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Basic 1dea

* Create clustering for each number of clusters
k=1,2,...,n
* The clusterings must be hierarchical

— Every cluster of a k-clustering i1s a union of some clusters in
an /-clustering for all / < k

—1I.e. for all /, and for all £ > [, every cluster in an /-clustering
1s a subset of some cluster 1n k-clustering

» Example:




Dendro grams
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Image: Mathworks

, Dlstance is = O 7

The height of the subtree tree shows the distance between
the two branches
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Dendrograms and clusters
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Dendrograms

* Dendrograms show the hierarchy of the clustering

 The number of clusters can be deduced from
dendrogram

— Higher branches

* Outliers can be detected from dendrograms
— Single points that are far from others
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Agglomerative and divisive

* Agglomerative: bottom-up
— Start with #n clusters
— Combine two closest points into a cluster of two elements
* Combine two closest clusters into one bigger cluster
* Divisive: top-down
— Start with 1 cluster

— D1vide the cluster into two
* Divide the largest (per diameter) cluster into two smaller



Cluster distances

* The distance between two points x and y 1s d(x,y)
* But what 1s the distance between two clusters?
* Many intuitive definitions — no universal truth

— Different cluster distances yield different clusterings
— The selection of cluster distance depends on application

* Some distances between clusters B and C:
—minimum distance d(B,C) = min{d(x,y) : x € B and y € C}
—maximum distance d(B,C) = max{d(x,y) :x € B and y € C}
— average distance d(B,C) = avgld(x,y) . x&€ Band y € C}

— distance of centroids d(B,C) = d(us, uc),
where up1s the centroid of B and uc1s the centroid of C



Single link

* The distance between two clusters 1s the distance
between the closest points

—d(B,C) =min{d(x,y) . x€ Bandy € C}
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Strengths of single-link

Original Points Two Clusters

Can handle non-spherical clusters of unequal size



Weaknesses of single-link

s '3"

:ﬁ " e - ':‘ :ﬁ " e
S * '“s Yoot ., " %
e 4 |
Original Points Two Clusters

e Sensitive to noise and outliers
e Produces elongated clusters



Complete link

 The distance between the clusters 1s the distance
between the furthest points

—d(B,C) = max{d(x,y) . x&€ Bandy € C}
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Strengths of complete link
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Weaknesses of complete link
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* Breaks largest clusters
* Biased towards spherical clusters



Group average and Mean distance

* Group average 1s the average of pairwise distances
—d(B,C) =avgi{d(x,y) :x&€ Band y € C}
= 2_xeB.yec d(x,y)/(IB]|C])

* Mean distance 1s the distance of the cluster centroids
—d(B,C) = d(us, uc)

Group average



Properties of group average

* A compromise between single and complete link

* Less susceptible to noise and outliers
— Similar to complete link

* Biased towards spherical clusters

— Similar to complete link



Ward’s method

* Ward’s distance between clusters 4 and B 1s the
increase 1 sum of squared errors (SSE) when the two
clusters are merged

— SSE for cluster A is SSE4 =Y x4 ||x — w4 |?

— Difference on merging clusters A and B to cluster C is then
d(A, B) = ASSEc = SSEc— SSE4 — SSE3

—Equivalently, d(A, B) = 15125 |4 — ppll?

* Weighted mean distance




Discussion on Ward’s method

* Less susceptible to noise and outliers
* Biased towards spherical clusters
» Hierarchical analogue of A~~-means

— Hence many shared pros and cons
— Can be used to 1nitialize k-means



Comparison

Ward’s
average method
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[Lance—Williams formula

» After merging clusters 4 and B 1nto cluster C, we
need to compute C’s distance to other clusters Z

* Lance—Williams formula provides a general equation
for this

d(C,Z) = aad(A,Z) + apd(B, Z) + Bd(A,B) +vId(A, Z) —d(B, Z)]

e a By
1/2 1/2

0 -1/2

Complete link 1/2 1/2 0 1/2
Group average |A/(]A] + |B]) IB|/(|A] + |B]) 0 0

Mean distance |A|/(|A] + |B]) IB|/(|A] + |B|) —=|A||B|/(]A|+]|B])? 0

WEICR G EED (A[+Z])/(TAT+IBI+[Z]) (IBI+][Z[)/(IAl+IB]+]Z]) —[zZ[/(IAl+|B]+]Z]) O
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Computational complexity

» Takes O(n?) time in most cases
—n steps

—In each step, n? distance matrix must be updated and
searched

* O(n? log(n)) time for some approaches using
appropriate data structures

—Keep distances 1n a heap
— Each step takes O(n log n) time
» O(n?) space complexity
— Have to store the distance matrix



Ch
Cl

1. The Idea
2. The DBSCAN algorithm
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The Idea

* Representation-based
clustering can only find
convex clusters

— But data can have non-convex
interesting clusters
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* In density-based clustering ”

a cluster contains a dense
area of points

20

— But how to define dense areas?




Some detfinitions

* An ¢g-neighbourhood of point x of data D 1s the set of
points of D that are within ¢ distance from x

—Ne(x)=4{yED: dx,y) <&}
—¢& 18 a user supplied parameter

e Point x € D 1s a core point 1f [N:(x)| > minpts
—minpts 1s a user supplied parameter

e Point x € D 1s a border point if 1t 1s not a core point
but x € N(z) for some core point z

* A point x € D that 1s neither a core nor a border point
1s called a noise point



Example

Core point _/ _ Noise point

Border point ~~

minpts = 5

[R&DM ’13/14 9 January 2014 VIIL.3-6-24



Density reachability

e Point x € D 1s directly density reachable from point
yeDit

— y 1s a core point

—X € Ne(p)
e Point x € D 1s density reachable from point y € D 1f
there 1s a chain of points xo, x1, ..., X/ S.t. X = X0, y = XI,

and x;1 1s directly density reachable from x; for all
i=1,...,1

— Not a symmetric relationship

e Points x, y € D are density connected if there exists a
core point z s.t. both x and y are density reachable from z



Density-based clusters

* A density-based cluster 1s a maximal set of density
connected points

Image: Wikipedia
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The DBSCAN algorithm

* for each unvisited point x in the data
— compute Ng(x)
—if |Ne(x)| > minpts
* ExpandCluster(x, ++clusterID)

* ExpandCluster(x, 1D)

—assign x to cluster ID and set N «— Ng(x)

—foreachye N

o if y 1s not visited and |N.(y)| > minpts
—N « N U Niy)

e if y does not belong to any cluster
—assign y to cluster ID




More on DBSCAN

* DBSCAN can return either overlapping or non-
overlapping clusters

—Ties are broken arbitrarily

* The main time complexity comes from computing the
neighbourhoods

—Total O(n log n) with spatial index structures
« Won’t work with high dimensions, worst-case is O(#n?)

* With the neighbourhoods known, DBSCAN only
needs a single pass over the data



The parameters

* DBSCAN requires two parameters, ¢ and minpts
* minpts controls the minimum size of a cluster

—minpts = 1 allows singleton clusters

—minpts = 2 makes DBSCAN essentially a single-link
clustering

— Higher values of minpts avoids the long-and-narrow
clusters of single link

* ¢ controls the required density

— Single ¢ 1s not enough 1f the clusters are of highly different
density



Chapter VIILS: Co-clustering " il

1. Clustering written with matrices
2. Co-clustering definition
3. Algorithms
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Clustering written with matrices

* Letxy, X2, ..., Xu be the m-dimensional vectors (data
points) we want to cluster

* Write these as an n-by-m matrix X
— Each data point 1s one row of X

* The exclusive representative clustering can be re-written
using two matrices
— Matrix C (cluster assignment matrix) has » rows and & columns

— Each row of C has exactly one element 1 while others are 0

— Matrix M (mean matrix) has k£ rows and m columns

— Each row of M corresponds to a centroid of a cluster
» Loss function (SSE) is now |X — CM|;



Example
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Co-clustering definition

* The same way we clustered X, we can also cluster X7
— This clusters the dimensions, not the data points

* An (k,[)-co-clustering of X 1s partitioning of rows of X
into k clusters and columns of X into / clusters

— Row cluster 7 and column cluster J define a (combinatorial)
sub-matrix Xy

e Element x;; belongs to this sub-matrix ifi € /andj € J
— Each sub-matrix X}, 1s represented by single value u;
* Let R be the n-by-k row cluster assignment matrix and C
the m-by-/ column cluster assignment matrix and
M = (u;) the k-by-/ mean matrix
— The loss function 1s HX —RMC' H;



Example (3,2)-co-clustering

0.0 0.5 0.5
0.0 0.0 0.5




Algorithm

1. input data matrix X and two integers k£ and /

2. Cluster the rows of X to R (using e¢.g. k~-means)
3. Cluster the columns of Xto C

4. Let M = (u), iy =(T1IH Z Xij

S5.return R, C, and M el
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Kleimnberg’s impossibility theorem

* A clustering function 1s a function f that takes a
distance matrix D and returns a partition I'
— We expect nothing on the type of points
— Distance 1s given using an implicit distance matrix

— The number of clusters 1s defined somehow by the
clustering function (build-in constant or something else)

— For example, an algorithm returning a A-means clustering to
k=10 clusters could be one clustering function

* Idea: list some properties any clustering function
should satisty and show that none can satisfy them all



Three properties

* Scale-invariance
— Clustering does not change 1f we multiply the distances
— (D) = f(aD) for any o > 0
* Richness
— For any partition I, there 1s a distance matrix D such that
/(D) =T
* Consistency

— The clustering does not change if we move points 1n the
same cluster closer to each other and points 1n different
clusters further away from each other



Impossibility result

e Sing.
sat1s:

i Theorem |
{any clustering function fthat satisfies all three |
| properties. {

D I A I I B S

Kicimbers 02

e-link hierarchical clustering that stops at £ < n clusters
1es scale-invariance and consistency

e Sing.

e-link clustering that stops when the link length 1s some

predefined fraction of maximum pairwise distance satisfies
scale-invariance and richness

e Single-link that stops when the link length 1s longer than some
predefined length satisfies richness and consistency



Kannan—Hopcroft possibility theorem

* Let’s assume we work on a finite Euclidean space

* Let’s replace Richness with Richness II:

—For any set C of &k points 1n the Euclidean space, there 1s an
n and a set D of n points such that the centers of the
clustering f(D) are exactly the k£ points in C

* Richness: all clusterings are achievable with proper metric

* Richness II: all set of centers are achievable with proper set of
points

QX =

| Theorem [Kannan & Hopcroft *13]. There is a ;
 clustering function f that satisties Scale invariance, |
{ Consistency, and Richness II. ‘



Some clustering applications
* Biology

— Creation of phylogenies (relations between organisms)

— Inferring population structures from clusterings of DNA
data

— Analysis of genes and cellular processes (co-clustering)

* Business

— Grouping of consumers into market segments

* Computer science

— Pre-processing step to reduce computation (representative-
based methods)

— Automatic discovery of similar items



More clustering applications

Females, cluster | Males, cluster |

TCI-HAL TCI-HAL
TCI-HAZ TCI-RD4 TCI-HAZ TCI-RiD4

TCI-RD3 TCI-HAS TCI-RD3

S
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TCI-RD1

TCI-KEL TCI-KMEZ TCI-MEd
TCI-MNS3
Females, cluster 1V Males, cluster IV
TCI-HAL TCI-HAL

TCI-HAZ TCI-RD4 TCI-HAZ TCI-RD4

Wessman: Clustering methods in the analysis of complex diseases



Even more clustering applic
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Summary

* Clustering 1s one of the most important and often-
used data analysis methods

* Many different types of clustering

— We covered representative-based, hierarchical, density-
based, and co-clustering

* Analysis of the clustering methods 1s not always easy
* Always think what you’re doing 1f you use clustering

—In fact, just always think what you’re doing



