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Friendship Networks, Citation Networks, …

• Link analysis studies the relationships (e.g., friendship, citation)  
between objects (e.g., people, publications) to find out about their 
characteristics (e.g., popularity, impact)  

!

• Social Network Analysis (e.g., on a friendship network) 

• Closeness centrality of a person v is the fraction of shortest paths  
between any two persons (u, w) that pass through v 

!

• Bibliometrics (e.g., on a citation network) 

• Co-citation measures how many papers cite both u and v 

• Co-reference measures how many common papers both u and v refer to
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…, and the Web?

• World Wide Web can be seen as directed graph G(V, E) 

• web pages correspond to vertices (or, nodes) V 

• hyperlinks between them correspond to edges E 

• Link analysis on the Web graph can give us clues about 

• which web pages are important and should thus be ranked higher 

• which pairs of web pages are similar to each other 

• which web pages are probably spam and should be ignored 

• …
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Chapter IV: Link Analysis
IV.1 The World Wide Web as a Graph  
  Degree Distributions, Diameter, Bow-Tie Structure 

IV.2 PageRank  
  Random Surfer Model, Markov Chains 

IV.3 HITS  
  Hyperlinked-Induced Topic Search 

IV.4 Topic-Specific and Personalized PageRank  
  Biased Random Jumps, Linearity of PageRank 

IV.5 Online Link Analysis  
  OPIC 

IV.6 Similarity Search  
  SimRank, Random Walk with Restarts 

IV.7 Spam Detection  
  Link Spam, TrustRank, SpamRank 

IV.8 Social Networks  
  SocialPageRank, TunkRank
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IV.1 The World Wide Web as a Graph

1.  How Big is the Web? 

2.  Degree Distributions 

3.  Random-Graph Models 

4.  Bow-Tie Structure 
 
 
 
 
 
 
 
 
 
Based on MRS Chapter 21
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1. How Big is the Web?

• How big is the entire World Wide Web? 

• quasi-infinite when you consider all (dynamic) URLs (e.g., of calendars)  

• Indexed Web is a more reasonable notion to look at 

• [Gulli and Signori ’05] estimated it as 11.5 billions (109) in 2005 

• Google claimed to know about more than 1 trillion (1012) URLs in 2008 

• WorldWideWebSize.com provides daily estimates obtained by 
extrapolating from the number of results returned by Google and Bing  
on the basis of Zipf’s law (currently: 3.6 billion – 38 billion)

!6
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2. Degree Distributions

• What is the distribution of in-/out-degrees on the Web graph? 

• in-degree(v) of vertex v is the number of incoming edges (u, v) 

• out-degree(v) of vertex v is the number of outgoing edges (v, w) 

• Zipfian distribution has probability mass function  
 
 
 
 
with rank k, parameter s, and total number of objects N 

• provides good model of many real-world phenomena, e.g., word 
frequencies, city populations, corporation sizes, income rankings 

• appear as straight line with slope -s in log-log-plot
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f(k; s,N) =
1/ks
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Degree Distributions

!

!

!

!

!

!

!

!

!

• Full details: [Broder et al. ‘00]
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Figures 3 and 4: In- and out-degree distributions show a remarkable similarity over two crawls, run in May and
October 1999. Each crawl counts well over 1 billion distinct edges of the web graph.

Undirected connected components.  In the next set of experiments we treat the web graph as an undirected graph
and find the sizes of  the undirected components. We find a giant component of 186 million nodes in which fully
91% of the nodes in our crawl are reachable from one another by following either forward or backward links. This
is done by running the WCC algorithm which simply finds all connected components in the undirected web graph.
Thus, if one could browse along both forward and backward directed links, the web is a very well connected
graph.   Surprisingly, even the distribution of the sizes of WCC's exhibits a power law with exponent roughly 2.5
(Figure 5).

 

Figures 5 and 6: Distribution of  weakly connected components  and strongly connected components on the web.
The sizes of these components also follow a power law.

Does this widespread connectivity result from a few nodes of large in-degree acting as "junctions"?  Surprisingly,

Graph structure in the web

http://www9.org/w9cdrom/160/160.html (7 de 15) [28/10/2003 18:08:36]

s = 2.72s = 2.10
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3. Random-Graph Models

• Generative models of undirected or undirected graphs  

• Erdös-Renyi Model G(n, p) generates a graph consisting of n 
vertices; each possible edge (u, w) exists with probability p 

• Barabási-Albert Model generates a graph by successively 
adding vertices u with m edges; the edge (u, v) attaches to vertex v 
with probability proportional to deg(v)  

• Preferential attachment (“the rich get richer”) in the Barabási-
Albert Model yields graphs with properties similar to Web graph  

• Full details: [Barabási and Albert ’99]
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4. Bow-Tie Structure

• The Web graph looks a lot like a bow tie [Broder et al. ’00] 

!

!

!

!

!

• Strongly Connected Component (SCC) of web pages that are 
reachable from each other by following a few hyperlinks  

• IN consisting of web pages from which SCC is reachable 

• OUT consisting of web pages reachable from SCC

!10

Online edition (c) 2009 Cambridge UP

19.2 Web characteristics 427

! Figure 19.4 The bowtie structure of the Web. Here we show one tube and three
tendrils.

SCC is somewhat larger; most web pages fall into one of these three sets. The
remaining pages form into tubes that are small sets of pages outside SCC that
lead directly from IN to OUT, and tendrils that either lead nowhere from IN,
or from nowhere to OUT. Figure 19.4 illustrates this structure of the Web.

19.2.2 Spam

Early in the history of web search, it became clear that web search engines
were an important means for connecting advertisers to prospective buyers.
A user searching for maui golf real estate is not merely seeking news or en-
tertainment on the subject of housing on golf courses on the island of Maui,
but instead likely to be seeking to purchase such a property. Sellers of such
property and their agents, therefore, have a strong incentive to create web
pages that rank highly on this query. In a search engine whose scoring was
based on term frequencies, a web page with numerous repetitions of maui golf
real estate would rank highly. This led to the first generation of spam, whichSPAM

(in the context of web search) is the manipulation of web page content for
the purpose of appearing high up in search results for selected keywords.
To avoid irritating users with these repetitions, sophisticated spammers re-
sorted to such tricks as rendering these repeated terms in the same color as
the background. Despite these words being consequently invisible to the hu-
man user, a search engine indexer would parse the invisible words out of
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Additional Literature for IV.1

• A.-L. Barabási and R. Albert: Emergence of Scaling in Random Networks,  
Science 1999  

• A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata,  
A. Tomkins, and J. L. Wiener: Graph Structure in the Web, 
Computer Networks 33:309-320, 2000 

• A. Gulli and A. Signori: The Indexable Web is More than 11.5 Billion Pages, 
WWW 2005 

• R. Meusel, O. Lehmberg, C. Bizer: Topology of the WDC Hyperlink Graph  
http://webdatacommons.org/hyperlinkgraph/topology.html, 2013

!11

http://webdatacommons.org/hyperlinkgraph/topology.html


IR&DM ’13/’14

IV.2 PageRank

• Hyperlinks distinguish the Web from other document collections 
and can be interpreted as endorsements for the target web page 

• In-degree as a measure of the importance/authority/popularity  
of a web page v is easy to manipulate and does not consider the 
importance of the source web pages 

• PageRank considers a web page v important  
if many important web pages link to it 

• Random surfer model 

• follows a uniform random outgoing link with probability (1-ε) 

• jumps to a uniform random web page with probability ε 

• Intuition: Important web pages are the ones that are visited often

!12
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Markov Chains

!13
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Stochastic Processes & Markov Chains

• Discrete stochastic process is a family of random variables  
 
 
with T = {0, 1, 2 …} as discrete time domain 

• Stochastic process is a Markov chain if  
 
 
 
holds, i.e., it is memoryless 

• Markov chain is time-homogeneous if for all times t 
 
 
holds, i.e., transition probabilities do not depend on time

!14

{Xt | t 2 T}

P [Xt = x |Xt�1 = w, . . . , X0 = a]
= P [Xt = x |Xt�1 = w]

P [Xt+1 = x |Xt = w] = P [Xt = x |Xt�1 = w]
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State Space & Transition Probability Matrix

• State space of a Markov chain { Xt | t ∈ T } is  
the countable set S of all values that Xt can assume  

• Xt : Ω → S 

• Markov chain is in state s at time t if Xt = s 

• Markov chain { Xt | t ∈ T } is finite if it has a finite state space 

• If a Markov chain { Xt | t ∈ T } is finite and time-homogeneous, 
its transition probabilities can be described as a matrix P = (pij) 

!

• For |S| = n the transition probability matrix P is a  
n-by-n right-stochastic matrix (i.e., its rows sum up to 1)

!15

pij = P [Xt = j |Xt�1 = i]

8 i :
X

j

pij = 1
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Properties of Markov Chains

• State i is reachable from state j if there exists a n ≥ 0 such that  
(Pn)ij > 0 (with Pn = P × … × P as n-th exponent of P)   

• States i and j communicate if i is reachable from j and vice versa 

• Markov chain is irreducible if all states i, j ∈ S communicate 

• Markov chain is positive recurrent if the recurrence probability 
is 1 and the mean recurrence time is finite for every state i

!16

1X

k=1

P [Xk = i ^ 8 1  j < k : Xj 6= i |X0 = i] = 1

1X

k=1

k P [Xk = i ^ 8 1  j < k : Xj 6= i |X0 = i] < 1
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Properties of Markov Chains

• Markov chain is aperiodic if every state i has period 1 defined as 

!

• Markov chain is ergodic if it is time-homogeneous, irreducible, 
positive recurrent, and aperiodic 

• The 1-by-n vector π is the stationary state distribution of the 
Markov chain described by P if πi ≥ 0, Σ πi = 1, and 

!

• πi is the limit probability that Markov chain is in state i 

• 1/πi reflects the average time until the Markov chain returns to state i 

• Theorem: If a Markov chain is finite and ergodic, then there 
exists a unique stationary state distribution π 

!17

⇡P = ⇡

gcd { k : P [Xk = i ^ 8 1  j < k : Xj 6= i |X0 = i] > 0 }
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Markov Chain (Example Revisited)

!18
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Markov Chain (Example Revisited)
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Markov Chain (Example Revisited)

!18

2 3

4 5

1
0.5

0.5

0.5

0.5

1.0

1.0
1.0

S = {1, . . . , 5}

P =

2

66664

0.0 0.5 0.0 0.5 0.0
0.0 0.0 0.5 0.5 0.0
1.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 1.0
0.0 0.0 1.0 0.0 0.0

3

77775

⇡0 =
⇥
1.0 0.0 0.0 0.0 0.0

⇤

⇡1 =
⇥
0.0 0.5 0.0 0.5 0.0

⇤

⇡2 =
⇥
0.0 0.0 0.25 0.25 0.5

⇤



IR&DM ’13/’14

Markov Chain (Example Revisited)
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Markov Chain (Example Revisited)
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Markov Chain (Example Revisited)

!18

2 3

4 5

1
0.5

0.5

0.5

0.5

1.0

1.0
1.0

S = {1, . . . , 5}

P =

2

66664

0.0 0.5 0.0 0.5 0.0
0.0 0.0 0.5 0.5 0.0
1.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 1.0
0.0 0.0 1.0 0.0 0.0

3

77775

⇡0 =
⇥
1.0 0.0 0.0 0.0 0.0

⇤

⇡1 =
⇥
0.0 0.5 0.0 0.5 0.0

⇤

⇡2 =
⇥
0.0 0.0 0.25 0.25 0.5

⇤

⇡3 =
⇥
0.25 0.0 0.5 0.0 0.25

⇤

⇡4 =
⇥
0.5 0.125 0.25 0.125 0

⇤

⇡5 =
⇥
0.25 0.25 0.0625 0.3125 0.125

⇤



IR&DM ’13/’14

Markov Chain (Example Revisited)
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Computing π (Method 1)

• Stationary state distribution is the limit distribution 

• Idea: Compute k-step state probabilities πk until they converge 

!

• Power (iteration) method 

• select arbitrary initial state probability distribution π0 

• compute πk = πk-1 P until they converge (e.g., | πk - πk-1 | < ε) 

• report last πk as stationary state distribution π 

!

• Power (iteration) method basically simulates the Markov chain and  
is the method of choice in practice when dealing with huge state spaces, 
exploiting that matrix-vector multiplication is easy to parallelize  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Computing π (Method 2)

• Stationary state distribution π fulfills π = π P, 
which can be cast into a system of linear equations 

!

!

!

!

!

!

• Solutions can be found, e.g., using Gauss elimination
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Computing π (Method 3)

• Stationary state probability distribution π is the left eigenvector 
of the transition probability matrix P for the eigenvalue λ = 1 

!

• Can be computed using the characteristic polynomial

!21

⇡P = �⇡

(P� � I) ⇡ = 0
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PageRank as a Markov Chain

• Random surfer model 

• follows a uniform random outgoing link with probability (1-ε) 

• jumps to a uniform random web page with probability ε 

• Let A be the adjacency matrix of the Web graph, matrix T 
captures following of a uniform random outgoing link

!22
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PageRank as a Markov Chain

• Random surfer model 

• follows a uniform random outgoing link with probability (1-ε) 

• jumps to a uniform random web page with probability ε 

• Vector j captures jumping to a uniform random web page 

!

!

!

!

• Transition probability matrix of Markov chain then obtained as

!23
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ji = 1/|V |

P = (1� ✏)T+ ✏
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1 . . . 1

⇤T
j
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PageRank as a Markov Chain

• With ε = 0.15 we obtain

!24
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PageRank as a Markov Chain

• Transition probability matrix of Markov chain then obtained as 

!

!

!

• We need to deal with dangling nodes (having out-degree zero) 

• Re-normalize πk such that | πk | = 1 after every iteration of power method 

• Make P truly right stochastic by defining matrix T as

!25

⇡i = (1� ✏)
X

(j,i)2E

⇡j

out(j)
+

✏

|V |

4

P = (1� ✏)T+ ✏
⇥
1 . . . 1

⇤T
j

Tij =

8
<

:

1/out(i) : (i, j) 2 E

1/|V | : out(i) = 0

0 : otherwise
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PageRank as a Markov Chain (Is It Ergodic?)

• Markov chain defined by transition probability matrix T is 

• finite (only finite number of web pages) 

• time-homogeneous (by design) 

• irreducible (random surfer can jump from every state i to every state j) 

• positive recurrent (random surfer can “jump up” on state i) 

• aperiodic (period of every state is 1 because of “jump up” on state i)  
 
…it is thus ergodic and unique stationary state probabilities π exist 

!

• Random jump is essential to make the Markov chain ergodic

!26



IR&DM ’13/’14

PageRank & Queries

• Random jump probability typically set as ε = 0.15 
(i.e., random surfer follows on average about seven links in a row)  

• PageRank determines a static global ranking of web pages,  
is query-independent, and orthogonal to textual relevance  

• Combination of PageRank score and retrieval models, e.g., as 

• linear combination of cosine similarity and PageRank score 

!

• document prior in a query-likelihood language model  
 

• together with many other features in machine-learned ranking model

!27

↵⇥ sim(q, d) + (1� ↵)⇥ pr(d)

P (q|d)⇥ P (d)
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Summary of IV.2

• Markov chains  
as a kind of stochastic process useful to describe random walks 

• Stationary state distribution  
is guaranteed to exist if the Markov chain is finite and ergodic  
can be computed using (i) power iteration (ii) solving a system of 
linear equations or (iii) determining an eigenvector of a matrix 

• PageRank  
as Google’s initial secret of success  
is based on a random surfer model  
can be described as a finite and ergodic Markov chain  
yields a static query-independent importance score 

!28
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