person v is the fraction of shortest paths between any two persons (u, w) that pass through v

- Bibliometrics (e.g., on a citation network)
 - Co-citation measures how many papers cite both u and v
 - Co-reference measures how many common papers both u and v refer to

..., and the Web?

- World Wide Web can be seen as directed graph G(V, E)
 - web pages correspond to vertices (or, nodes) V
 - hyperlinks between them correspond to edges E
- Link analysis on the Web graph can give us clues about
 - which web pages are **important** and should thus be ranked higher
 - which pairs of web pages are similar to each other
 - which web pages are probably **spam** and should be ignored

•

Chapter IV: Link Analysis

IV.1 The World Wide Web as a Graph Degree Distributions, Diameter, Bow-Tie Structure

IV.2 PageRankRandom Surfer Model, Markov Chains

IV.3 HITS Hyperlinked-Induced Topic Search

IV.4 Topic-Specific and Personalized PageRank Biased Random Jumps, Linearity of PageRank

IV.5 Online Link Analysis OPIC

IV.6 Similarity Search SimRank, Random Walk with Restarts

IV.7 Spam DetectionLink Spam, TrustRank, SpamRank

IV.8 Social Networks SocialPageRank, TunkRank

IV.1 The World Wide Web as a Graph

- 1. How Big is the Web?
- 2. Degree Distributions
- 3. Random-Graph Models
- 4. Bow-Tie Structure

Based on MRS Chapter 21

1. How Big is the Web?

- How big is the entire World Wide Web?
 - quasi-infinite when you consider all (dynamic) URLs (e.g., of calendars)
- Indexed Web is a more reasonable notion to look at
 - [Gulli and Signori '05] estimated it as 11.5 billions (109) in 2005
 - Google claimed to know about more than 1 trillion (10¹²) URLs in 2008
 - <u>WorldWideWebSize.com</u> provides daily estimates obtained by extrapolating from the number of results returned by Google and Bing on the basis of Zipf's law (currently: 3.6 billion 38 billion)

2. Degree Distributions

- What is the distribution of in-/out-degrees on the Web graph?
 - in-degree(v) of vertex v is the number of incoming edges (u, v)
 - out-degree(v) of vertex v is the number of outgoing edges (v, w)
- Zipfian distribution has probability mass function

$$f(k; s, N) = \frac{1/k^s}{\sum_{n=1}^{N} 1/n^s}$$

with rank k, parameter s, and total number of objects N

- provides good model of **many real-world phenomena**, e.g., word frequencies, city populations, corporation sizes, income rankings
- appear as **straight line** with slope -s in **log-log-plot**

Degree Distributions

• Full details: [Broder et al. '00]

3. Random-Graph Models

- Generative models of undirected or undirected graphs
- Erdös-Renyi Model G(n, p) generates a graph consisting of n vertices; each possible edge (u, w) exists with probability p
- Barabási-Albert Model generates a graph by successively adding vertices u with m edges; the edge (u, v) attaches to vertex v with probability proportional to deg(v)
- Preferential attachment ("the rich get richer") in the Barabási-Albert Model yields graphs with properties similar to Web graph
- Full details: [Barabási and Albert '99]

4. Bow-Tie Structure

• The Web graph looks a lot like a **bow tie** [Broder et al. '00]

- Strongly Connected Component (SCC) of web pages that are reachable from each other by following a few hyperlinks
- IN consisting of web pages from which SCC is reachable
- OUT consisting of web pages reachable from SCC

Additional Literature for IV.1

- A.-L. Barabási and R. Albert: Emergence of Scaling in Random Networks, Science 1999
- A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins, and J. L. Wiener: *Graph Structure in the Web*, Computer Networks 33:309-320, 2000
- A. Gulli and A. Signori: The Indexable Web is More than 11.5 Billion Pages, WWW 2005
- R. Meusel, O. Lehmberg, C. Bizer: *Topology of the WDC Hyperlink Graph* http://webdatacommons.org/hyperlinkgraph/topology.html, 2013

IV.2 PageRank

- Hyperlinks distinguish the Web from other document collections and can be interpreted as endorsements for the target web page
- In-degree as a measure of the importance/authority/popularity of a web page v is easy to manipulate and does not consider the importance of the source web pages
- PageRank considers a web page v important if many important web pages link to it
- Random surfer model

Larry Page & Sergey Brin

- follows a uniform random outgoing link with probability (1- ε)
- jumps to a uniform random web page with probability ε
- Intuition: Important web pages are the ones that are visited often

Markov Chains

 $S = \{1, \dots, 5\}$

$$\mathbf{P} = \begin{bmatrix} 0.0 & 0.5 & 0.0 & 0.5 & 0.0 \\ 0.0 & 0.0 & 0.5 & 0.5 & 0.0 \\ 1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 1.0 \\ 0.0 & 0.0 & 1.0 & 0.0 & 0.0 \end{bmatrix}$$
1.0

Stochastic Processes & Markov Chains

• Discrete stochastic process is a family of random variables

$$\{X_t \mid t \in T\}$$

with $T = \{0, 1, 2 ...\}$ as discrete time domain

• Stochastic process is a Markov chain if

$$P[X_t = x \mid X_{t-1} = w, \dots, X_0 = a]$$

$$= P[X_t = x \mid X_{t-1} = w]$$

holds, i.e., it is memoryless

• Markov chain is **time-homogeneous** if for all times t

$$P[X_{t+1} = x \mid X_t = w] = P[X_t = x \mid X_{t-1} = w]$$

holds, i.e., transition probabilities do not depend on time

State Space & Transition Probability Matrix

- State space of a Markov chain $\{X_t | t \in T\}$ is the countable set S of all values that X_t can assume
 - $X_t: \Omega \to S$
 - Markov chain is in state s at time t if $X_t = s$
 - Markov chain $\{X_t \mid t \in T\}$ is **finite** if it has a finite state space
- If a Markov chain $\{X_t | t \in T\}$ is finite and time-homogeneous, its transition probabilities can be described as a matrix $\mathbf{P} = (p_{ij})$

$$p_{ij} = P[X_t = j \mid X_{t-1} = i]$$

• For |S| = n the transition probability matrix **P** is a n-by-n right-stochastic matrix (i.e., its rows sum up to 1)

$$\forall i : \sum_{j} p_{ij} = 1$$

Properties of Markov Chains

- State *i* is **reachable** from state *j* if there exists a $n \ge 0$ such that $(\mathbf{P}^n)_{ij} > 0$ (with $\mathbf{P}^n = \mathbf{P} \times ... \times \mathbf{P}$ as *n*-th exponent of \mathbf{P})
- States *i* and *j* communicate if *i* is reachable from *j* and vice versa
- Markov chain is **irreducible** if all states $i, j \in S$ communicate
- Markov chain is **positive recurrent** if the **recurrence probability** is 1 and the **mean recurrence time** is finite for every state *i*

$$\sum_{k=1}^{\infty} P[X_k = i \land \forall 1 \le j < k : X_j \ne i \mid X_0 = i] = 1$$

$$\sum_{k=1}^{\infty} k P[X_k = i \land \forall 1 \le j < k : X_j \ne i \mid X_0 = i] < \infty$$

Properties of Markov Chains

• Markov chain is **aperiodic** if every state *i* has period 1 defined as

$$gcd \{ k : P[X_k = i \land \forall 1 \le j < k : X_j \ne i \mid X_0 = i] > 0 \}$$

- Markov chain is **ergodic** if it is time-homogeneous, irreducible, positive recurrent, and aperiodic
- The 1-by-*n* vector $\boldsymbol{\pi}$ is the **stationary state distribution** of the Markov chain described by \mathbf{P} if $\pi_i \geq 0$, $\Sigma \pi_i = 1$, and

$$\pi \, \mathrm{P} = \pi$$

- π_i is the limit probability that Markov chain is in state i
- $1/\pi_i$ reflects the average time until the Markov chain returns to state *i*
- Theorem: If a Markov chain is finite and ergodic, then there exists a unique stationary state distribution π

$$\mathbf{P} = \begin{bmatrix} 0.0 & 0.5 & 0.0 & 0.5 & 0.0 \\ 0.0 & 0.0 & 0.5 & 0.5 & 0.0 \\ 1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 1.0 & 0.0 & 0.0 \end{bmatrix}$$

$$\boldsymbol{\pi}^{0} = \begin{bmatrix} 1.0 & 0.0 & 0.0 & 0.0 & 0.0 \end{bmatrix}$$

$$S = \{1, \dots, 5\}$$

$$\mathbf{P} = \begin{bmatrix} 0.0 & 0.5 & 0.0 & 0.5 & 0.0 \\ 0.0 & 0.0 & 0.5 & 0.5 & 0.0 \\ 1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 1.0 & 0.0 & 0.0 \end{bmatrix}$$

$$\boldsymbol{\pi}^{0} = \begin{bmatrix} 1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 1.0 & 0.0 & 0.0 & 0.0 & 0.0 \end{bmatrix}$$

$$\boldsymbol{\pi}^{1} = \begin{bmatrix} 0.0 & 0.5 & 0.0 & 0.5 & 0.0 \end{bmatrix}$$

$$S = \{1, \dots, 5\}$$

 $S = \{1, \dots, 5\}$

$$\mathbf{P} = \begin{bmatrix} 0.0 & 0.5 & 0.0 & 0.5 & 0.0 \\ 0.0 & 0.0 & 0.5 & 0.5 & 0.0 \\ 1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 1.0 & 0.0 & 0.0 \end{bmatrix}$$

$$\boldsymbol{\pi}^0 = \begin{bmatrix} 1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.5 & 0.0 & 0.5 & 0.0 \end{bmatrix}$$

$$\boldsymbol{\pi}^1 = \begin{bmatrix} 0.0 & 0.5 & 0.0 & 0.5 & 0.0 \\ 0.0 & 0.0 & 0.25 & 0.25 & 0.5 \end{bmatrix}$$

IR&DM '13/'14

18

$$\mathbf{P} = \begin{bmatrix} 0.0 & 0.5 & 0.0 & 0.5 & 0.0 \\ 0.0 & 0.0 & 0.5 & 0.5 & 0.0 \\ 1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 1.0 & 0.0 & 0.0 \end{bmatrix}$$

$$\boldsymbol{\pi}^{0} = \begin{bmatrix} 1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.5 & 0.0 & 0.5 & 0.0 \end{bmatrix}$$

$$\boldsymbol{\pi}^{1} = \begin{bmatrix} 0.0 & 0.5 & 0.0 & 0.5 & 0.0 \\ 0.0 & 0.0 & 0.25 & 0.25 & 0.5 \end{bmatrix}$$

$$\boldsymbol{\pi}^{2} = \begin{bmatrix} 0.0 & 0.0 & 0.25 & 0.25 & 0.5 \end{bmatrix}$$

$$\boldsymbol{\pi}^{3} = \begin{bmatrix} 0.25 & 0.0 & 0.5 & 0.0 & 0.25 \end{bmatrix}$$

 $S = \{1, \dots, 5\}$

$$\mathbf{7} = \begin{bmatrix} 0.0 & 0.5 & 0.0 & 0.5 & 0.0 \\ 0.0 & 0.0 & 0.5 & 0.5 & 0.0 \\ 1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 1.0 \\ 0.0 & 0.0 & 1.0 & 0.0 & 0.0 \end{bmatrix}$$

$$\mathbf{7}^{0} = \begin{bmatrix} 1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ \mathbf{7}^{0} = \begin{bmatrix} 0.0 & 0.5 & 0.0 & 0.5 & 0.0 \end{bmatrix}$$

$$\mathbf{7}^{1} = \begin{bmatrix} 0.0 & 0.5 & 0.0 & 0.5 & 0.0 \end{bmatrix}$$

$$\mathbf{7}^{2} = \begin{bmatrix} 0.0 & 0.0 & 0.25 & 0.25 & 0.5 \end{bmatrix}$$

$$\mathbf{7}^{3} = \begin{bmatrix} 0.25 & 0.0 & 0.5 & 0.0 & 0.25 \end{bmatrix}$$

$$\mathbf{7}^{4} = \begin{bmatrix} 0.5 & 0.125 & 0.25 & 0.125 & 0 \end{bmatrix}$$

 $S = \{1, \dots, 5\}$

$$\mathbf{P} = \begin{bmatrix} 0.0 & 0.5 & 0.0 & 0.5 & 0.0 \\ 0.0 & 0.0 & 0.5 & 0.5 & 0.0 \\ 1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 1.0 \\ 0.0 & 0.0 & 1.0 & 0.0 & 0.0 \end{bmatrix}$$

$$\boldsymbol{\pi}^{0} = \begin{bmatrix} 1.0 & 0.0 & 0.0 & 0.0 & 0.0 \end{bmatrix}$$

$$\boldsymbol{\pi}^{1} = \begin{bmatrix} 0.0 & 0.5 & 0.0 & 0.5 & 0.0 \end{bmatrix}$$

$$\boldsymbol{\pi}^{2} = \begin{bmatrix} 0.0 & 0.5 & 0.0 & 0.5 & 0.0 \end{bmatrix}$$

$$\boldsymbol{\pi}^{3} = \begin{bmatrix} 0.25 & 0.0 & 0.5 & 0.0 & 0.25 \end{bmatrix}$$

$$\boldsymbol{\pi}^{4} = \begin{bmatrix} 0.5 & 0.125 & 0.25 & 0.125 & 0 \end{bmatrix}$$

 $\boldsymbol{\pi}^5 = \begin{bmatrix} 0.25 & 0.25 & 0.0625 & 0.3125 & 0.125 \end{bmatrix}$

 $S = \{1, \dots, 5\}$

$$\mathbf{P} = \begin{bmatrix} 0.0 & 0.5 & 0.0 & 0.5 & 0.0 \\ 0.0 & 0.0 & 0.5 & 0.5 & 0.0 \\ 1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 1.0 \\ 0.0 & 0.0 & 1.0 & 0.0 & 0.0 \end{bmatrix}$$

$$\boldsymbol{\pi}^0 = \begin{bmatrix} 1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ \boldsymbol{\pi}^1 = \begin{bmatrix} 0.0 & 0.5 & 0.0 & 0.5 & 0.0 \end{bmatrix}$$

$$\boldsymbol{\pi}^2 = \begin{bmatrix} 0.0 & 0.5 & 0.0 & 0.5 & 0.0 \end{bmatrix}$$

$$\boldsymbol{\pi}^3 = \begin{bmatrix} 0.25 & 0.0 & 0.5 & 0.0 & 0.25 \end{bmatrix}$$

$$\boldsymbol{\pi}^4 = \begin{bmatrix} 0.5 & 0.125 & 0.25 & 0.125 & 0 \end{bmatrix}$$

$$\boldsymbol{\pi}^5 = \begin{bmatrix} 0.25 & 0.025 & 0.0625 & 0.3125 & 0.125 \end{bmatrix}$$

$$\boldsymbol{\pi}^5 = \begin{bmatrix} 0.25 & 0.125 & 0.25 & 0.1875 & 0.1875 \end{bmatrix}$$

Computing π (Method 1)

- Stationary state distribution is the limit distribution
- Idea: Compute k-step state probabilities π^k until they converge

• Power (iteration) method

- select arbitrary initial state probability distribution π^0
- compute $\pi^k = \pi^{k-1} \mathbf{P}$ until they converge (e.g., $|\pi^k \pi^{k-1}| < \varepsilon$)
- report last π^k as stationary state distribution π

• Power (iteration) method basically **simulates the Markov chain** and is the **method of choice in practice** when dealing with huge state spaces, exploiting that **matrix-vector multiplication** is **easy to parallelize**

Computing π (Method 2)

• Stationary state distribution π fulfills $\pi = \pi P$, which can be cast into a system of linear equations

$$\mathbf{P} = \begin{bmatrix} 0.0 & 0.5 & 0.0 & 0.5 & 0.0 \\ 0.0 & 0.0 & 0.5 & 0.5 & 0.0 \\ 1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 1.0 \\ 0.0 & 0.0 & 1.0 & 0.0 & 0.0 \end{bmatrix}$$

$$\pi_1 = 0.0 \times \pi_1 + 0.0 \times \pi_2 + 1.0 \times \pi_3 + 0.0 \times \pi_4 + 0.0 \times \pi_5$$
 $\pi_2 = 0.5 \times \pi_1 + 0.0 \times \pi_2 + 0.0 \times \pi_3 + 0.0 \times \pi_4 + 0.0 \times \pi_5$
 $\pi_3 = 0.0 \times \pi_1 + 0.5 \times \pi_2 + 0.0 \times \pi_3 + 0.0 \times \pi_4 + 1.0 \times \pi_5$
 $\pi_4 = 0.5 \times \pi_1 + 0.5 \times \pi_2 + 0.0 \times \pi_3 + 0.0 \times \pi_4 + 0.0 \times \pi_5$
 $\pi_5 = 0.0 \times \pi_1 + 0.0 \times \pi_2 + 0.0 \times \pi_3 + 1.0 \times \pi_4 + 0.0 \times \pi_5$
 $1 = 1.0 \times \pi_1 + 1.0 \times \pi_2 + 1.0 \times \pi_3 + 1.0 \times \pi_4 + 1.0 \times \pi_5$

• Solutions can be found, e.g., using Gauss elimination

Computing π (Method 3)

• Stationary state probability distribution π is the left eigenvector of the transition probability matrix P for the eigenvalue $\lambda = 1$

$$\pi P = \lambda \pi$$

• Can be computed using the characteristic polynomial

$$(\mathbf{P} - \lambda \mathbf{I}) \; \boldsymbol{\pi} = \mathbf{0}$$

- Random surfer model
 - follows a uniform random outgoing link with probability (1- ε)
 - jumps to a uniform random web page with probability ε
- Let A be the adjacency matrix of the Web graph, matrix T captures following of a uniform random outgoing link

$$\mathbf{T}_{ij} = \begin{cases} 1/out(i) & : & (i,j) \in E \\ 0 & : & \text{otherwise} \end{cases}$$

- Random surfer model
 - follows a uniform random outgoing link with probability (1- ε)
 - jumps to a uniform random web page with probability ε
- Vector **j** captures jumping to a uniform random web page

$$\mathbf{j}_i = 1/|V|$$

• Transition probability matrix of Markov chain then obtained as

$$\mathbf{P} = (1 - \epsilon) \mathbf{T} + \epsilon \begin{bmatrix} 1 & \dots & 1 \end{bmatrix}^T \mathbf{j}$$

• With $\varepsilon = 0.15$ we obtain

$$\mathbf{P} = \begin{bmatrix} 0.030 & 0.455 & 0.030 & 0.455 & 0.030 \\ 0.030 & 0.030 & 0.455 & 0.455 & 0.030 \\ 0.880 & 0.030 & 0.030 & 0.030 & 0.030 \\ 0.030 & 0.030 & 0.030 & 0.030 & 0.880 \\ 0.030 & 0.030 & 0.880 & 0.030 & 0.030 \end{bmatrix}$$

$$\boldsymbol{\pi} = \begin{bmatrix} 0.24079 & 0.13234 & 0.24799 & 0.18858 & 0.19029 \end{bmatrix}$$

• Transition probability matrix of Markov chain then obtained as

$$\mathbf{P} = (1 - \epsilon) \mathbf{T} + \epsilon \left[1 \dots 1\right]^{T} \mathbf{j}$$

$$\pi_{i} = (1 - \epsilon) \sum_{(j,i) \in E} \frac{\pi_{j}}{out(j)} + \frac{\epsilon}{|V|}$$

- We need to deal with dangling nodes (having out-degree zero)
 - Re-normalize π^k such that $|\pi^k| = 1$ after every iteration of power method
 - Make P truly right stochastic by defining matrix T as

$$\mathbf{T}_{ij} = \begin{cases} 1/out(i) & : & (i,j) \in E \\ 1/|V| & : & out(i) = 0 \\ 0 & : & \text{otherwise} \end{cases}$$

PageRank as a Markov Chain (Is It Ergodic?)

- Markov chain defined by transition probability matrix T is
 - finite (only finite number of web pages)
 - time-homogeneous (by design)
 - **irreducible** (random surfer can jump from every state *i* to every state *j*)
 - **positive recurrent** (random surfer can "jump up" on state *i*)
 - aperiodic (period of every state is 1 because of "jump up" on state i)

...it is thus **ergodic** and unique stationary state probabilities π exist

• Random jump is essential to make the Markov chain ergodic

PageRank & Queries

- Random jump probability typically set as $\varepsilon = 0.15$ (i.e., random surfer follows on average about seven links in a row)
- PageRank determines a static global ranking of web pages, is query-independent, and orthogonal to textual relevance
- Combination of PageRank score and retrieval models, e.g., as
 - linear combination of cosine similarity and PageRank score

$$\alpha \times sim(q,d) + (1-\alpha) \times pr(d)$$

• document prior in a query-likelihood language model

$$P(q|d) \times P(d)$$

• together with many other features in machine-learned ranking model

Summary of IV.2

Markov chains

as a kind of stochastic process useful to describe random walks

Stationary state distribution

is guaranteed to exist if the Markov chain is finite and ergodic can be computed using (i) power iteration (ii) solving a system of linear equations or (iii) determining an eigenvector of a matrix

• PageRank

as Google's initial secret of success is based on a random surfer model can be described as a finite and ergodic Markov chain yields a static query-independent importance score

Additional Literature for IV.2

- S. Brin and L. Page: The anatomy of a large-scale hypertextual Web search engine, Computer Networks 30:107-117, 1998
- M. Bianchini, M. Gori, and F. Scarselli: *Inside PageRank*, ACM TOIT 5(1):92-128, 2005
- **M. Franceschet**: *PageRank: Standing on the Shoulders of Giants*, CACM 54(6):92-101, 2011
- A. N. Meyer and C. D. Meyer: Survey: Deeper Inside PageRank, Internet Mathematics 1(3):335-380, 2003
- L. Page, S. Brin, R. Motwani, and T. Winograd: The PageRank Citation Ranking: Bringing Order to the Web, Technical Report, Stanford University, 1999