
Information Retrieval & Data Mining
Universität des Saarlandes, Saarbrücken
Winter Semester 2013/14

VII.1&2–

Chapter 7: Frequent Itemsets
and Association Rules

1

IR&DM ’13/14 17 December 2013 VII.1&2–

Motivational Example
• Assume you run an on-line store and you want to

increase your sales
–You want to show visitors ads of your products before they

search the products

2

→

• This is easy if you know the left-hand side
–But if you don’t…

IR&DM ’13/14 17 December 2013 VII.1&2–

Chapter VII: Frequent Itemsets
and Association Rules*
1. Definitions: Frequent Itemsets and Association

Rules
2. Algorithms for Frequent Itemset Mining

• Monotonicity and candidate pruning, Apriori,
ECLAT, FPGrowth

3. Association Rules
• Measures of interestingness

4. Summarizing Itemsets
• Closed, maximal, and non-derivable itemsets

3

*Zaki & Meira, Chapters 10 and 11; Tan, Steinbach & Kumar, Chapter 6

IR&DM ’13/14 17 December 2013 VII.1&2–

Chapter VII.1: Definitions
1. The transaction data model

1.1. Data as subsets
1.2. Data as binary matrix

2. Itemsets, support, and frequency
3. Association rules
4. Applications of association analysis

4

IR&DM ’13/14 17 December 2013 VII.1&2–

The transaction data model
• Data mining considers larger variety of data types

than typical IR
• Methods usually work on any data that can be

expressed in certain type
–Graphs, points in metric space, vectors, ...

• The data type used in itemset mining is the
transaction data
–Data contains transactions over some set of items

5

IR&DM ’13/14 17 December 2013 VII.1&2–

The market basket data

6

TID Bread Milk Diapers Beer Eggs

1

2

3

4

5

✔ ✔

✔ ✔ ✔ ✔

✔ ✔ ✔

✔ ✔ ✔ ✔

✔ ✔ ✔

Items are: bread, milk, diapers, beer, and eggs
Transactions are: 1:{bread, milk}, 2:{bread, diapers, beer, eggs},
3:{milk, diapers, beer}, 4:{bread, milk, diapers, beer}, and
5:{bread, milk, diapers}

Transaction IDs

IR&DM ’13/14 17 December 2013 VII.1&2–

Transaction data as subsets

7

a: bread
b: beer
c: milk
d: diapers
e: eggs

{bread, milk}

{bread, milk, diapers}
{beer, milk, diapers}

{bread, beer,
milk, diapers}

{bread, beer,
diapers, eggs}

2n subsets of n items. Layer k has subsets.
�
n
k

�

IR&DM ’13/14 17 December 2013 VII.1&2–

Transaction data as binary matrix

8

TID Bread Milk Diapers Beer Eggs

1

2

3

4

5

✔ ✔

✔ ✔ ✔ ✔

✔ ✔ ✔

✔ ✔ ✔ ✔

✔ ✔ ✔

TID Bread Milk Diapers Beer Eggs

1

2

3

4

5

1 1 0 0 0

1 0 1 1 1

0 1 1 1 0

1 1 1 1 0

1 1 1 0 0

Any data that can be expressed as a binary matrix can be used.

IR&DM ’13/14 17 December 2013 VII.1&2–

Itemsets, support, and frequency

9

• An itemset is a set of items
–A transaction t is an itemset with associated transaction ID,

t = (tid, I), where I is the set of items of the transaction

• A transaction t = (tid, I) contains itemset X if X ⊆ I
• The support of itemset X in database D is the number

of transactions in D that contain it:
 supp(X, D) = |{t ∈ D : t contains X}|
• The frequency of itemset X in database D is its

support relative to the database size, supp(X, D) / |D|
• Itemset is frequent if its frequency is above user-

defined threshold minfreq

IR&DM ’13/14 17 December 2013 VII.1&2–

Frequent itemset example

10

TID Bread Milk Diapers Beer Eggs

1

2

3

4

5

1 1 0 0 0

1 0 1 1 1

0 1 1 1 0

1 1 1 1 0

1 1 1 0 0

Itemset {Bread, Milk} has support 3 and frequency 3/5
Itemset {Bread, Milk, Eggs} has support and frequency 0
For minfreq = 1/2, frequent itemsets are:
{Bread}, {Milk}, {Diapers}, {Beer}, {Bread, Milk}, {Bread,
Diapers}, {Milk, Diapers}, and {Diapers, Beer}

IR&DM ’13/14 17 December 2013 VII.1&2–

Association rules and confidence

11

• An association rule is a rule of type X → Y, where X
and Y are disjoint itemsets (X ∩ Y = ∅)
– If transaction contains itemset X, it (probably) also contains

itemset Y
• The support of rule X → Y in data D is

 supp(X → Y, D) = supp(X ∪ Y, D)
–Tan et al. (and other authors) divide this value by |D|

• The confidence of rule X → Y in data D is
 c(X → Y, D) = supp(X ∪ Y, D)/supp(X, D)
–The confidence is the empirical conditional probability that

transaction contains Y given that it contains X

IR&DM ’13/14 17 December 2013 VII.1&2–

Association rule examples

12

TID Bread Milk Diapers Beer Eggs

1

2

3

4

5

1 1 0 0 0

1 0 1 1 1

0 1 1 1 0

1 1 1 1 0

1 1 1 0 0

{Bread, Milk} → {Diapers} has support 2 and confidence 2/3
{Diapers} → {Bread, Milk} has support 2 and confidence 1/2
{Eggs} → {Bread, Diapers, Beer} has support 1 and confidence 1

IR&DM ’13/14 17 December 2013 VII.1&2–

Applications

13

• Frequent itemset mining
–Which items appear together often?
•What products people by together?
•What web pages people visit in some web site?

– Later we learn better concepts for this
• Association rule mining
– Implication analysis: If X is bought/observed, what else will

probably be bought/observed
• If people who buy milk and cereal also buy bananas, we can locate

bananas close to milk or cereal to improve their sales
• If people who search for swimsuits and cameras also search for

holidays, we should show holiday advertisements for those who’ve
searched swimsuits and cameras

IR&DM ’13/14 17 December 2013 VII.1&2–

Chapter VII.2: Algorithms
1. The Naïve Algorithm
2. The Apriori Algorithm

2.1. Key observation: monotonicity of support
3. Improving Apriori: Eclat
4. The FP-Growth Algorithm

14

Zaki & Meira, Chapter 10; Tan, Steinbach & Kumar, Chapter 6

IR&DM ’13/14 17 December 2013 VII.1&2–

The Naïve Algorithm
• Try every possible itemset and check is it frequent
• How to try the itemsets?
– Breath-first in subset lattice
– Depth-first in subset lattice

• How to compute the support?
– Check for every transaction is the

itemset included
• Time complexity:
– Computing the support takes O(|I|×|D|) and there are 2|I| possible

itemsets: worst-case: O(|I|×|D|×2|I|)

– I/O complexity is O(2|I|) database accesses

15

IR&DM ’13/14 17 December 2013 VII.1&2–

The Apriori Algorithm
• The downward closedness of support:
– If X and Y are itemsets s.t. X ⊆ Y, then supp(X) ≥ supp(Y)
⇒ If X is infrequent, so are all its supersets

• The Apriori algorithm uses this feature to
significantly reduce the search space
–Apriori never generates a candidate that has an infrequent

subset
• Worst-case time complexity is still the same

O(|I|×|D|×2|I|)
– In practice the time complexity can be much less

16

IR&DM ’13/14 17 December 2013 VII.1&2–

Example of pruning itemsets

17

If {e} and {ab} are infrequent

IR&DM ’13/14 17 December 2013 VII.1&2–

Improving I/O

18

• The Naïve algorithm computed the frequency of
every candidate itemset
–Exponential number of database scans

• It’s better to loop over the transactions:
–Collect all candidate k-itemsets
– Iterate over every transaction
• For every k-subitemset of the transaction, if the itemset is a

candidate, increase the candidate’s support by 1

• This way we only need to sweep thru the data once
per level
–At most O(|I|) database scans

IR&DM ’13/14 17 December 2013 VII.1&2–

Example of Apriori (on blackboard)

19

A B C D E

1

2

3

4

5

6

1 1 0 1 1

0 1 1 0 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 1

0 1 1 1 0

∑ 4 6 4 4 5

IR&DM ’13/14 17 December 2013 VII.1&2–

Improving Apriori: Eclat
• In Apriori, the support computation requires creating

all k-subitemsets of all transactions
–Many of them might not be in the candidate set

• Way to speed up things: index the data base so that we
can compute the support directly
–A tidset of itemset X, t(X), is the set of transaction IDs that

contain X, i.e. t(X) = {tid : (tid, I) ∈ D is such that X ⊆ I}
• supp(X) = |t(X)|
• t(XY) = t(X) ∩ t(Y)
–XY is a shorthand notation for X ∪ Y

• We can compute the support by intersecting the tidsets

20

IR&DM ’13/14 17 December 2013 VII.1&2–

The Eclat algorithm
• The Eclat algorithm uses tidsets to compute the

support
• A prefix equivalence class (PEC) is a set of all

itemsets that share the same prefix
–We assume there’s some (arbitrary) order of items
–E.g. all itemsets that contain items A and B

• Eclat merges two itemsets from the same PEC and
intersects their tidsets to compute the support
– If the result is frequent, it is moved down to a PEC with

prefix matching the first itemset
• Eclat traverses the prefix tree on DFS-like manner

21

IR&DM ’13/14 17 December 2013 VII.1&2–

Example of ECLAT

22

CHAPTER 8. ITEMSET MINING 253

∅

A
1345

AB
1345

ABD
135

ABDE
135

ABE
1345

AC
45

AD
135

ADE
135

AE
1345

B
123456

BC
2456

BCD
56

BCE
245

BD
1356

BDE
135

BE
12345

C
2456

CD
56

CE
245

D
1356

DE
135

E
12345

Figure 8.5: Eclat Algorithm: Tidlist Intersections (gray boxes indicate infrequent
itemsets)

pruned (marked gray). The frequent itemsets and their tidsets comprise the new
prefix equivalence class

PA =
{
⟨AB, 1345⟩, ⟨AD, 135⟩, ⟨AE, 1345⟩

}

which is recursively processed. Upon return, Eclat intersects t(B) with t(C), t(D),
and t(E) to obtain the equivalence class

PB =
{
⟨BC, 2456⟩, ⟨BD, 1356⟩, ⟨DE, 12345⟩

}

Other branches are processed in a similar manner; the entire search space that
Eclat explores is shown in Figure 8.5. The gray nodes indicate infrequent itemsets,
whereas the rest constitute the set of frequent itemsets.

The computational complexity of Eclat is O(|D| · 2|I|) in the worst case, since
there can be 2|I| frequent itemsets, and an intersection of two tidsets takes at most
O(|D|) time. If t is the average tidset size, and if l is the longest frequent itemset,
the computational complexity is close to O(t · 2l). The I/O complexity of Eclat is
harder to characterize, since it depends on the size of the intermediate tidsets. With
t as the average tidset size, the initial database size is O(t|I|), and the total size

First PEC w/ ∅ as prefix

2nd PEC w/ A as prefix

This PEC only after
everything starting w/ A is done

Infrequent!

Figure 8.5 of Zaki & Meira

IR&DM ’13/14 17 December 2013 VII.1&2–

dEclat: Differences of tidsets

23

• Long tidsets slow down Eclat
• A diffset stores the differences of the tidsets
–The diffset of ABC, d(ABC), is t(AB) \ t(ABC)
•E.g. all tids that contain the prefix AB but not ABC

• Updates: d(ABC) = d(C) \ d(AB)
• Support: supp(ABC) = supp(AB) – |d(ABC)|
• We can replace tidsets with diffsets if they are shorter
–This replacement can happen at any move to a new PEC in

Eclat

IR&DM ’13/14 17 December 2013 VII.1&2–

The FPGrowth algorithm
• The FPGrowth algorithm preprocesses the data to

build an FP-tree data structure
–Mining the frequent itemsets is done using this data

structure
• An FP-tree is a condensed prefix representation of the

data
–The smaller, the more effective the mining

24

IR&DM ’13/14 17 December 2013 VII.1&2–

Building an FP-tree
• Initially the tree contains the empty set as a root
• For each transaction, we add a branch that contains

one node for each item in the transaction
– If a prefix of the transaction is already in the tree, we

increase the count of the nodes corresponding to the prefix
and add only the suffix
⇒ Every transaction is in a path from the root to a leaf
•Transactions that are proper subitemsets of other transactions do

not reach the leaf

• The items in transactions are added in a decreasing
order on support
–As small tree as possible

25

IR&DM ’13/14 17 December 2013 VII.1&2–

FP-tree example

26

CHAPTER 8. ITEMSET MINING 261

∅(6)

B(6)

C(1)

D(1)

E(5)

A(4)

C(2)

D(1)

D(2)

C(1)

∅(4)

B(4)

C(1) E(3)

A(3)

C(1)

∅(4)

B(4)

E(3)

A(2)

∅(4)

B(4)

E(4)

∅(5)

B(5)

RD RC RA RE

Figure 8.9: FPGrowth Algorithm: Frequent Pattern Tree Projection

whether the confidence of the rule X −→ Z \ X is at least minconf (Line 6). If
so, we output the rule. Otherwise, we remove all subsets W ⊂ X from the set of
possible antecedents (Line 10).

Example 8.13: Consider the frequent itemset ABDE(3) from Table 8.1, whose
support is shown within the brackets. Assume that minconf = 0.9. To generate

Itemset BCE
Itemset ABDE
appears twice

From Figure 8.9 of Zaki & Meira

IR&DM ’13/14 17 December 2013 VII.1&2–

Mining the frequent itemsets

27

• To mine the itemsets, we project the FP-tree onto an
itemset prefix
– Initially these prefixes contain single items in order of

increasing support
–The result is another FP-tree

• If the projected tree is a path, we add all subsets of
nodes together with the prefix as frequent itemsets
–The support is the smallest count
– If the projected tree is not a path, we call FPGrowth

recursively

IR&DM ’13/14 17 December 2013 VII.1&2–

How to project?
• To project tree T to item i, we first find all occurrences of i from T
– For each occurrence, find the path from the root to the node
– Copy this path to the projected tree without the node corresponding to i
– Increase the count of every node in the copied path by the count of the

node corresponding to i
• Item i is added to the prefix
• Nodes corresponding to elements with support less than the

minsup are removed
– Element’s support is the sum of counts in the nodes corresponding to it

• Either call FPGrowth recursively or list the frequent items if the
resulting tree is a path
– If calling FPGrowth, add all itemsets with current prefix and any single

item from the tree

28

IR&DM ’13/14 17 December 2013 VII.1&2–

Example of projection

29

CHAPTER 8. ITEMSET MINING 261

∅(6)

B(6)

C(1)

D(1)

E(5)

A(4)

C(2)

D(1)

D(2)

C(1)

∅(4)

B(4)

C(1) E(3)

A(3)

C(1)

∅(4)

B(4)

E(3)

A(2)

∅(4)

B(4)

E(4)

∅(5)

B(5)

RD RC RA RE

Figure 8.9: FPGrowth Algorithm: Frequent Pattern Tree Projection

whether the confidence of the rule X −→ Z \ X is at least minconf (Line 6). If
so, we output the rule. Otherwise, we remove all subsets W ⊂ X from the set of
possible antecedents (Line 10).

Example 8.13: Consider the frequent itemset ABDE(3) from Table 8.1, whose
support is shown within the brackets. Assume that minconf = 0.9. To generate

CHAPTER 8. ITEMSET MINING 259

Algorithm 8.5: Algorithm FPGrowth

// Initial Call: R← FP-tree(D), P ← ∅, F ← ∅
FPGrowth (R, P , F, minsup):
Remove infrequent items from R1

if IsPath(R) then // insert subsets of R into F2

foreach Y ⊆ R do3

X ← P ∪ Y4

sup(X)← minx∈Y {cnt(x)}5

F ← F ∪
{
(X, sup(X))

}
6

else // process projected FP-trees for each frequent item i7

foreach i ∈ R in increasing order of sup(i) do8

X ← P ∪ {i}9

sup(X)← sup(i) // sum of cnt(i) for all nodes labeled i10

F ← F ∪
{
(X, sup(X))

}
11

RX ← ∅ // projected FP-tree for X12

foreach path ∈ PathFromRoot(i) do13

cnt(i)← count of i in path14

Insert path, excluding i, into FP-tree RX with count cnt(i)15

if RX ̸= ∅ then FPGrowth (RX ,X,F , minsup)16

∅(1)

B(1)

C(1)

(a) add BC, cnt = 1

∅(2)

B(2)

C(1) E(1)

A(1)

C(1)

(b) add BEAC, cnt = 1

∅(4)

B(4)

C(1) E(3)

A(3)

C(1)

(c) add BEA, cnt = 2

Figure 8.8: Projected Frequent Pattern Tree for D

labeled D, namely

BCD, cnt(D) = 1

BEACD, cnt(D) = 1

Add BCD
count = 1

CHAPTER 8. ITEMSET MINING 259

Algorithm 8.5: Algorithm FPGrowth

// Initial Call: R← FP-tree(D), P ← ∅, F ← ∅
FPGrowth (R, P , F, minsup):
Remove infrequent items from R1

if IsPath(R) then // insert subsets of R into F2

foreach Y ⊆ R do3

X ← P ∪ Y4

sup(X)← minx∈Y {cnt(x)}5

F ← F ∪
{
(X, sup(X))

}
6

else // process projected FP-trees for each frequent item i7

foreach i ∈ R in increasing order of sup(i) do8

X ← P ∪ {i}9

sup(X)← sup(i) // sum of cnt(i) for all nodes labeled i10

F ← F ∪
{
(X, sup(X))

}
11

RX ← ∅ // projected FP-tree for X12

foreach path ∈ PathFromRoot(i) do13

cnt(i)← count of i in path14

Insert path, excluding i, into FP-tree RX with count cnt(i)15

if RX ̸= ∅ then FPGrowth (RX ,X,F , minsup)16

∅(1)

B(1)

C(1)

(a) add BC, cnt = 1

∅(2)

B(2)

C(1) E(1)

A(1)

C(1)

(b) add BEAC, cnt = 1

∅(4)

B(4)

C(1) E(3)

A(3)

C(1)

(c) add BEA, cnt = 2

Figure 8.8: Projected Frequent Pattern Tree for D

labeled D, namely

BCD, cnt(D) = 1

BEACD, cnt(D) = 1

Add BEACD
count = 1

CHAPTER 8. ITEMSET MINING 259

Algorithm 8.5: Algorithm FPGrowth

// Initial Call: R← FP-tree(D), P ← ∅, F ← ∅
FPGrowth (R, P , F, minsup):
Remove infrequent items from R1

if IsPath(R) then // insert subsets of R into F2

foreach Y ⊆ R do3

X ← P ∪ Y4

sup(X)← minx∈Y {cnt(x)}5

F ← F ∪
{
(X, sup(X))

}
6

else // process projected FP-trees for each frequent item i7

foreach i ∈ R in increasing order of sup(i) do8

X ← P ∪ {i}9

sup(X)← sup(i) // sum of cnt(i) for all nodes labeled i10

F ← F ∪
{
(X, sup(X))

}
11

RX ← ∅ // projected FP-tree for X12

foreach path ∈ PathFromRoot(i) do13

cnt(i)← count of i in path14

Insert path, excluding i, into FP-tree RX with count cnt(i)15

if RX ̸= ∅ then FPGrowth (RX ,X,F , minsup)16

∅(1)

B(1)

C(1)

(a) add BC, cnt = 1

∅(2)

B(2)

C(1) E(1)

A(1)

C(1)

(b) add BEAC, cnt = 1

∅(4)

B(4)

C(1) E(3)

A(3)

C(1)

(c) add BEA, cnt = 2

Figure 8.8: Projected Frequent Pattern Tree for D

labeled D, namely

BCD, cnt(D) = 1

BEACD, cnt(D) = 1

Add BEAD
count = 2

From Figures 8.8 & 8.9 of Zaki & Meira

IR&DM ’13/14 17 December 2013 VII.1&2–

Example of finding frequent itemsets

30

• The tree projected onto prefix D
• Nodes with C are infrequent
–Can be removed

• The result is a path
⇒ Frequent itemsets are all subsets
 of nodes with prefix D
– Support is the smallest count
–DB (4), DE (3), DA (3), DBE (3), DBA (3),

DEA (3), and DBEA (3)
• Similar process is done to other prefixes, with

possibly recursive calls

CHAPTER 8. ITEMSET MINING 259

Algorithm 8.5: Algorithm FPGrowth

// Initial Call: R← FP-tree(D), P ← ∅, F ← ∅
FPGrowth (R, P , F, minsup):
Remove infrequent items from R1

if IsPath(R) then // insert subsets of R into F2

foreach Y ⊆ R do3

X ← P ∪ Y4

sup(X)← minx∈Y {cnt(x)}5

F ← F ∪
{
(X, sup(X))

}
6

else // process projected FP-trees for each frequent item i7

foreach i ∈ R in increasing order of sup(i) do8

X ← P ∪ {i}9

sup(X)← sup(i) // sum of cnt(i) for all nodes labeled i10

F ← F ∪
{
(X, sup(X))

}
11

RX ← ∅ // projected FP-tree for X12

foreach path ∈ PathFromRoot(i) do13

cnt(i)← count of i in path14

Insert path, excluding i, into FP-tree RX with count cnt(i)15

if RX ̸= ∅ then FPGrowth (RX ,X,F , minsup)16

∅(1)

B(1)

C(1)

(a) add BC, cnt = 1

∅(2)

B(2)

C(1) E(1)

A(1)

C(1)

(b) add BEAC, cnt = 1

∅(4)

B(4)

C(1) E(3)

A(3)

C(1)

(c) add BEA, cnt = 2

Figure 8.8: Projected Frequent Pattern Tree for D

labeled D, namely

BCD, cnt(D) = 1

BEACD, cnt(D) = 1

From Figure 8.8 of Zaki & Meira

