Chapter 7: Frequent Itemsets
and Association Rules

Information Retrieval & Data Mining

Universitat des Saarlandes, Saarbriicken
Winter Semester 2013/14

VII.1&2-1

Motivational Example

* Assume you run an on-line store and you want to
Increase your sales

— You want to show visitors ads of your products before they
search the products

* This 1s easy if you know the left-hand side
—But 1f you don’t. ..

[R&DM ’13/14 17 December 2013 VII.1&2-2

Chapter VI
and Associa

1. Definitions: Frequent Itemsets and Association
Rules

2. Algorithms for Frequent Itemset Mining

e Monotonicity and candidate pruning, Apriori,
ECLAT, FPGrowth

3. Association Rules
e Measures of interestingness

4. Summarizing Itemsets

e (losed, maximal, and non-derivable itemsets

*Zaki & Meira, Chapters 10 and 11; Tan, Steinbach & Kumar, Chapter 6

IR&DM ’13/14 17 December 2013 VII.1&2-3

Chapter VIL1: Definitions il

1. The transaction data model
1.1. Data as subsets
1.2. Data as binary matrix

2. Itemsets, support, and frequency
3. Association rules
4. Applications of association analysis

IR&DM °13/14 17 December 2013 VII.1&2-4

The transaction data model

* Data mining considers larger variety of data types
than typical IR

* Methods usually work on any data that can be
expressed 1n certain type
— Graphs, points 1n metric space, vectors, ...

* The data type used 1n itemset mining 1s the
transaction data

— Data contains transactions over some set of items

The market basket data

Items are: bread, milk, diapers, beer, and eggs
Transactions are: 1:{bread, milk}, 2:{bread, diapers, beer, eggs}
3:{mlk, diapers, beer}, 4:{bread, milk, diapers, beer}, and

5: {bread milk, diapers}

. Transaction IDs

T
(74 (74

IR&DM °13/14 17 December 2013 VII.1&2-6

Transaction data as subsets

a: bread (- woe) f(awde)) (Cacde) (hose

. {bread beer Sl {bread beer
c: milk milk, dia ers} %) diapers, e s}
d: diapers > G1ap PEES, €85
€. eggs

2" subsets of n 1items. Layer k& has (E) subsets.

IR&DM °13/14 17 December 2013 VIL.1&2-7

Transaction data as binary matrix

CR T,

Any data that can be expressed as a binary matrix can be used.

IR&DM °13/14 17 December 2013 VII.1&2-8

[temsets, support, and frequency

 An itemset 1s a set of items

— A transaction ¢ 1s an 1temset with associated transaction ID,
t = (tid, 1), where I 1s the set of 1tems of the transaction

e A transaction ¢ = (tid, I) contains itemset X if X C /

* The support of itemset X 1n database D i1s the number
of transactions 1n D that contain 1it:

supp(X, D) = |{t € D : t contains X} |

* The frequency of itemset X 1in database D 1s its
support relative to the database size, supp(X, D) / |D|

* [temset 1s frequent 1f its frequency 1s above user-
defined threshold minfreq

Frequent itemset example

O T
1 1 0 0) 0)

Itemset {Bread, Milk} has support 3 and frequency 3/5
Itemset {Bread, Milk, Eggs} has support and frequency 0
For minfreq = 1/2, frequent itemsets are:

1
0
1

1

0
1
1

1

1

1

1

1

1
1
1
0

1

o O O

{Bread}, {Milk}, {Diapers}, {Beer}, {Bread, Milk}, {Bread,

Diapers}, {Milk, Diapers}, and {Diapers, Beer}

IR&DM °13/14

17 December 2013

VII.1&2-10

Association rules and confidence

* An association rule 1s a rule of type X — Y, where X
and Y are disjoint itemsets (X N Y = &)

— If transaction contains itemset X, 1t (probably) also contains
itemset Y

* The support of rule X — Y 1n data D 1s
supp(X — Y, D) = supp(X U Y, D)
—Tan et al. (and other authors) divide this value by |D|

* The confidence of rule X — Y in data D 1s
c(X — Y, D) = supp(XU Y, D)/supp(X, D)

— The confidence 1s the empirical conditional probability that
transaction contains Y given that it contains X

Association rule examples

TS

0 1 1 1
1 1 1 0
1 1 1 0
1 1 0 0

{Bread, Milk} — {Diapers} has support 2 and confidence 2/3
{Diapers} — {Bread, Milk} has support 2 and confidence 1/2
{Eggs} — {Bread, Diapers, Beer} has support 1 and confidence 1

IR&DM °13/14 17 December 2013 VII.1&2-12

Applications

* Frequent itemset mining

— Which 1items appear together often?

* What products people by together?
* What web pages people visit in some web site?

— Later we learn better concepts for this

* Association rule mining

— Implication analysis: If X 1s bought/observed, what else will
probably be bought/observed

o If people who buy milk and cereal also buy bananas, we can locate
bananas close to milk or cereal to improve their sales

* If people who search for swimsuits and cameras also search for
holidays, we should show holiday advertisements for those who’ve
searched swimsuits and cameras

Chapter VIL.2: Algorithms il

1. The Naive Algorithm
2. The Apriori Algorithm

2.1. Key observation: monotonicity of support
3. Improving Apriori: Eclat
4. The FP-Growth Algorithm

Zaki & Meira, Chapter 10; Tan, Steinbach & Kumar, Chapter 6

IR&DM °13/14 17 December 2013 VII.1&2-14

The Naive Algorithm

* Try every possible itemset and check 1is 1t frequent
 How to try the itemsets?

— Breath-first in subset lattice
— Depth-first 1n subset lattice

 How to compute the support?

— Check for every transaction is the
itemset included

e Time complexity:
— Computing the support takes O(]9|x|D|) and there are 2l possible
itemsets: worst-case: O(]7]x|D|x2/")

—1/O complexity is O(2")) database accesses

The Aprior1 Algorithm

* The downward closedness of support:

—If X'and Y are itemsets s.t. X C Y, then supp(X) > supp(Y)
= [f X 1s infrequent, so are all its supersets

* The Apriori algorithm uses this feature to
significantly reduce the search space

— Apriori never generates a candidate that has an infrequent
subset

* Worst-case time complexity 1s still the same
O(|7)x|D|*2)

— In practice the time complexity can be much less

Example of pruning itemsets

If {e} and {ab} are infrequent

7

ONC
o N = \ N = N ‘\
S
(o)

LTRSS SN KA
@ @)) @ @’ﬁ@

[R&DM ’13/14 17 December 2013

Improving I/0

* The Naive algorithm computed the frequency of
every candidate 1temset

— Exponential number of database scans

* It’s better to loop over the transactions:

— Collect all candidate A-1temsets

— Iterate over every transaction

* For every k-subitemset of the transaction, if the itemset 1s a
candidate, increase the candidate’s support by 1

* This way we only need to sweep thru the data once
per level

— At most O(]9]) database scans

Example of Apriori (on blackboard)

[R&DM ’13/14 17 December 2013

Improving Apriori: Eclat

* In Apriori, the support computation requires creating
all k-subitemsets of all transactions

— Many of them might not be 1n the candidate set

* Way to speed up things: index the data base so that we
can compute the support directly

— A tidset of 1temset X, t(X), 1s the set of transaction IDs that
contain X, 1.e. t(X) = {tid : (tid, I) € D is such that X C [}
* supp(X) = |t(X)]
* t(XY) = t(X) N t(Y)

— XY 1s a shorthand notation for XY U Y

* We can compute the support by intersecting the tidsets

The Eclat algorithm

* The Eclat algorithm uses tidsets to compute the
support

* A prefix equivalence class (PEC) 1s a set of all
itemsets that share the same prefix
— We assume there’s some (arbitrary) order of items
—E.g. all itemsets that contain items A and B

* Eclat merges two itemsets from the same PEC and
intersects their tidsets to compute the support

— If the result 1s frequent, 1t 1s moved down to a PEC with
prefix matching the first itemset

 Eclat traverses the prefix tree on DFS-like manner

Example of ECLAT

First PEC w/ & as prefix ///

A
1345

2nd PEC w/ 4 as prefix foe_

123456

C

LN

2456 1356 12345

——/

BE | CD CE DFE

AB | [ac| [4aD] [aE | \ [[BC BD
(1355 | [45 | [135 | [1345|) \ [2%56 1356
Infrequent! = F——~ —
¢ / \ ,,n"/%_
{ (4BD| [ABE]|{\[4DE] \ BCD | [BCE| [BDE
| 135 | [1355 \)[135 56 245 135

I

ABDE |
135
Figure 8.5 of Zaki & Meira
IR&DM ’13/14 17 December 2013

12345 J| 56 245 135

This PEC only after

\\ N’ eVeI‘ything Starting W/ A iS done

VII.1&2-22

dEclat: Difterences of tidsets

* Long tidsets slow down Eclat

e A diffset stores the differences of the tidsets

— The diftset of ABC, d(ABC), 1s t(AB) \ t(ABC)
 E.g. all tids that contain the prefix AB but not ABC

* Updates: d(4BC) =d(C) \ d(4B)
* Support: supp(ABC) = supp(AB) — |d(ABC)|
* We can replace tidsets with diffsets 1f they are shorter

— This replacement can happen at any move to a new PEC 1n
Eclat

The FPGrowth algorithm

* The FPGrowth algorithm preprocesses the data to
build an FP-tree data structure

— Mining the frequent itemsets 1s done using this data
structure

* An FP-tree 1s a condensed prefix representation of the
data

— The smaller, the more effective the mining

Building an FP-tree

* Initially the tree contains the empty set as a root

* For each transaction, we add a branch that contains
one node for each 1item 1n the transaction

—If a prefix of the transaction 1s already 1n the tree, we

increase the count of the nodes corresponding to the prefix
and add only the suffix

= Every transaction 1s in a path from the root to a leaf

* Transactions that are proper subitemsets of other transactions do
not reach the leaf

* The 1tems 1n transactions are added in a decreasing
order on support

— As small tree as possible

FP-tree example

Itemset ABDE
appears twice

From Figure 8.9 of Zaki & Meira

[R&DM °13/14 17 December 2013 VIL.1&2-26

Mining the frequent itemsets

* To mine the 1temsets, we project the FP-tree onto an
itemset prefix

— Initially these prefixes contain single items 1n order of
Increasing support

— The result 1s another FP-tree

* If the projected tree 1s a path, we add all subsets of
nodes together with the prefix as frequent 1itemsets

— The support 1s the smallest count

— If the projected tree 1s not a path, we call FPGrowth
recursively

How to project?

* To project tree 7' to 1tem i, we first find all occurrences of i from T
— For each occurrence, find the path from the root to the node
— Copy this path to the projected tree without the node corresponding to i

— Increase the count of every node in the copied path by the count of the
node corresponding to i

 [tem i 1s added to the prefix
* Nodes corresponding to elements with support less than the
minsup are removed

— Element’s support 1s the sum of counts 1n the nodes corresponding to it

 Either call FPGrowth recursively or list the frequent items 1f the
resulting tree 1s a path

— If calling FPGrowth, add all itemsets with current prefix and any single
item from the tree

Example of projection

0(1) 0(2) @

(4)

(B1) B(2) B(4)
C(1) B(1) @ggf@
AddBCD G G

count = 1

C(1) c)

Add BEACD Add BEAD

count = 1 count = 2
From Figures 8.8 & 8.9 of Zaki & Meira

Example of finding frequent itemsets

* The tree projected onto prefix D
* Nodes with C are infrequent 0(4)

— Can be removed

* The result 1s a path
= Frequent itemsets are all subsets

of nodes with prefix D

— Support 1s the smallest count @@

— DB (4), DE (3), DA (3), DBE (3), DBA (3),
DEA (3), and DBEA (3) C(1)

» Similar process 1s done to other prefixes, with
possibly recursive calls

From Figure 8.8 of Zaki & Meira

