Chapter IV: Link Analysis

Information Retrieval & Data Mining
Universität des Saarlandes, Saarbrücken
Wintersemester 2013/14
Friendship Networks, Citation Networks, …

- **Link analysis** studies the **relationships** (e.g., friendship, citation) between **objects** (e.g., people, publications) to find out about their **characteristics** (e.g., popularity, impact)

- **Social Network Analysis** (e.g., on a friendship network)
 - **Closeness centrality** of a person v is the **fraction of shortest paths** between any two persons (u, w) that pass through v

- **Bibliometrics** (e.g., on a citation network)
 - **Co-citation** measures how many papers cite both u and v
 - **Co-reference** measures how many common papers both u and v refer to
..., and the Web?

- **World Wide Web** can be seen as **directed graph** $G(V, E)$
 - web pages correspond to vertices (or, nodes) V
 - hyperlinks between them correspond to edges E

- Link analysis on the **Web graph** can give us clues about
 - which web pages are **important** and should thus be ranked higher
 - which pairs of web pages are **similar to each other**
 - which web pages are probably **spam** and should be ignored
 - …
Chapter IV: Link Analysis

IV.1 The World Wide Web as a Graph
 Degree Distributions, Diameter, Bow-Tie Structure

IV.2 PageRank
 Random Surfer Model, Markov Chains

IV.3 HITS
 Hyperlinked-Induced Topic Search

IV.4 Topic-Specific and Personalized PageRank
 Biased Random Jumps, Linearity of PageRank

IV.5 Online Link Analysis
 OPIC

IV.6 Similarity Search
 SimRank, Random Walk with Restarts

IV.7 Spam Detection
 Link Spam, TrustRank, SpamRank

IV.8 Social Networks
 SocialPageRank, TunkRank
IV.1 The World Wide Web as a Graph

1. How Big is the Web?
2. Degree Distributions
3. Random-Graph Models
4. Bow-Tie Structure

Based on MRS Chapter 21
1. How Big is the Web?

- How big is the entire World Wide Web?
 - **quasi-infinite** when you consider all (dynamic) URLs (e.g., of calendars)

- **Indexed Web** is a more reasonable notion to look at
 - [Gulli and Signori ’05] estimated it as 11.5 billions (10^9) in 2005
 - Google claimed to know about more than 1 trillion (10^{12}) URLs in 2008
 - WorldWideWebSize.com provides daily estimates obtained by extrapolating from the number of results returned by Google and Bing on the basis of Zipf’s law (currently: 3.6 billion – 38 billion)
2. Degree Distributions

• What is the distribution of in-/out-degrees on the Web graph?

• \textit{in-degree}(v) of vertex v is the number of incoming edges (u, v)

• \textit{out-degree}(v) of vertex v is the number of outgoing edges (v, w)

• \textbf{Zipfian distribution} has probability mass function

$$f(k; s, N) = \frac{1/k^s}{\sum_{n=1}^{N} 1/n^s}$$

with rank k, parameter s, and total number of objects N

• provides good model of \textbf{many real-world phenomena}, e.g., word frequencies, city populations, corporation sizes, income rankings

• appear as \textbf{straight line} with slope -s in log-log-plot
Figures 3 and 4: In- and out-degree distributions show a remarkable similarity over two crawls, run in May and October 1999. Each crawl counts well over 1 billion distinct edges of the web graph.

Undirected connected components.

In the next set of experiments we treat the web graph as an undirected graph and find the sizes of the undirected components. We find a giant component of 186 million nodes in which fully 91% of the nodes in our crawl are reachable from one another by following either forward or backward links. This is done by running the WCC algorithm which simply finds all connected components in the undirected web graph. Thus, if one could browse along both forward and backward directed links, the web is a very well connected graph. Surprisingly, even the distribution of the sizes of WCC's exhibits a power law with exponent roughly 2.5 (Figure 5).

Figures 5 and 6: Distribution of weakly connected components and strongly connected components on the web. The sizes of these components also follow a power law.

Does this widespread connectivity result from a few nodes of large in-degree acting as "junctions"? Surprisingly,

$$s = 2.10$$

$$s = 2.72$$

• Full details: [Broder et al. ‘00]
3. Random-Graph Models

- **Generative models** of undirected or undirected graphs

- **Erdős-Renyi Model** $G(n, p)$ generates a graph consisting of n vertices; each possible edge (u, w) exists with probability p

- **Barabási-Albert Model** generates a graph by successively adding vertices u with m edges; the edge (u, v) attaches to vertex v with probability proportional to $\text{deg}(v)$

- **Preferential attachment** ("the rich get richer") in the Barabási-Albert Model yields graphs with properties similar to Web graph

- **Full details**: [Barabási and Albert ’99]
4. Bow-Tie Structure

- The Web graph looks a lot like a **bow tie** [Broder et al. ’00]

![Bow-Tie Structure Diagram]

- **Strongly Connected Component** (SCC) of web pages that are reachable from each other by following a few hyperlinks
- **IN** consisting of web pages from which SCC is reachable
- **OUT** consisting of web pages reachable from SCC
Additional Literature for IV.1

- A. Gulli and A. Signori: *The Indexable Web is More than 11.5 Billion Pages*, WWW 2005

IV.2 PageRank

- **Hyperlinks** distinguish the Web from other document collections and can be interpreted as **endorsements** for the target web page.

- **In-degree** as a measure of the **importance/authority/popularity** of a web page \(v \) is **easy to manipulate** and does not consider the **importance of the source web pages**.

- **PageRank** considers a web page \(v \) **important** if many **important** web pages link to it.

- **Random surfer model**
 - follows a uniform random outgoing link with probability \((1-\varepsilon)\)
 - jumps to a uniform random web page with probability \(\varepsilon\)

- **Intuition**: Important web pages are the ones that are visited often.
Markov Chains

\[S = \{1, \ldots, 5\} \]

\[P = \begin{bmatrix}
0.0 & 0.5 & 0.0 & 0.5 & 0.0 \\
0.0 & 0.0 & 0.5 & 0.5 & 0.0 \\
1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 1.0 \\
0.0 & 0.0 & 1.0 & 0.0 & 0.0 \\
\end{bmatrix} \]
Stochastic Processes & Markov Chains

- **Discrete stochastic process** is a family of random variables
 \[\{X_t \mid t \in T\}\]
 with \(T = \{0, 1, 2 \ldots\}\) as *discrete time domain*

- Stochastic process is a **Markov chain** if
 \[P[X_t = x \mid X_{t-1} = w, \ldots, X_0 = a] = P[X_{t+1} = x \mid X_t = w, X_{t-1} = w]\]
 holds, i.e., it is *memoryless*

- Markov chain is **time-homogeneous** if for all times \(t\)
 \[P[X_{t+1} = x \mid X_t = w] = P[X_t = x \mid X_{t-1} = w]\]
 holds, i.e., *transition probabilities* do not depend on time
State Space & Transition Probability Matrix

- **State space** of a Markov chain \(\{ X_t \mid t \in T \} \) is the countable set \(S \) of all values that \(X_t \) can assume
 - \(X_t : \Omega \to S \)

- Markov chain is **in state \(s \) at time \(t \)** if \(X_t = s \)

- Markov chain \(\{ X_t \mid t \in T \} \) is **finite** if it has a finite state space

- If a Markov chain \(\{ X_t \mid t \in T \} \) is **finite** and **time-homogeneous**, its **transition probabilities** can be described as a matrix \(\mathbf{P} = (p_{ij}) \)
 \[
p_{ij} = P[X_t = j \mid X_{t-1} = i]
 \]

- For \(|S| = n \) the transition probability matrix \(\mathbf{P} \) is a **\(n \)-by-\(n \) right-stochastic matrix** (i.e., its rows sum up to 1)
 \[
 \forall i : \sum_j p_{ij} = 1
 \]
Properties of Markov Chains

- State i is **reachable** from state j if there exists a $n \geq 0$ such that $(P^n)_{ij} > 0$ (with $P^n = P \times \ldots \times P$ as n-th exponent of P)

- States i and j **communicate** if i is reachable from j and vice versa

- Markov chain is **irreducible** if all states $i, j \in S$ communicate

- Markov chain is **positive recurrent** if the recurrence probability is 1 and the mean recurrence time is finite for every state i

\[
\sum_{k=1}^{\infty} P[X_k = i \land \forall 1 \leq j < k : X_j \neq i \mid X_0 = i] = 1
\]

\[
\sum_{k=1}^{\infty} k P[X_k = i \land \forall 1 \leq j < k : X_j \neq i \mid X_0 = i] < \infty
\]
Properties of Markov Chains

- Markov chain is **aperiodic** if every state \(i \) has period 1 defined as
 \[\gcd \left\{ k : P[X_k = i \land \forall 1 \leq j < k : X_j \neq i \mid X_0 = i \right\} > 0 \]

- Markov chain is **ergodic** if it is time-homogeneous, irreducible, positive recurrent, and aperiodic

- The 1-by-\(n \) vector \(\pi \) is the **stationary state distribution** of the Markov chain described by \(P \) if \(\pi_i \geq 0, \Sigma \pi_i = 1, \) and
 \[\pi P = \pi \]
 \(\pi_i \) is the limit probability that Markov chain is in state \(i \)
 \(1/\pi_i \) reflects the average time until the Markov chain returns to state \(i \)

- **Theorem**: If a Markov chain is **finite** and **ergodic**, then there exists a **unique stationary state distribution** \(\pi \)
Markov Chain (Example Revisited)

\[S = \{1, \ldots, 5\} \]

\[P = \begin{bmatrix} 0.0 & 0.5 & 0.0 & 0.5 & 0.0 \\ 0.0 & 0.0 & 0.5 & 0.5 & 0.0 \\ 1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 1.0 \\ 0.0 & 0.0 & 1.0 & 0.0 & 0.0 \end{bmatrix} \]

\[\pi^0 = \begin{bmatrix} 1.0 & 0.0 & 0.0 & 0.0 & 0.0 \end{bmatrix} \]
Markov Chain (Example Revisited)

\[S = \{1, \ldots, 5\} \]

\[\pi^0 = \begin{bmatrix} 1.0 & 0.0 & 0.0 & 0.0 & 0.0 \end{bmatrix} \]

\[\pi^1 = \begin{bmatrix} 0.0 & 0.5 & 0.0 & 0.5 & 0.0 \end{bmatrix} \]

\[P = \begin{bmatrix} 0.0 & 0.5 & 0.0 & 0.5 & 0.0 \\ 0.0 & 0.0 & 0.5 & 0.5 & 0.0 \\ 1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 1.0 \\ 0.0 & 0.0 & 1.0 & 0.0 & 0.0 \end{bmatrix} \]
Markov Chain (Example Revisited)

\[S = \{1, \ldots, 5\} \]

\[
\begin{align*}
\pi^0 &= \begin{bmatrix} 1.0 & 0.0 & 0.0 & 0.0 & 0.0 \end{bmatrix} \\
\pi^1 &= \begin{bmatrix} 0.0 & 0.5 & 0.0 & 0.5 & 0.0 \end{bmatrix} \\
\pi^2 &= \begin{bmatrix} 0.0 & 0.0 & 0.25 & 0.25 & 0.5 \end{bmatrix}
\end{align*}
\]

\[
\begin{bmatrix}
0.0 & 0.5 & 0.0 & 0.5 & 0.0 \\
0.0 & 0.0 & 0.5 & 0.5 & 0.0 \\
1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 1.0 \\
0.0 & 0.0 & 1.0 & 0.0 & 0.0
\end{bmatrix}
\]
Markov Chain (Example Revisited)

\(S = \{1, \ldots, 5\} \)

\[
P = \begin{bmatrix}
0.0 & 0.5 & 0.0 & 0.5 & 0.0 \\
0.0 & 0.0 & 0.5 & 0.5 & 0.0 \\
1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 1.0 & 0.0 \\
0.0 & 0.0 & 1.0 & 0.0 & 0.0 \\
\end{bmatrix}
\]

\[
\pi^0 = \begin{bmatrix}
1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\end{bmatrix}
\]

\[
\pi^1 = \begin{bmatrix}
0.0 & 0.5 & 0.0 & 0.5 & 0.0 \\
\end{bmatrix}
\]

\[
\pi^2 = \begin{bmatrix}
0.0 & 0.0 & 0.25 & 0.25 & 0.5 \\
\end{bmatrix}
\]

\[
\pi^3 = \begin{bmatrix}
0.25 & 0.0 & 0.5 & 0.0 & 0.25 \\
\end{bmatrix}
\]
Markov Chain (Example Revisited)

\[S = \{1, \ldots, 5\} \]

\[\pi^0 = \begin{bmatrix} 1.0 & 0.0 & 0.0 & 0.0 & 0.0 \end{bmatrix} \]

\[\pi^1 = \begin{bmatrix} 0.0 & 0.5 & 0.0 & 0.5 & 0.0 \end{bmatrix} \]

\[\pi^2 = \begin{bmatrix} 0.0 & 0.0 & 0.25 & 0.25 & 0.5 \end{bmatrix} \]

\[\pi^3 = \begin{bmatrix} 0.25 & 0.0 & 0.5 & 0.0 & 0.25 \end{bmatrix} \]

\[\pi^4 = \begin{bmatrix} 0.5 & 0.125 & 0.25 & 0.125 & 0 \end{bmatrix} \]

\[P = \begin{bmatrix} 0.0 & 0.5 & 0.0 & 0.5 & 0.0 \\ 0.0 & 0.0 & 0.5 & 0.5 & 0.0 \\ 1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 1.0 \\ 0.0 & 0.0 & 1.0 & 0.0 & 0.0 \end{bmatrix} \]
Markov Chain (Example Revisited)

\[S = \{1, \ldots, 5\} \]

\[
\begin{aligned}
P &= \\
&= \begin{bmatrix}
0.0 & 0.5 & 0.0 & 0.5 & 0.0 \\
0.0 & 0.0 & 0.5 & 0.5 & 0.0 \\
1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 1.0 \\
0.0 & 0.0 & 1.0 & 0.0 & 0.0 \\
\end{bmatrix}
\end{aligned}
\]

\[
\begin{aligned}
\pi^0 &= \begin{bmatrix} 1.0 & 0.0 & 0.0 & 0.0 & 0.0 \end{bmatrix} \\
\pi^1 &= \begin{bmatrix} 0.0 & 0.5 & 0.0 & 0.5 & 0.0 \end{bmatrix} \\
\pi^2 &= \begin{bmatrix} 0.0 & 0.0 & 0.25 & 0.25 & 0.5 \end{bmatrix} \\
\pi^3 &= \begin{bmatrix} 0.25 & 0.0 & 0.5 & 0.0 & 0.25 \end{bmatrix} \\
\pi^4 &= \begin{bmatrix} 0.5 & 0.125 & 0.25 & 0.125 & 0 \end{bmatrix} \\
\pi^5 &= \begin{bmatrix} 0.25 & 0.25 & 0.0625 & 0.3125 & 0.125 \end{bmatrix}
\end{aligned}
\]
Markov Chain (Example Revisited)

\[S = \{1, \ldots, 5\} \]

\[P = \begin{bmatrix}
0.0 & 0.5 & 0.0 & 0.5 & 0.0 \\
0.0 & 0.0 & 0.5 & 0.5 & 0.0 \\
1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 1.0 \\
0.0 & 0.0 & 1.0 & 0.0 & 0.0 \\
\end{bmatrix} \]

\[\pi^0 = \begin{bmatrix}
1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\end{bmatrix} \]

\[\pi^1 = \begin{bmatrix}
0.0 & 0.5 & 0.0 & 0.5 & 0.0 \\
\end{bmatrix} \]

\[\pi^2 = \begin{bmatrix}
0.0 & 0.0 & 0.25 & 0.25 & 0.5 \\
\end{bmatrix} \]

\[\pi^3 = \begin{bmatrix}
0.25 & 0.0 & 0.5 & 0.0 & 0.25 \\
\end{bmatrix} \]

\[\pi^4 = \begin{bmatrix}
0.5 & 0.125 & 0.25 & 0.125 & 0.0 \\
\end{bmatrix} \]

\[\pi^5 = \begin{bmatrix}
0.25 & 0.25 & 0.0625 & 0.3125 & 0.125 \\
\end{bmatrix} \]

\[\vdots \]

\[\pi = \begin{bmatrix}
0.25 & 0.125 & 0.25 & 0.1875 & 0.1875 \\
\end{bmatrix} \]
Computing π (Method 1)

- Stationary state distribution is the limit distribution

- **Idea**: Compute k-step state probabilities π^k until they converge

Power (iteration) method

- select arbitrary initial state probability distribution π^0
- compute $\pi^k = \pi^{k-1} P$ until they converge (e.g., $|\pi^k - \pi^{k-1}| < \varepsilon$)
- report last π^k as stationary state distribution π

- Power (iteration) method basically **simulates the Markov chain** and is the **method of choice in practice** when dealing with huge state spaces, exploiting that **matrix-vector multiplication** is easy to parallelize
Computing π (Method 2)

- Stationary state distribution π fulfills $\pi = \pi P$, which can be cast into a \textit{system of linear equations}

\[
P = \begin{bmatrix}
0.0 & 0.5 & 0.0 & 0.5 & 0.0 \\
0.0 & 0.0 & 0.5 & 0.5 & 0.0 \\
1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 1.0 \\
0.0 & 0.0 & 1.0 & 0.0 & 0.0
\end{bmatrix}
\]

\[
\begin{align*}
\pi_1 &= 0.0 \times \pi_1 + 0.0 \times \pi_2 + 1.0 \times \pi_3 + 0.0 \times \pi_4 + 0.0 \times \pi_5 \\
\pi_2 &= 0.5 \times \pi_1 + 0.0 \times \pi_2 + 0.0 \times \pi_3 + 0.0 \times \pi_4 + 0.0 \times \pi_5 \\
\pi_3 &= 0.0 \times \pi_1 + 0.5 \times \pi_2 + 0.0 \times \pi_3 + 0.0 \times \pi_4 + 1.0 \times \pi_5 \\
\pi_4 &= 0.5 \times \pi_1 + 0.5 \times \pi_2 + 0.0 \times \pi_3 + 0.0 \times \pi_4 + 0.0 \times \pi_5 \\
\pi_5 &= 0.0 \times \pi_1 + 0.0 \times \pi_2 + 0.0 \times \pi_3 + 1.0 \times \pi_4 + 0.0 \times \pi_5 \\
1 &= 1.0 \times \pi_1 + 1.0 \times \pi_2 + 1.0 \times \pi_3 + 1.0 \times \pi_4 + 1.0 \times \pi_5
\end{align*}
\]

- Solutions can be found, e.g., using \textit{Gauss elimination}
Computing π (Method 3)

- Stationary state probability distribution π is the left eigenvector of the transition probability matrix P for the eigenvalue $\lambda = 1$

$$\pi P = \lambda \pi$$

- Can be computed using the characteristic polynomial

$$(P - \lambda I) \pi = 0$$
PageRank as a Markov Chain

• Random surfer model
 • follows a uniform random outgoing link with probability \((1-\varepsilon)\)
 • jumps to a uniform random web page with probability \(\varepsilon\)

• Let \(A\) be the adjacency matrix of the Web graph, matrix \(T\) captures following of a uniform random outgoing link

\[
T_{ij} = \begin{cases}
1 / \text{out}(i) & : (i, j) \in E \\
0 & : \text{otherwise}
\end{cases}
\]

\[
A = \begin{bmatrix}
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0
\end{bmatrix}
\]

\[
T = \begin{bmatrix}
0 & 1/2 & 0 & 1/2 & 0 \\
0 & 0 & 1/2 & 1/2 & 0 \\
1/1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1/1 \\
0 & 0 & 1/1 & 0 & 0
\end{bmatrix}
\]
PageRank as a Markov Chain

• Random surfer model

 • follows a uniform random outgoing link with probability $(1-\epsilon)$
 • jumps to a uniform random web page with probability ϵ

• Vector j captures jumping to a uniform random web page

\[
j_i = \frac{1}{|V|}\]

\[
A = \begin{bmatrix}
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0
\end{bmatrix}
\]

\[
j = [\frac{1}{5} \ldots \frac{1}{5}]\]

• Transition probability matrix of Markov chain then obtained as

\[
P = (1 - \epsilon)T + \epsilon \begin{bmatrix} 1 & \ldots & 1 \end{bmatrix}^T j\]
PageRank as a Markov Chain

- With $\varepsilon = 0.15$ we obtain

$$
\pi = \begin{bmatrix}
0.24079 & 0.13234 & 0.24799 & 0.18858 & 0.19029
\end{bmatrix}
$$

$$
P = \begin{bmatrix}
0.030 & 0.455 & 0.030 & 0.455 & 0.030 \\
0.030 & 0.030 & 0.455 & 0.455 & 0.030 \\
0.880 & 0.030 & 0.030 & 0.030 & 0.030 \\
0.030 & 0.030 & 0.880 & 0.030 & 0.030 \\
0.030 & 0.030 & 0.880 & 0.030 & 0.030
\end{bmatrix}
$$
PageRank as a Markov Chain

- **Transition probability matrix** of Markov chain then obtained as

\[
P = (1 - \epsilon) \mathbf{T} + \epsilon \left[1 \ldots 1 \right]^T \mathbf{j}
\]

\[
\pi_i = (1 - \epsilon) \sum_{(j,i) \in E} \frac{\pi_j}{\text{out}(j)} + \frac{\epsilon}{|V|}
\]

- We need to deal with **dangling nodes** (having out-degree zero)

- **Re-normalize** π^k such that $|\pi^k| = 1$ after every iteration of power method

- Make \mathbf{P} truly right stochastic by defining matrix \mathbf{T} as

\[
T_{ij} = \begin{cases}
\frac{1}{\text{out}(i)} : (i, j) \in E \\
\frac{1}{|V|} : \text{out}(i) = 0 \\
0 : \text{otherwise}
\end{cases}
\]
PageRank as a Markov Chain (Is It Ergodic?)

• Markov chain defined by transition probability matrix T is
 • **finite** (only finite number of web pages)
 • **time-homogeneous** (by design)
 • **irreducible** (random surfer can jump from every state i to every state j)
 • **positive recurrent** (random surfer can “jump up” on state i)
 • **aperiodic** (period of every state is 1 because of “jump up” on state i)

 …it is thus **ergodic** and unique stationary state probabilities π exist

• **Random jump** is **essential** to make the Markov chain ergodic
PageRank & Queries

- **Random jump probability** typically set as $\varepsilon = 0.15$ (i.e., random surfer follows on average about seven links in a row)

- PageRank determines a **static global ranking** of web pages, is **query-independent**, and orthogonal to textual relevance

- Combination of PageRank score and retrieval models, e.g., as
 - **linear combination** of cosine similarity and PageRank score
 \[\alpha \times \text{sim}(q, d) + (1 - \alpha) \times \text{pr}(d) \]
 - **document prior** in a query-likelihood language model
 \[P(q|d) \times P(d) \]
 - together with many other features in **machine-learned ranking model**
Summary of IV.2

- **Markov chains**
 as a kind of stochastic process useful to describe random walks

- **Stationary state distribution**
 is guaranteed to exist if the Markov chain is finite and ergodic
 can be computed using (i) power iteration (ii) solving a system of linear equations or (iii) determining an eigenvector of a matrix

- **PageRank**
 as Google’s initial secret of success
 is based on a random surfer model
 can be described as a finite and ergodic Markov chain
 yields a static query-independent importance score
Additional Literature for IV.2

