V.3 Query Processing

1. Term-at-a-Time
Document-at-a-Time

WAND

Quit & Continue

Buckley’s Algorithm

Fagin’s Threshold Algorithms

Query Processing with Importance Scores

ol A L S

Query Processing with Champion Lists

Based on MRS Chapter 7 and RBY Chapter 9

[R&DM °13/°14

49

Query Types

* Conjunctive
(1.e., all query terms are required)

* Disjunctive
(1.e., subset of query terms sufficient)

* Phrase or proximity
(1.e., query terms must occur 1n right order or close enough)

* Mixed-mode with negation
(e.g., “harry potter” review +movie -book)

* Combined with ranking of result documents according to

score(q,d) = Z score(t,d)

teq

with score(t, d) depending on retrieval model (e.g., #f.idf:)

[R&DM °13/°14

50

Inverted Index

alf

ben

gil

willow
yeast

Z00

di2z, 2, [4, 14]

dizz, 1, [47]

d2ss, 3, [1, 9, 20]

di23, 2, [6, 22]

di33, 1, [66]

dzss, 3, [1, 4, 23]

dse7, 2, [7, 99]

d233, 3, [5, 12, 23]

dize, 1, [22]

dias, 2, [5, 19]

di7z, 1, [55]

doas, 3, [7, 11,22]

d234, 2, [8, 17]

d299, 1, [26]

doge, 3, [5, 66, 7]

dsss, 2, [7, 77]

dssg, 1, [23]

dseo, 3, [1, 9, 20]

* Document-ordered or score-ordered posting lists

 Posting lists with skip pointers allow for faster traversal

[R&DM °13/°14

51

Overview of Query Processing Methods

* Holistic query processing methods determine whole query result
e Term-at-a-Time

 Document-at-a-Time

* Top-k query processing methods determine top-k query result
« WAND
e Quit & Continue

* Fagin’s Threshold Algorithms

* Opportunities for optimization over naive merge & sort baseline
* skipping in document-ordered posting lists

* early termination of query processing for score-ordered posting lists

[R&DM °13/°14 52

1. Term-at-a-Time Query Processing

* Term-at-a-Time (TAAT) query processing
 reads posting lists for query terms < #1, ..., #4)) successively

 maintains an accumulator for each result document with value

acc(d) = Z score(t;,d) after the first j posting lists have been read

1<j
Accumulators
@ e di,1.0||ds, 2.0 |d7,0.2] | ds, 0.1 dr 0.0
ds 0.0
D reeeeeeenn ds4, 1.0||d7,2.0] |ds, 0.2] |do, 0.1 d; : 0.0
ds 0.0
C "rorerereeee d4,3.0 d7,1.0 dg . 0.0

 required memory depends on the number of accumulators maintained

* top-k results can be determined by sorting accumulators at the end

[R&DM °13/°14 53

1. Term-at-a-Time Query Processing

* Term-at-a-Time (TAAT) query processing
 reads posting lists for query terms < #1, ..., #4)) successively

 maintains an accumulator for each result document with value

acc(d) = Z score(t;,d) after the first j posting lists have been read

1<j
Accumulators
@ e di, 1.0 |ds, 2.0 |d7,02] ds, 0.1 dr 0.0
ds 0.0
D reeeeeeenn ds4, 1.0||d7,2.0] |ds, 0.2] |do, 0.1 d; : 0.0
ds 0.0
C "rorerereeee d4,3.0 d7,1.0 dg . 0.0

 required memory depends on the number of accumulators maintained

* top-k results can be determined by sorting accumulators at the end

[R&DM °13/°14 53

1. Term-at-a-Time Query Processing

* Term-at-a-Time (TAAT) query processing
 reads posting lists for query terms < #1, ..., #4)) successively

 maintains an accumulator for each result document with value

acc(d) = Z score(t;,d) after the first j posting lists have been read

1<j
Accumulators
@ e di, 1.0 |ds, 2.0 |d7,02] ds, 0.1 dr: 1.0
ds 0.0
D reeeeeeenn ds4, 1.0||d7,2.0] |ds, 0.2] |do, 0.1 d; : 0.0
ds 0.0
C "rorerereeee d4,3.0 d7,1.0 dg . 0.0

 required memory depends on the number of accumulators maintained

* top-k results can be determined by sorting accumulators at the end

[R&DM °13/°14 53

1. Term-at-a-Time Query Processing

* Term-at-a-Time (TAAT) query processing
 reads posting lists for query terms < #1, ..., #4)) successively

 maintains an accumulator for each result document with value

acc(d) = Z score(t;,d) after the first j posting lists have been read

1<j
Accumulators
@ e di,1.0| |ds, 2.0 d7,02| ds, 0.1 dr: 1.0
ds 0.0
D reeeeeeenn ds4, 1.0||d7,2.0] |ds, 0.2] |do, 0.1 d; : 0.0
ds 0.0
C "rorerereeee d4,3.0 d7,1.0 dg . 0.0

 required memory depends on the number of accumulators maintained

* top-k results can be determined by sorting accumulators at the end

[R&DM °13/°14 53

1. Term-at-a-Time Query Processing

* Term-at-a-Time (TAAT) query processing
 reads posting lists for query terms < #1, ..., #4)) successively

 maintains an accumulator for each result document with value

acc(d) = Z score(t;,d) after the first j posting lists have been read

1<j
Accumulators
@ e di,1.0| |ds, 2.0 d7,02| ds, 0.1 dr: 1.0
ds 2.0
D reeeeeeenn ds4, 1.0||d7,2.0] |ds, 0.2] |do, 0.1 d; : 0.0
ds 0.0
C "rorerereeee d4,3.0 d7,1.0 dg . 0.0

 required memory depends on the number of accumulators maintained

* top-k results can be determined by sorting accumulators at the end

[R&DM °13/°14 53

1. Term-at-a-Time Query Processing

* Term-at-a-Time (TAAT) query processing
 reads posting lists for query terms < #1, ..., #4)) successively

 maintains an accumulator for each result document with value

acc(d) = Z score(t;,d) after the first j posting lists have been read

1<j
Accumulators
@ e di,1.0||ds, 2.0 |d7,02 |ds, 0.1 dr: 1.0
ds 2.0
D reeeeeeenn ds4, 1.0||d7,2.0] |ds, 0.2] |do, 0.1 d; : 0.0
ds 0.0
C "rorerereeee d4,3.0 d7,1.0 dg . 0.0

 required memory depends on the number of accumulators maintained

* top-k results can be determined by sorting accumulators at the end

[R&DM °13/°14 53

1. Term-at-a-Time Query Processing

* Term-at-a-Time (TAAT) query processing
 reads posting lists for query terms < #1, ..., #4)) successively

 maintains an accumulator for each result document with value

acc(d) = Z score(t;,d) after the first j posting lists have been read

1<j
Accumulators
@ e di,1.0||ds, 2.0 |d7,02 |ds, 0.1 dr: 1.0
ds 2.0
D reeeeeeenn ds4, 1.0||d7,2.0] |ds, 0.2] |do, 0.1 d; . 0.2
ds 0.0
C "rorerereeee d4,3.0 d7,1.0 dg . 0.0

 required memory depends on the number of accumulators maintained

* top-k results can be determined by sorting accumulators at the end

[R&DM °13/°14 53

1. Term-at-a-Time Query Processing

* Term-at-a-Time (TAAT) query processing
 reads posting lists for query terms < #1, ..., #4)) successively

 maintains an accumulator for each result document with value

acc(d) = Z score(t;,d) after the first j posting lists have been read

1<j
Accumulators
@ e di,1.0||ds, 2.0 |d7,0.2] ds, 0.1 dr: 1.0
ds 2.0
D reeeeeeenn ds4, 1.0||d7,2.0] |ds, 0.2] |do, 0.1 d; . 0.2
ds 0.0
C "rorerereeee d4,3.0 d7,1.0 dg . 0.0

 required memory depends on the number of accumulators maintained

* top-k results can be determined by sorting accumulators at the end

[R&DM °13/°14 53

1. Term-at-a-Time Query Processing

* Term-at-a-Time (TAAT) query processing
 reads posting lists for query terms < #1, ..., #4)) successively

 maintains an accumulator for each result document with value

acc(d) = Z score(t;,d) after the first j posting lists have been read

1<j
Accumulators
@ e di,1.0||ds, 2.0 |d7,0.2] ds, 0.1 dr: 1.0
ds 2.0
D reeeeeeenn ds4, 1.0||d7,2.0] |ds, 0.2] |do, 0.1 d; . 0.2
ds 0.1
C "rorerereeee d4,3.0 d7,1.0 dg . 0.0

 required memory depends on the number of accumulators maintained

* top-k results can be determined by sorting accumulators at the end

[R&DM °13/°14 53

1. Term-at-a-Time Query Processing

* Term-at-a-Time (TAAT) query processing
 reads posting lists for query terms < #1, ..., #4)) successively

 maintains an accumulator for each result document with value

acc(d) = Z score(t;,d) after the first j posting lists have been read

1<j
Accumulators
@ e di,1.0||ds, 2.0 |d7,0.2] | ds, 0.1 dr: 1.0
ds 2.0
b erererenene ds, 1.0| d7, 2.0||ds, 0.2] |do, 0.1 d7 0.2
ds 0.1
C "rorerereeee d4,3.0 d7,1.0 dg . 0.0

 required memory depends on the number of accumulators maintained

* top-k results can be determined by sorting accumulators at the end

[R&DM °13/°14 53

1. Term-at-a-Time Query Processing

* Term-at-a-Time (TAAT) query processing
 reads posting lists for query terms < #1, ..., #4)) successively

 maintains an accumulator for each result document with value

acc(d) = Z score(t;,d) after the first j posting lists have been read

1<j
Accumulators
@ e di,1.0||ds, 2.0 |d7,0.2] | ds, 0.1 dr: 1.0
ds 3.0
b erererenene ds, 1.0| d7, 2.0||ds, 0.2] |do, 0.1 d7 0.2
ds 0.1
C "rorerereeee d4,3.0 d7,1.0 dg . 0.0

 required memory depends on the number of accumulators maintained

* top-k results can be determined by sorting accumulators at the end

[R&DM °13/°14 53

1. Term-at-a-Time Query Processing

* Term-at-a-Time (TAAT) query processing
 reads posting lists for query terms < #1, ..., #4)) successively

 maintains an accumulator for each result document with value

acc(d) = Z score(t;,d) after the first j posting lists have been read

1<j
Accumulators
@ e di,1.0||ds, 2.0 |d7,0.2] | ds, 0.1 dr: 1.0
ds 3.0
D reeeeeeenn ds, 1.0| |d7, 2.0 |ds, 0.2] |do, 0.1 d; . 0.2
ds 0.1
C "rorerereeee d4,3.0 d7,1.0 dg . 0.0

 required memory depends on the number of accumulators maintained

* top-k results can be determined by sorting accumulators at the end

[R&DM °13/°14 53

1. Term-at-a-Time Query Processing

* Term-at-a-Time (TAAT) query processing
 reads posting lists for query terms < #1, ..., #4)) successively

 maintains an accumulator for each result document with value

acc(d) = Z score(t;,d) after the first j posting lists have been read

1<j
Accumulators
@ e di,1.0||ds, 2.0 |d7,0.2] | ds, 0.1 dr: 1.0
ds 3.0
D reeeeeeenn ds, 1.0| |d7, 2.0 |ds, 0.2] |do, 0.1 d; . 2.2
ds 0.1
C "rorerereeee d4,3.0 d7,1.0 dg . 0.0

 required memory depends on the number of accumulators maintained

* top-k results can be determined by sorting accumulators at the end

[R&DM °13/°14 53

1. Term-at-a-Time Query Processing

* Term-at-a-Time (TAAT) query processing
 reads posting lists for query terms < #1, ..., #4)) successively

 maintains an accumulator for each result document with value

acc(d) = Z score(t;,d) after the first j posting lists have been read

1<j
Accumulators
@ e di,1.0||ds, 2.0 |d7,0.2] | ds, 0.1 dr: 1.0
ds 3.0
D reeeeeeenn ds+, 1.0||d7,2.0] |ds, 0.2 |do, 0.1 d; . 2.2
ds 0.1
C "rorerereeee d4,3.0 d7,1.0 dg . 0.0

 required memory depends on the number of accumulators maintained

* top-k results can be determined by sorting accumulators at the end

[R&DM °13/°14 53

1. Term-at-a-Time Query Processing

* Term-at-a-Time (TAAT) query processing
 reads posting lists for query terms < #1, ..., #4)) successively

 maintains an accumulator for each result document with value

acc(d) = Z score(t;,d) after the first j posting lists have been read

1<j
Accumulators
@ e di,1.0||ds, 2.0 |d7,0.2] | ds, 0.1 dr: 1.0
ds 3.0
D reeeeeeenn ds+, 1.0||d7,2.0] |ds, 0.2 |do, 0.1 d; . 2.2
ds 0.3
C "rorerereeee d4,3.0 d7,1.0 dg . 0.0

 required memory depends on the number of accumulators maintained

* top-k results can be determined by sorting accumulators at the end

[R&DM °13/°14 53

1. Term-at-a-Time Query Processing

* Term-at-a-Time (TAAT) query processing
 reads posting lists for query terms < #1, ..., #4)) successively

 maintains an accumulator for each result document with value

acc(d) = Z score(t;,d) after the first j posting lists have been read

1<j
Accumulators
@ e di,1.0||ds, 2.0 |d7,0.2] | ds, 0.1 dr: 1.0
ds 3.0
D reeeeeeenn ds, 1.0||d7,2.0] |ds, 0.2] |do, 0.1 d; . 2.2
ds 0.3
C "rorerereeee d4,3.0 d7,1.0 dg . 0.0

 required memory depends on the number of accumulators maintained

* top-k results can be determined by sorting accumulators at the end

[R&DM °13/°14 53

1. Term-at-a-Time Query Processing

* Term-at-a-Time (TAAT) query processing

» reads posting lists for query terms (71, ..

., lig|) successively

 maintains an accumulator for each result document with value

acc(d) = Z score(t;,d) after the first j posting lists have been read

1<J
@ e di, 1.0||ds, 2.0| d7,0.2) |ds, 0.1
b ds, 1.0|d7,2.0||ds, 0.2] do, 0.1
O veeereeennee ds, 3.0/ |d7, 1.0

Accumulators
dj 1.0
dy 3.0
d7 2.2
ds 0.3
dog 0.1

 required memory depends on the number of accumulators maintained

* top-k results can be determined by sorting accumulators at the end

[R&DM °13/°14

53

1. Term-at-a-Time Query Processing

* Term-at-a-Time (TAAT) query processing

» reads posting lists for query terms (71, ..

., lig|) successively

 maintains an accumulator for each result document with value

acc(d) = Z score(t;,d) after the first j posting lists have been read

1<J
@ e di, 1.0||ds, 2.0| d7,0.2) |ds, 0.1
b ds, 1.0|d7,2.0||ds, 0.2] do, 0.1
O veeereeennee ds, 3.0 |d7, 1.0

Accumulators
dj 1.0
dy 3.0
d7 2.2
ds 0.3
dog 0.1

 required memory depends on the number of accumulators maintained

* top-k results can be determined by sorting accumulators at the end

[R&DM °13/°14

53

1. Term-at-a-Time Query Processing

* Term-at-a-Time (TAAT) query processing

» reads posting lists for query terms (71, ..

., lig|) successively

 maintains an accumulator for each result document with value

acc(d) = Z score(t;,d) after the first j posting lists have been read

1<J
@ e di, 1.0||ds, 2.0| d7,0.2) |ds, 0.1
b ds, 1.0|d7,2.0||ds, 0.2] do, 0.1
O veeereeennee ds, 3.0 |d7, 1.0

Accumulators
dj 1.0
dy 6.0
d7 2.2
ds 0.3
dog 0.1

 required memory depends on the number of accumulators maintained

* top-k results can be determined by sorting accumulators at the end

[R&DM °13/°14

53

1. Term-at-a-Time Query Processing

* Term-at-a-Time (TAAT) query processing

» reads posting lists for query terms (71, ..

., lig|) successively

 maintains an accumulator for each result document with value

acc(d) = Z score(t;,d) after the first j posting lists have been read

1<J
@ e di, 1.0||ds, 2.0| d7,0.2) |ds, 0.1
b ds, 1.0|d7,2.0||ds, 0.2] do, 0.1
O veeereeennee ds, 3.0| |d7, 1.0

Accumulators
dj 1.0
dy 6.0
d7 2.2
ds 0.3
dog 0.1

 required memory depends on the number of accumulators maintained

* top-k results can be determined by sorting accumulators at the end

[R&DM °13/°14

53

1. Term-at-a-Time Query Processing

* Term-at-a-Time (TAAT) query processing

» reads posting lists for query terms (71, ..

., lig|) successively

 maintains an accumulator for each result document with value

acc(d) = Z score(t;,d) after the first j posting lists have been read

1<J
@ e di, 1.0||ds, 2.0| d7,0.2) |ds, 0.1
b ds, 1.0|d7,2.0||ds, 0.2] do, 0.1
O veeereeennee ds, 3.0| |d7, 1.0

Accumulators
dj 1.0
dy 6.0
d7 3.2
ds 0.3
dog 0.1

 required memory depends on the number of accumulators maintained

* top-k results can be determined by sorting accumulators at the end

[R&DM °13/°14

53

1. Term-at-a-Time Query Processing

* Term-at-a-Time (TAAT) query processing

» reads posting lists for query terms (71, ..

., lig|) successively

 maintains an accumulator for each result document with value

acc(d) = Z score(t;,d) after the first j posting lists have been read

1<J
@ e di, 1.0||ds, 2.0| d7,0.2) |ds, 0.1
b ds, 1.0|d7,2.0||ds, 0.2] do, 0.1
O veeereeennee ds, 3.0/ |d7, 1.0

Accumulators
dj 1.0
dy 6.0
d7 3.2
ds 0.3
dog 0.1

 required memory depends on the number of accumulators maintained

* top-k results can be determined by sorting accumulators at the end

[R&DM °13/°14

53

Term-at-a-Time Query Processing

* Optimizations for conjunctive queries

 process query terms 1n ascending order of their document frequency
to keep the number of accumulators and thus required memory low

 for document-ordered posting lists, keep accumulators sorted
to make use of skip pointers when read posting lists

[R&DM °13/°14

54

2. Document-at-a-Time Query Processing

* Document-at-a-Time (DAAT) query processing

e assumes document-ordered posting lists

» reads posting lists for query terms (71, ..

., lig» concurrently

* computes score when same document 1s seen 1n one or more posting lists

 always advances posting list with lowest current document identifier
 required main memory depends on the number of results to be reported

 top-k results can be determined by keeping results in priority queue

[R&DM °13/°14

di, 1.0

dy4, 2.0

dz, 0.2

ds, 0.1

ds, 1.0

dz, 2.0

ds, 0.2

dg, 0.1

dqs, 3.0

dz, 1.0

55

2. Document-at-a-Time Query Processing

* Document-at-a-Time (DAAT) query processing

e assumes document-ordered posting lists

» reads posting lists for query terms (71, ..

., lig» concurrently

* computes score when same document 1s seen 1n one or more posting lists

di, 1.0

dy4, 2.0

dz, 0.2

ds, 0.1

dr 1.0

ds, 1.0

dz, 2.0

ds, 0.2

dg, 0.1

dqs, 3.0

dz, 1.0

 always advances posting list with lowest current document identifier

 required main memory depends on the number of results to be reported

 top-k results can be determined by keeping results in priority queue

[R&DM °13/°14

55

2. Document-at-a-Time Query Processing

* Document-at-a-Time (DAAT) query processing

e assumes document-ordered posting lists

» reads posting lists for query terms (71, ..

., lig» concurrently

* computes score when same document 1s seen 1n one or more posting lists

di, 1.0

dy4, 2.0

dz, 0.2

ds, 0.1

dr 1.0

ds, 1.0

dz, 2.0

ds, 0.2

dg, 0.1

dqs, 3.0

dz, 1.0

 always advances posting list with lowest current document identifier

 required main memory depends on the number of results to be reported

 top-k results can be determined by keeping results in priority queue

[R&DM °13/°14

55

2. Document-at-a-Time Query Processing

* Document-at-a-Time (DAAT) query processing
e assumes document-ordered posting lists

* reads posting lists for query terms < 71, ..., #4 > concurrently

* computes score when same document 1s seen 1n one or more posting lists

d] . 10
[e di, 1.0||dys, 2.0| |d7,0.2||ds, 0.1 di 6.0
B oeeeeeeeenn. ds, 1.0||d7,2.0||ds, 0.2] do, 0.1
VSIRLLLLERRRREE d4, 30 d7’ 10

 always advances posting list with lowest current document identifier
 required main memory depends on the number of results to be reported

 top-k results can be determined by keeping results in priority queue

[R&DM °13/°14 55

2. Document-at-a-Time Query Processing

* Document-at-a-Time (DAAT) query processing
e assumes document-ordered posting lists

* reads posting lists for query terms < 71, ..., #4 > concurrently

* computes score when same document 1s seen 1n one or more posting lists

d] . 10
[e di, 1.0||dys, 2.0| |d7,0.2||ds, 0.1 di 6.0
B oeeeeeeeenn. ds, 1.0||d7, 2.0 |ds, 0.2] do, 0.1
VSIRLLLLERRRREE d4, 30 d7’ 10

 always advances posting list with lowest current document identifier
 required main memory depends on the number of results to be reported

 top-k results can be determined by keeping results in priority queue

[R&DM °13/°14 55

2. Document-at-a-Time Query Processing

* Document-at-a-Time (DAAT) query processing
e assumes document-ordered posting lists

* reads posting lists for query terms < 71, ..., #4 > concurrently

* computes score when same document 1s seen 1n one or more posting lists

d] . 10
[e di, 1.0||dys, 2.0| |d7,0.2||ds, 0.1 di 6.0
B oeeeeeeeenn. ds, 1.0||d7, 2.0 |ds, 0.2] do, 0.1
VSIRLLLLERRRREE d4, 30 d7, 10

 always advances posting list with lowest current document identifier
 required main memory depends on the number of results to be reported

 top-k results can be determined by keeping results in priority queue

[R&DM °13/°14 55

2. Document-at-a-Time Query Processing

* Document-at-a-Time (DAAT) query processing
e assumes document-ordered posting lists

* reads posting lists for query terms < 71, ..., #4 > concurrently

* computes score when same document 1s seen 1n one or more posting lists

d] . 10
[e di, 1.0|ds, 2.0 |d7,0.2) |ds, 0.1 di 6.0
B oeeeeeeeenn. ds, 1.0||d7, 2.0 |ds, 0.2] do, 0.1
VSIRLLLLERRRREE d4, 30 d7, 10

 always advances posting list with lowest current document identifier
 required main memory depends on the number of results to be reported

 top-k results can be determined by keeping results in priority queue

[R&DM °13/°14 55

2. Document-at-a-Time Query Processing

* Document-at-a-Time (DAAT) query processing
e assumes document-ordered posting lists
* reads posting lists for query terms < 71, ..., #4 > concurrently

* computes score when same document 1s seen 1n one or more posting lists

d] . 10
[e di, 1.0|ds, 2.0 |d7,0.2) |ds, 0.1 di 6.0
B ceeeeeeeeen ds, 1.0|d7,2.0| | ds, 0.2] |doy, 0.1 dr 3.2
VSIRLLLLERRRREE d4, 30 d7, 10

 always advances posting list with lowest current document identifier
 required main memory depends on the number of results to be reported
 top-k results can be determined by keeping results in priority queue

[R&DM °13/°14 55

2. Document-at-a-Time Query Processing

* Document-at-a-Time (DAAT) query processing
e assumes document-ordered posting lists
* reads posting lists for query terms < 71, ..., #4 > concurrently

* computes score when same document 1s seen 1n one or more posting lists

d] . 10
[e di, 1.0|ds, 2.0 |d7,0.2) |ds, 0.1 di 6.0
B ceeeeeeeeen ds, 1.0|d7,2.0| | ds, 0.2] |doy, 0.1 dr 3.2
VSIRLLLLERRRREE d4, 30 d7’ 10

 always advances posting list with lowest current document identifier
 required main memory depends on the number of results to be reported
 top-k results can be determined by keeping results in priority queue

[R&DM °13/°14 55

2. Document-at-a-Time Query Processing

* Document-at-a-Time (DAAT) query processing
e assumes document-ordered posting lists
* reads posting lists for query terms < 71, ..., #4 > concurrently

* computes score when same document 1s seen 1n one or more posting lists

d] . 10
(-eeeeeeen di, 1.0||d4, 2.0| | d7, 0.2 |ds, 0.1 di - 6.0
B ceeeeeeeeen ds, 1.0|d7,2.0| | ds, 0.2] |doy, 0.1 dr 3.2
VSIRLLLLERRRREE d4, 30 d7’ 10

 always advances posting list with lowest current document identifier
 required main memory depends on the number of results to be reported
 top-k results can be determined by keeping results in priority queue

[R&DM °13/°14 55

2. Document-at-a-Time Query Processing

* Document-at-a-Time (DAAT) query processing
e assumes document-ordered posting lists
* reads posting lists for query terms < 71, ..., #4 > concurrently

* computes score when same document 1s seen 1n one or more posting lists

d] . 10
(-eeeeeeen di, 1.0||d4, 2.0| | d7, 0.2 |ds, 0.1 di - 6.0
D ceeeeeennnn. ds, 1.0|d7,2.0||ds, 0.2 |do, 0.1 dr 3.2
VSIRLLLLERRRREE d4, 30 d7’ 10

 always advances posting list with lowest current document identifier
 required main memory depends on the number of results to be reported
 top-k results can be determined by keeping results in priority queue

[R&DM °13/°14 55

2. Document-at-a-Time Query Processing

* Document-at-a-Time (DAAT) query processing

e assumes document-ordered posting lists

» reads posting lists for query terms (#,

..., iy > concurrently

* computes score when same document 1s seen 1n one or more posting lists

 always advances posting list with lowest current document identifier

di, 1.0

dy4, 2.0

dz, 0.2

ds, 0.1

ds, 1.0

dz, 2.0

ds, 0.2

dg, 0.1

dqs, 3.0

dz, 1.0

d; 1.0
d4 6.0
d7 3.2
ds 0.3

 required main memory depends on the number of results to be reported

 top-k results can be determined by keeping results in priority queue

[R&DM °13/°14

55

2. Document-at-a-Time Query Processing

* Document-at-a-Time (DAAT) query processing

e assumes document-ordered posting lists

» reads posting lists for query terms (#,

..., iy > concurrently

* computes score when same document 1s seen 1n one or more posting lists

 always advances posting list with lowest current document identifier

di, 1.0

dy4, 2.0

dz, 0.2

ds, 0.1

ds, 1.0

dz, 2.0

ds, 0.2

dg, 0.1

dqs, 3.0

dz, 1.0

d; 1.0
d4 6.0
d7 3.2
ds 0.3

 required main memory depends on the number of results to be reported

 top-k results can be determined by keeping results in priority queue

[R&DM °13/°14

55

2. Document-at-a-Time Query Processing

* Document-at-a-Time (DAAT) query processing

e assumes document-ordered posting lists

» reads posting lists for query terms (#,

..., iy > concurrently

* computes score when same document 1s seen 1n one or more posting lists

 always advances posting list with lowest current document identifier

di, 1.0

dy4, 2.0

dz, 0.2

ds, 0.1

ds, 1.0

dz, 2.0

ds, 0.2

dg, 0.1

dqs, 3.0

dz, 1.0

d; 1.0
d4 6.0
d7 3.2
ds 0.3

 required main memory depends on the number of results to be reported

 top-k results can be determined by keeping results in priority queue

[R&DM °13/°14

55

2. Document-at-a-Time Query Processing

* Document-at-a-Time (DAAT) query processing

e assumes document-ordered posting lists

» reads posting lists for query terms (71, ..

., lig» concurrently

* computes score when same document 1s seen 1n one or more posting lists

 always advances posting list with lowest current document identifier

di, 1.0

dy4, 2.0

dz, 0.2

ds, 0.1

ds, 1.0

dz, 2.0

ds, 0.2

dg, 0.1

dqs, 3.0

dz, 1.0

d; 1.0
d4 6.0
d7 3.2
ds 0.3
do 0.1

 required main memory depends on the number of results to be reported

 top-k results can be determined by keeping results in priority queue

[R&DM °13/°14

55

2. Document-at-a-Time Query Processing

* Document-at-a-Time (DAAT) query processing

e assumes document-ordered posting lists

» reads posting lists for query terms (71, ..

., lig» concurrently

* computes score when same document 1s seen 1n one or more posting lists

 always advances posting list with lowest current document identifier

di, 1.0

dy4, 2.0

dz, 0.2

ds, 0.1

ds, 1.0

dz, 2.0

ds, 0.2

dg, 0.1

dqs, 3.0

dz, 1.0

d; 1.0
d4 6.0
d7 3.2
ds 0.3
do 0.1

 required main memory depends on the number of results to be reported

 top-k results can be determined by keeping results in priority queue

[R&DM °13/°14

55

Document-at-a-Time Query Processing

* Optimization for conjunctive queries using skip pointers

* when advancing posting list with lowest current document 1dentifier,
advance to first posting having document 1dentifier larger or equal to

max cdid(7)

where cdid(i) 1s the current document 1dentifier in the i-th posting list

(@ e di, 1.0 |ds, 2.0/ |d7, 0.2 ds, 0.1
b oo di, 1.0| |d7 2.0 |ds,0.2] | ds, 0.1
C "rrrrreen d4’ 30 d7’ 10

[R&DM °13/°14 56

Document-at-a-Time Query Processing

* Optimization for conjunctive queries using skip pointers

* when advancing posting list with lowest current document 1dentifier,
advance to first posting having document 1dentifier larger or equal to

max cdid(7)

where cdid(i) 1s the current document 1dentifier in the i-th posting list

(@ e di, 1.0| |ds, 2.0 |d7, 0.2 ds, 0.1
b oo di, 1.0| |d7 2.0 |ds,0.2] | ds, 0.1
C "rrrrreen d4’ 30 d7’ 10

[R&DM °13/°14 56

Document-at-a-Time Query Processing

* Optimization for conjunctive queries using skip pointers

* when advancing posting list with lowest current document 1dentifier,
advance to first posting having document 1dentifier larger or equal to

max cdid(7)

where cdid(i) 1s the current document 1dentifier in the i-th posting list

ds 6.0

(@ e di, 1.0| |ds, 2.0 |d7, 0.2| ds, 0.1
b oo du, 1.0 |d7, 2.0/ |ds, 0.2 |do, 0.1
C "rrrrreen d4’ 30 d7’ 10

[R&DM °13/°14

56

Document-at-a-Time Query Processing

* Optimization for conjunctive queries using skip pointers

* when advancing posting list with lowest current document 1dentifier,
advance to first posting having document 1dentifier larger or equal to

max cdid(7)

where cdid(i) 1s the current document 1dentifier in the i-th posting list

ds 6.0

(@ e di, 1.0| |ds, 2.0 |d7, 0.2| ds, 0.1
b oo din 1.0 d7 2.0 |ds, 0.2 |do, 0.1
C "rrrrreen d4’ 30 d7’ 10

[R&DM °13/°14

56

Document-at-a-Time Query Processing

* Optimization for conjunctive queries using skip pointers

* when advancing posting list with lowest current document 1dentifier,
advance to first posting having document 1dentifier larger or equal to

max cdid(7)

where cdid(i) 1s the current document 1dentifier in the i-th posting list

ds 6.0

(@ e di, 1.0 |ds, 2.0/ |d7, 02 |ds, 0.1
b oo din 1.0 d7 2.0 |ds, 0.2 |do, 0.1
C oorrrnneens ds, 3.0 |d7, 1.0

[R&DM °13/°14

56

Document-at-a-Time Query Processing

* Optimization for conjunctive queries using skip pointers

* when advancing posting list with lowest current document 1dentifier,
advance to first posting having document 1dentifier larger or equal to

max cdid(7)

where cdid(i) 1s the current document 1dentifier in the i-th posting list

ds 6.0

(@ e di, 1.0 |ds, 2.0/ |d7, 02 |ds, 0.1
b oo din 1.0 d7 2.0 |ds, 0.2 |do, 0.1
C oorrrnneens ds, 3.0 |d7, 1.0

[R&DM °13/°14

56

Document-at-a-Time Query Processing

* Optimization for conjunctive queries using skip pointers

* when advancing posting list with lowest current document 1dentifier,
advance to first posting having document 1dentifier larger or equal to

max cdid(7)

where cdid(i) 1s the current document 1dentifier in the i-th posting list

ds 6.0

(@ e di, 1.0 |ds, 2.0/ |d7, 02 |ds, 0.1
b oo din 1.0 d7 2.0 |ds, 0.2 |do, 0.1
C oorrrnneens ds, 3.0 |d7, 1.0

[R&DM °13/°14

d, 3.2

56

Document-at-a-Time Query Processing

* Optimization for conjunctive queries using skip pointers

* when advancing posting list with lowest current document 1dentifier,
advance to first posting having document 1dentifier larger or equal to

max cdid(7)

where cdid(i) 1s the current document 1dentifier in the i-th posting list

ds 6.0

(@ e di, 1.0 |ds, 2.0/ |d7, 02 |ds, 0.1
b oo din 1.0 d7 2.0 |ds, 0.2 |do, 0.1
C oorrrnneens ds, 3.0 |d7, 1.0

[R&DM °13/°14

d, 3.2

56

Document-at-a-Time Query Processing

* Optimization for conjunctive queries using skip pointers

* when advancing posting list with lowest current document 1dentifier,
advance to first posting having document 1dentifier larger or equal to

max cdid(7)

where cdid(i) 1s the current document 1dentifier in the i-th posting list

ds 6.0

(@ e di, 1.0] |ds, 2.0/ |d7, 02 |ds, 0.1
b oo din 1.0 d7 2.0 |ds, 0.2 |do, 0.1
C oorrrnneens ds, 3.0 |d7, 1.0

[R&DM °13/°14

d, 3.2

56

Document-at-a-Time Query Processing

* Optimization for conjunctive queries using skip pointers

* when advancing posting list with lowest current document 1dentifier,
advance to first posting having document 1dentifier larger or equal to

max cdid(7)

where cdid(i) 1s the current document 1dentifier in the i-th posting list

ds 6.0

(@ e di, 1.0] |ds, 2.0/ |d7, 02 |ds, 0.1
b oo dn 1.0 |d7, 2.0/ |ds, 0.2 |do, 0.1
C oorrrnneens ds, 3.0 |d7, 1.0

[R&DM °13/°14

d, 3.2

56

3. WAND

* Weak AND (WAND) query processing

 assumes document-ordered posting lists with known maximum score
maxscore(i) of any posting in the i-th posting list

* reads posting lists for query terms < 71, ..., fi5) > concurrently
e computes score when same document 1s seen 1n one or more posting lists

 always advances posting list with lowest current document identifier
up to pivot document identifier computed from current top-k result

* Computation of pivot document identifier
* let mini denote the lowest score in current top-k results
e sort posting lists in ascending order of cdid(i)
e pivot is cdid(j) of minimal j such that min; < Z mazxscore(i)

1]

[R&DM °13/°14 57

WAND

* Computation of pivot document identifier
* let mini denote the lowest score in current top-k results
e sort posting lists in ascending order of cdid(i)

e pivot is cdid(j) of minimal j such that min; < Z mazxscore(i)
1<J

V9 AEERLEEREEEEE dZ, 05 d7, 01 d8, 02 d9, 06 d99, 10 dZ

b dZ, 0.5 d9, 0.3 d]], 0.2 dlj’, 0.1 d33, 1.()

C *romrmrrrens dZ, 05 d3, 04 d4’ 02 d5’ 01 d57, 10

d, 04 1.0 mazscore(i) = 1.0

d;,0.1| 2.0 d7 1s pivot

Pivot Computation

[R&DM °13/°14

WAND

* Intuition: No document with an identifier smaller than the pivot
can have a score large enough to make 1t into the top-k result

» Observation: As the value of mini can only increase over time,
WAND skips more and more postings as time progresses

* WAND can be made an approximate top-k query processing
method by computing the pivot such that

F x ming < g maxscore(t)
1]

with tunable parameter F controlling fidelity of results

 Full details: [Broder et al. >03]

[R&DM °13/°14 59

4. Quit & Continue

* Quit & Continue query processing

e reads score-ordered posting lists for query terms { 71, ..., f)
successively in descending order of idf(t))

* Quit heuristics
* ignore posting lists for terms # with idf(#;) below threshold
* stop scanning posting list for ¢ if #(#;, d;)*idf(¢;) drops below threshold
* stop scanning posting list when the number of accumulators 1s too high
e Continue heuristics

 upon reaching accumulator limit, continue reading remaining posting
lists, update existing accumulators but do not create new accumulators

 Full details: [Moffat and Zobel 96]

[R&DM °13/°14 60

5. Buckley’s Algorithm

* Buckley’s query processing method
* reads score-ordered posting lists concurrently in round-robin manner
* maintains partial scores of documents and keeps track of A-th best score

e computes upper bound for any unseen document based on current scores

ub = Z cscore(t)

with cscore(i) as the current score in the i-th posting list

* stops if upper bound ub 1s less than k-th best partial score

Top-1
7 d>,0.5|d;,0.4] ds, 0.3 |do, 0.2] d> 1.0
B oeeeeeeeenn. d>, 0.5 | ds, 0.5 \der, 0.4 dsz, 0.1]
[reeeeeennnes ds, 04| | ds, 03| d7 02| |dy, 0.1
ub = 0.9

[R&DM °13/°14 61

Buckley’s Algorithm

* Note: This 1s a simplified version of Buckley’s algorithm. The
original algorithm maintains an upper bound for the (k + 1)-th
best document. If implemented correctly, this gives us the first
exact top-k query processing method described in the literature,
which 1s only based on sequential accesses.

 Full details: [Buckley and Lewitt *85]

[R&DM °13/°14 62

6. Fagin’s Threshold Algorithms

* Threshold Algorithm (TA)

* original version, often used as synonym for entire family of algorithms
* requires eager random access to candidate objects

* worst-case memory consumption: O(k)

* No-Random-Accesses (NRA)

* no random access required, may have to scan large parts of the lists

* worst-case memory consumption: O(m*n + k)

* Combined Algorithm (CA)

 cost-model for scheduling random accesses to candidate objects
« algorithmic skeleton very similar to NRA, but typically terminates faster

* worst-case memory consumption: O(m*n + k)

[R&DM °13/°14

63

Fagin’s Threshold Algorithms

* Assume score-ordered posting lists
and additional index for score look-ups by document i1dentifier

 Scan posting lists using inexpensive sequential accesses (SA)
in round-robin manner

* Perform expensive random accesses (RA) to look up scores for
a specific document when beneficial

* Support monotone score aggregation function

aggr : R™ — R : Vao; > 2, = aggr(xzq,...,2.,) > aggr(xy,..., o)

m

* Compute aggregate scores incrementally in candidate queue

* Compute score bounds for candidate results and
stop when threshold test guarantees correct top-k result

[R&DM °13/°14 64

Threshold Algorithm (TA)

Threshold Algorithm (TA):

'scan index lists (e.g., round-robin)
consider d = cdid(i) in posting list for #;
high(i) = cscore(i)

* Sequential accesses (SA)
mixed with eager random

accesses (RA)

1f d ¢ top-k then // compute score(d)
5 look up score(t;, d) for all j # i

 Worst-case memor
Y score(d) = aggr{ score(tj, d) |j=1 ... |q| }

consumption O(k) |
if score(d) > min-k then // update top-k
5 add d to top-k and remove min-score d’
ming = min{ score(d’) | d’ € top-k }

ub =aggr{high(i)|i=1...|g|} //update upper boundé
if ub < miny then
__________________________ X
------------ dzs, 0.9 |d2s, 0.8 |dio, 0.8 |d1, 0.7 |dss, 0.2] Top-2
............ d64, 09 d23, 06 d]O, 06 d]Z, 02 d78,0 1
............ le, 07 d78, 05 d64, 03 d99, 02 d3490 1
B RA
IR&DM ’13/°14 65

Threshold Algorithm (TA)

* Sequential accesses (SA)

mixed with eager random

accesses (RA)

* Worst-case memory
consumption O(k)

Threshold Algorithm (TA):

'scan index lists (e.g., round-robin)
consider d = cdid(i) in posting list for ¢
high(i) = cscore(i)

1f d ¢ top-k then // compute score(d)
5 look up score(t;, d) for all j # i
score(d) = aggr{ score(t;,d) |j=1...|q| }

if score(d) > min-k then // update top-k
| add d to top-k and remove min-score @’
ming = min{ score(d’) | d’ € top-k }

d23, 0.8

dz3, 0.6

[e drs, 0.9
[dss, 0.9
e, dio, 0.7

ub=12.5

[R&DM °13/°14

ub =aggr{high(i)|i=1...|q|} // update upper boundé
if ub < miny then
.......................... e —
d], 0.7 d88, O 2 Top_2
.......... d1o 2.1
di2, 0.2 - ry U
d99’ 02 d34, O 1
B RA
65

Threshold Algorithm (TA)

* Sequential accesses (SA)
mixed with eager random
accesses (RA)

* Worst-case memory
consumption O(k)

1f d & top-k then

if score(d) > min-k then

Threshold Algorithm (TA):

'scan index lists (e.g., round-robin)
consider d = cdid(i) in posting list for #;
high(i) = cscore(i)

// compute score(d)
look up score(t;, d) for all j # i
score(d) = aggr{ score(ti,d) |j=1...|q| }

// update top-k
add d to top-k and remove min-score @’
ming = min{ score(d’) | d’ € top-k }

ub =aggr{high(i)|i=1...|g|} //update upper boundé
if ub < miny then
__________________________ OXI
------------ dzs, 0.9 |da3, 0.8 |di0, 0.8 |d1, 0.7 |dss, 0.2]+ Top-2
............ d64, 09 d23, 0.6 d]O, 0.6 djz, 02 d78, 0.1 e ZIZ %é
7 :
............ d]O, 07 d78, 0.5 d64, 03 d99’ 02 d3490 1
ub=1.9 . RA
IR&DM ’13/°14 65

Threshold Algorithm (TA)

* Sequential accesses (SA)
mixed with eager random
accesses (RA)

* Worst-case memory
consumption O(k)

1f d & top-k then

if score(d) > min-k then

Threshold Algorithm (TA):

'scan index lists (e.g., round-robin)
consider d = cdid(i) in posting list for #;
high(i) = cscore(i)

// compute score(d)
look up score(t;, d) for all j # i
score(d) = aggr{ score(ti,d) |j=1...|q| }

// update top-k
add d to top-k and remove min-score @’
ming = min{ score(d’) | d’ € top-k }

ub =aggr{high(i)|i=1...|g|} //update upper boundé
if ub < miny then
__________________________ X
------------ dzs, 0.9 |d2s, 0.8 |dio, 0.8 | d1, 0.7 |dss, 0.2] Top-2
............ d64, 09 d23, 0.6 d]O, 0.6 djz, 02 d78, 0.1 e dio 2.1
d7s 1.5
............ d]O, 07 d78, 05 d64, 0.3 d99, 02 d3490 1
ub=1.7 B RA
IR&DM ’13/°14 65

Threshold Algorithm (TA)

Threshold Algorithm (TA):

'scan index lists (e.g., round-robin)
consider d = cdid(i) in posting list for #;
high(i) = cscore(i)

* Sequential accesses (SA)
mixed with eager random

accesses (RA)

1f d ¢ top-k then // compute score(d)
5 look up score(t;, d) for all j # i

 Worst-case memor
Y score(d) = aggr{ score(tj, d) |j=1 ... |q| }

consumption O(k) |
if score(d) > min-k then // update top-k
5 add d to top-k and remove min-score d’
ming = min{ score(d’) | d’ € top-k }

ub =aggr{high(i)|i=1...|g|} //update upper boundé
if ub < miny then
__________________________ X
------------ dzs, 0.9 |d23, 0.8 |di0, 0.8 |d1, 0.7 |dss, 0.2] Top-2
............ d64, 09 d23, 0.6 d]O, 0.6 dzz, 0.2 d78, 0.1 dio 2.1
drs 1.5
............ d]O, 07 d78, 05 d64, 03 d99, 0.2 d3490 1
ub=1.1 B RA
IR&DM ’13/°14 65

Threshold Algorithm (TA)

Threshold Algorithm (TA):
'scan index lists (e.g., round-robin)

* Sequential accesses (SA)

mixed with eager random consider d = cdid(i) in posting list for #
accesses (RA) HiME) = ascoretd)
lf d & top-k then // compute score(d)
e Worst-case memory look up score(t;, d) for all j # i

1 = s =1...
COHSU.mptl on O(k) score(d) = aggr{ score(ti, d) | j q| }

if score(d) > min-k then // update top-k
| add d to top-k and remove min-score @’
ming = min{ score(d’) | d’ € top-k }

ub =aggr{high(i)|i=1...|g|} //update upper boundé

A e drzs, 0.9 |d2z, 0.8| djo, 0.8| |dy, 0.7 Top-2
b e ds1,0.9] |23, 0.6| [d1o, 0.6] [diz, 0.2 dio i 2.1
dzs 1.5
C reeereeeees dio, 0.7 |d7s, 0.5 |dss, 0.3 |dog, 0.2
ub=1.1 B RA

[R&DM °13/°14 65

No-Random-Accesses Algorithm (NRA)

o Sequential accesses éNo—Random—Accesses Algorithrp (NRA):
‘scan index lists (e.g., round-robin)
(SA) Only consider d = cdid(i) in posting list for ¢

high(i) = cscore(i)

e Worst-case mem ory eval(d) = eval(d) U {i} // where have we seen d?

COHSU.mptiOn O(m* n -+ k) éworst(d) = aggr{ score(t;, d) | j € eval(d) }
best(d) = aggr{ worst(d), aggr{ high(j) | j Eeval(d) } }

1f worst(d) > mini then // good enough for top-k?
5 add d top top-k

| mini = min{ worst(d’) | d’ € top-k }

else if best(d) > miny then // good enough for cand?
cand = cand U {d }

ub =max{ best(d’) | d’ € cand }

__________________________ e
[e ds, 0.9 |d23, 0.8 |dio, 0.8 | dy, 0.7 |dss, 0.2
b oo dss, 0.8 |d23, 0.6 |di0, 0.6 |di2,0.2| |d7s, 0.1 |-
C orrrreeeee dio, 0.7| |d7s, 0.5 |dss, 0.3 |dog, 0.2| | d34, 0.1

[R&DM °13/°14 66

No-Random-Accesses Algorithm (NRA)

° Sequentlal accesses No Random—Accesses Algonthrp (NRA):
‘scan index lists (e.g., round-robin)
(SA) Only consider d = cdid(i) in posting list for ¢

high(i) = cscore(i)

e Worst-case mem ory eval(d) = eval(d) U {i} // where have we seen d?

consumption O(m*n + k) worsi(d) = aggr{ score(s;, d) | j € eval(d) } |
ébest(d) = aggr{ worst(d), aggr{ high(j) | j & eval(d) } }

if worst(d) > miny then // good enough for top-k?
add d top top-k

| mini = min{ worst(d’) | d’ € top-k }

else if best(d) > min; then // good enough for cand?
cand = cand U {d }

ub =max{ best(d’) | d’ € cand }

if ub < miny then

__________________________ XUt
@ e dzs, 0.9 |d>3, 0.8 |djo, 0.8 d;, 0.7 |dss, 0.2]== ds ?vorsto.g ?eSt 54| Top-1
b e des, 0.8 |d23, 0.6 |dio, 0.6 |diz, 02| | drs, 0.1 ij)’ 8:3 %Zj
C rrrre dio, 0.7 |d7s, 0.5] |dss, 0.3||dog, 0.2 |d34, 0.1
ub=2.4 B RA

[R&DM °13/°14 66

No-Random-Accesses Algorithm (NRA)

° Sequentlal accesses No Random—Accesses Algonthrp (NRA):
-scan index lists (e.g., round-robin)

(SA) Only consider d = cdid(i) in posting list for #;
high(i) = cscore(i)

eval(d) = eval(d) U {i} // where have we seen d?

* Worst-case memory

consumption O(m*n + k) worsi(d) = aggr{ score(s;, d) | j € eval(d) } |
ébest(d) = aggr{ worst(d), agegr{ high(j) |j & eval(d) } }

if worst(d) > miny then // good enough for top-k?
add d top top-k

| mini = min{ worst(d’) | d’ € top-k }

else if best(d) > mini then // good enough for cand?
cand =cand U {d }

ub =max{ best(d’) | d’ € cand }

if ub < miny then

__________________________ XU
worst best
@ dzs, 0.9 d23,0.8| |dio, 0.8 |d1, 0.7] |dss, 0.2]x=== a1 500 Top-1
b - des, 0.8 |d23,0.6| | dio, 0.6 |d12, 0.2] |d7s, 0. 1| Zﬁj (1);3l ;?
C wrrerreres d]O, 0.7 d78, 0.5 d64, 0.3 d99, 02 d34, 01| d10 . 0.7 : 2.1

[R&DM °13/°14 66

No-Random-Accesses Algorithm (NRA)

* Sequential accesses
(SA) only

* Worst-case memory
consumption O(m*n + k)

cdid(i) in posting list for ¢

éeval(d) = eval(d) U {i}

lf worst(d) > mini then

add d top top-k
mini = min{ worst(d’) | d’ € top-k }
// good enough for cand?

else if best(d) > miny then
cand = cand U { d }
ub =max{ best(d’) | d’ € cand }
if ub < miny then

exit
[coeeeneen dzs, 0.9 |d23, 0.8 d1o, 0.8 |d;, 0.7| dss, 0.2
B cereeeennes dss, 0.8| |d23,0.6| | dio, 0.6 |d12, 0.2| |d7s, 0.1
O eeeeneen dio, 0.7| |d7s, 0.5 | dss, 0.3 | doo, 0.2| |d34, 0.1
ub=2.0

[R&DM °13/°14

§N0 Random-Accesses Algorithm (NRA):
scan index lists (e.g., round-robin)

consider d =
high(i) = cscore(i)

// where have we seen d?

worsi(d) = aggr{ score(t,) | € eval(d) |
ébest(d) = aggr{ worst(d), agegr{ high(j) |j & eval(d) } }

// good enough for top-k?

worst
dio 2.1 : 2.1
drs 14 : 2.0
dz3 14 1.7
ds4 1.1 1.9
B RA

66

Top-1

No-Random-Accesses Algorithm (NRA)

* Sequential accesses
(SA) only

* Worst-case memory
consumption O(m*n + k)

§N0 Random-Accesses Algorithm (NRA):

scan index lists (e.g., round-robin)
consider d = cdid(i) in posting list
high(i) = cscore(i)

for ¢;

eval(d) = eval(d) U {i} // where have we seen d?

éworst(d) = aggr{ score(t;, d) | j € eval(d) }

ébest(d) = aggr{ worst(d), aggr{ high(j) |j & eval(d) } } |

1f worst(d) > mini then // good enough for top-k?

add d top top-k
mini = min{ worst(d’) | d’ €

top-k }

else if best(d) > mini then // good enough for cand?

cand = cand U {d }
ub = max{ best(d’) | d’ € cand }
if ub < miny then

__________________________ O]
worst best
a e d78, 0.9 d23, 0.8 d]O, 0.8 dio 21 - 21
. |ds 1.4 : 2.0
b oo dss, 0.8] | d23, 0.6/ | dio, 0.6 DN e 14 . 17
C +ereerenres d]O, 0.7 d78, 0.5 d64, 0.3 v d64 . 1.1 : 1.9
ub=2.0 B RA

[R&DM °13/°14

66

Top-1

Combined Algorithm (CA)

* Balanced SA/RA Scheduling:

* define cost ratio r = Csa/Cra (€.g., based on statistics for execution
environment, typical values Cra/Csa ~ 100 - 10,000 for hard disks)

* run NRA (using SA only) but perform one RA every r rounds
(1.e., m*r SAs) to look up the unknown scores of the best candidate
that 1s not in the current top-k

* Cost competitiveness w.r.t. “optimal schedule”
(scan until aggr{ high(i) } <min{ best(d) | d € final top-£ },
then perform RAs for all &’ with best(d’) > mink): 4*m + k

[R&DM °13/°14 67

TA / NRA / CA Instance Optimality

 Definition: For class of algorithms A and class of datasets D,
algorithm A € A 1s instance optimal over A and D 1f

VA" € AVD € D : cost(A,D) < c-cost(A",D) + ¢
(i.e., cost(A, D) € O(cost(A’, D)))

* TA is instance optimal over all top-k algorithms based on
random and sequential accesses to m lists (no “wild guesses”)

* NRA is instance optimal over all top-k algorithms based on
only sequential accesses

* CA is instance optimal over all top-k algorithms based on
random and sequential accesses and given cost ratio Cra/Csa

 Full details: [Fagin et al. 03]

[R&DM °13/°14 68

Implementation Issues for Threshold Algorithms

» Limitation of asymptotic complexity

o m (# lists), n (# documents), k (# results) are important parameters
* Priority queues

» straightforward use of heap (even Fibonacci) has high overhead

* better: periodic rebuilding of queue with partial sort O(n log k)
* Memory management

* peak memory usage as important for performance as scan depth

 aim for early candidate pruning even if scan depth stays the same

[R&DM °13/°14

69

7. Query Processing with Importance Scores

* Focus on score combining textual relevance (7el) (e.g., TF*IDF)
and global importance (imp) (e.g., PageRank)

score(q,d) = imp(d) + rel(q, d)
with normalization imp(d) <a and rel(q, d)<banda+ b <1

» Keep posting lists in descending order of global importance

high(i) = imp(cdid(i)) + b // upper bound for document from 1-th list
high =max{ high(i)|1=1...|q| } + b // global upper bound

Stop scanning i-th posting list when high(1) < mini (i.e., minimal score in top-k)
Terminate when high < mink

effective when combined score 1s dominated by imp(d)

* First-k’ heuristic: Scan all posting lists until &> > k£ documents
have been seen 1n all lists, so that their combined score 1s known

 Full details: [Long and Suel 03]

[R&DM °13/°14

8. Query Processing with Champion Lists

* Idea: In addition to full posting lists L; sorted by imp(d),
keep short “champion lists” sorted (aka. “fancy lists”) F;
that contain docs d with the highest values of score(#;, d)
and sort these lists by imp(d)

 Champions First-k’ heuristic:

Compute total score for all docs in N F; (i =1 ... |q|) and keep top-k results
cand=U F;- N F;
for each d € cand do

compute partial score of d

scan full posting lists L; (i =1 ... |g|)
if cdid(i) € cand then
add score(t;, cdid(i)) to partial score of cdid(i)
else
add cdid(i) to cand and set its partial score to score(t;, cdid(i))
terminate the scan when we have £” documents with complete scores

 Full details: [Brin and Page *98]

[R&DM °13/°14 71

Summary of V.3

* Query Type
determines usefulness of optimizations (e.g., skip pointers)

e Term-at-a-Time and Document-at-a-Time
for holistic query processing

e WAND
for top-k query processing on document-ordered posting lists

* Buckley’s Algorithm
for top-k query processing on scored-ordered posting lists

e Fagin’s Threshold Algorithms
top-k query processing with, without, or with some RAs

[R&DM °13/°14 72

Additional Literature for V.3

S. Brin and L. Page: The anatomy of a large-scale hypertextual Web search engine,
Computer Networks 30:107-117, 1998

e A. Broder, D. Carmel, M. Herscovici, A. Soffer, J. Zien: Efficient query evaluation
using a two-level retrieval process, CIKM 2003

C. Buckley and A. Lewit: Optimization of Inverted Vector Searches,
SIGIR 1985

R. Fagin, A. Lotem, and M. Naor: Optimal Aggregation Algorithms for Middleware,
Journal of Computer and System Sciences 2003

X. Long and T. Suel: Optimized Query Execution in Large Search Engines with Global
Page Ordering, VLDB 2003

J. Zobel and A. Moffat: Self-Indexing Inverted Files for Fast Text Retrieval,
ACM TOIS 14(4):349-379, 1996

[R&DM °13/°14 73

