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Basic idea
• Create clustering for each number of clusters 

k = 1, 2, ..., n
• The clusterings must be hierarchical 
–Every cluster of a k-clustering is a union of some clusters in 

an l-clustering for all l < k
– I.e. for all l, and for all k > l, every cluster in an l-clustering 

is a subset of some cluster in k-clustering
• Example:
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k = 6k = 5k = 4k = 3k = 2k = 1
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Dendrograms

3

The height of the subtree tree shows the distance between 
the two branches

Distance is ≈ 0.7 
Image: Mathworks
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Dendrograms and clusters
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Dendrograms

5

• Dendrograms show the hierarchy of the clustering
• The number of clusters can be deduced from 

dendrogram
–Higher branches

• Outliers can be detected from dendrograms
– Single points that are far from others
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Agglomerative and divisive
• Agglomerative: bottom-up
– Start with n clusters
–Combine two closest points into a cluster of two elements
•Combine two closest clusters into one bigger cluster

• Divisive: top-down
– Start with 1 cluster
–Divide the cluster into two
•Divide the largest (per diameter) cluster into two smaller

6
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Cluster distances
• The distance between two points x and y is d(x,y)
• But what is the distance between two clusters?
• Many intuitive definitions – no universal truth
–Different cluster distances yield different clusterings
– The selection of cluster distance depends on application

• Some distances between clusters B and C:
–minimum distance     d(B,C) = min{d(x,y) : x ∈ B and y ∈ C}
–maximum distance    d(B,C) = max{d(x,y) : x ∈ B and y ∈ C}
– average distance        d(B,C) = avg{d(x,y) : x ∈ B and y ∈ C}
– distance of centroids d(B,C) = d(µB, µC), 

where µB is the centroid of B and µC is the centroid of C

7
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Single link
• The distance between two clusters is the distance 

between the closest points
– d(B,C) = min{d(x,y) : x ∈ B and y ∈ C}
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Strengths of single-link

9

Strengths of single-link clustering

Original Points Two Clusters

• Can handle non-elliptical shapesCan handle non-spherical clusters of unequal size
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Weaknesses of single-link

10

Limitations of single-link clustering

Original Points Two Clusters

• Sensitive to noise and outliers
• It produces long, elongated clusters
•Sensitive to noise and outliers
•Produces elongated clusters
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Complete link
• The distance between the clusters is the distance 

between the furthest points
– d(B,C) = max{d(x,y) : x ∈ B and y ∈ C}
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Strengths of complete link
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Strength of Furthest Neighbour

Original Points Two Clusters

• Less susceptible to noise and outliers•Less susceptible to noise and outliers
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Weaknesses of complete link

13

Limitations of Furthest Neighbour

Original Points Two Clusters

•Tends to break large clusters

•Biased towards globular clusters

•Breaks largest clusters
•Biased towards spherical clusters
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Group average and Mean distance
• Group average is the average of pairwise distances
– d(B,C) = avg{d(x,y) : x ∈ B and y ∈ C} 

            =
• Mean distance is the distance of the cluster centroids
– d(B,C) = d(µB, µC)
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Properties of group average
• A compromise between single and complete link
• Less susceptible to noise and outliers 
– Similar to complete link

• Biased towards spherical clusters
– Similar to complete link

15
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Ward’s method
• Ward’s distance between clusters A and B is the 

increase in sum of squared errors (SSE) when the two 
clusters are merged 
– SSE for cluster A is SSEA = ∑x ∈ A ||x – µA||2

–Difference on merging clusters A and B to cluster C is then
d(A, B) = ΔSSEC = SSEC – SSEA – SSEB 
–Equivalently, 
•Weighted mean distance
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Discussion on Ward’s method
• Less susceptible to noise and outliers
• Biased towards spherical clusters
• Hierarchical analogue of k-means
–Hence many shared pros and cons
–Can be used to initialize k-means

17
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Comparison

18
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Lance–Williams formula

19

• After merging clusters A and B into cluster C, we 
need to compute C’s distance to other clusters Z
• Lance–Williams formula provides a general equation 

for this
d(C,Z) = ↵Ad(A,Z) + ↵Bd(B,Z) + �d(A,B) + � |d(A,Z)- d(B,Z)|

αA αB β γ
Single	  link

Complete	  link

Group	  average

Mean	  distance

Ward’s	  method

1/2 1/2 0 –1/2

1/2 1/2 0 1/2

|A|/(|A|	  +	  |B|) |B|/(|A|	  +	  |B|) 0 0

|A|/(|A|	  +	  |B|) |B|/(|A|	  +	  |B|) –|A||B|/(|A|+|B|)2 0

(|A|+|Z|)/(|A|+|B|+|Z|) (|B|+|Z|)/(|A|+|B|+|Z|) –|Z|/(|A|+|B|+|Z|) 0
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Computational complexity

20

• Takes O(n3) time in most cases
– n steps
– In each step, n2 distance matrix must be updated and 

searched
• O(n2 log(n)) time for some approaches using 

appropriate data structures 
–Keep distances in a heap
–Each step takes O(n log n) time

• O(n2) space complexity
–Have to store the distance matrix
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Chapter VIII.4: Density-Based 
Clustering
1. The Idea
2. The DBSCAN algorithm

21

ZM Ch. 15; TSK Ch. 8
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The Idea
• Representation-based

clustering can only find
convex clusters
–But data can have non-convex

interesting clusters
• In density-based clustering

a cluster contains a dense
area of points
–But how to define dense areas?

22

CHAPTER 15. DENSITY-BASED CLUSTERING 417

Chapter 15

Density-based Clustering

The representative-based clustering methods like K-means and Expectation-Maximization
are suitable for finding ellipsoid-shaped clusters, or at best convex clusters. However,
for non-convex clusters, such as those shown in Figure 15.1, these methods have trou-
ble finding the true clusters, since two points from different clusters may be closer
than two points in the same cluster. The density-based methods we consider in this
chapter are able to mine such non-convex clusters.

20

95

170

245

320

395

0 100 200 300 400 500 600
X1

X2

Figure 15.1: Density-based Dataset
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Some definitions
• An ε-neighbourhood of point x of data D is the set of 

points of D that are within ε distance from x 
–Nε(x) = {y ∈ D: d(x, y) ≤ ε}
– ε is a user supplied parameter

• Point x ∈ D is a core point if |Nε(x)| ≥ minpts
–minpts is a user supplied parameter

• Point x ∈ D is a border point if it is not a core point 
but x ∈ Nε(z) for some core point z 
• A point x ∈ D that is neither a core nor a border point 

is called a noise point 

23
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Example

24

x
z

y

Core point

Border point

Noise point

minpts = 5
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Density reachability

25

• Point x ∈ D is directly density reachable from point 
y ∈ D if
– y is a core point
– x ∈ Nε(y)

• Point x ∈ D is density reachable from point y ∈ D if 
there is a chain of points x0, x1, …, xl s.t. x = x0, y = xl, 
and xi–1 is directly density reachable from xi for all 
i = 1, …, l
–Not a symmetric relationship

• Points x, y ∈ D are density connected if there exists a 
core point z s.t. both x and y are density reachable from z
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Density-based clusters
• A density-based cluster is a maximal set of density 

connected points

26

Image: Wikipedia
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The DBSCAN algorithm
• for each unvisited point x in the data
– compute Nε(x)
– if |Nε(x)| ≥ minpts
•ExpandCluster(x, ++clusterID)

• ExpandCluster(x, ID)
– assign x to cluster ID and set N ← Nε(x)
– for each y ∈ N
• if y is not visited and |Nε(y)| ≥ minpts 
–N ← N ∪ Nε(y)

• if y does not belong to any cluster
–assign y to cluster ID

27
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More on DBSCAN
• DBSCAN can return either overlapping or non-

overlapping clusters
–Ties are broken arbitrarily

• The main time complexity comes from computing the 
neighbourhoods
–Total O(n log n) with spatial index structures
•Won’t work with high dimensions, worst-case is O(n2)

• With the neighbourhoods known, DBSCAN only 
needs a single pass over the data

28
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The parameters
• DBSCAN requires two parameters, ε and minpts 
• minpts controls the minimum size of a cluster
–minpts = 1 allows singleton clusters
–minpts = 2 makes DBSCAN essentially a single-link 

clustering
–Higher values of minpts avoids the long-and-narrow 

clusters of single link
• ε controls the required density
– Single ε is not enough if the clusters are of highly different 

density

29
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Chapter VIII.5: Co-clustering
1. Clustering written with matrices
2. Co-clustering definition
3. Algorithms

30
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Clustering written with matrices
• Let x1, x2, ..., xn be the m-dimensional vectors (data 

points) we want to cluster
• Write these as an n-by-m matrix X
– Each data point is one row of X

• The exclusive representative clustering can be re-written 
using two matrices
–Matrix C (cluster assignment matrix) has n rows and k columns
– Each row of C has exactly one element 1 while others are 0
–Matrix M (mean matrix) has k rows and m columns
– Each row of M corresponds to a centroid of a cluster

• Loss function (SSE) is now

31

kX-CMk22



C =

0

BBBB@

1 0
1 0
0 1
1 0
0 1

1

CCCCA

M =

✓
1.66 2
3.5 3.5

◆

X-CM =

0

BBBB@

-0.66 1
0.33 0
-0.5 0.5
0.33 -1
0.5 -0.5

1

CCCCA

X =

0

BBBB@

1 3
2 2
3 4
2 1
4 3

1

CCCCA

IR&DM ’13/14 VIII.3–6-9 January 2014

Example

32

x1
x2
x3
x4
x5

1 3

2 2

3 4

2 1

4 3

C1 = {x1, x2, x4}
C2 = {x3, x5}

µ1 = (1.66, 2)
µ2 = (3.5, 3.5)

CM =

0

BBBB@

1.66 2
1.66 2
3.5 3.5
1.66 2
3.5 3.5
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CCCCA
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Co-clustering definition

33

• The same way we clustered X, we can also cluster XT

– This clusters the dimensions, not the data points
• An (k,l)-co-clustering of X is partitioning of rows of X 

into k clusters and columns of X into l clusters
– Row cluster I and column cluster J define a (combinatorial) 

sub-matrix XIJ

• Element xij belongs to this sub-matrix if i ∈ I and j ∈ J
– Each sub-matrix XIJ is represented by single value µij

• Let R be the n-by-k row cluster assignment matrix and C 
the m-by-l column cluster assignment matrix and 
M = (µij) the k-by-l mean matrix
– The loss function is 

��X- RMCT
��2
2
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Example (3,2)-co-clustering

34

–
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Algorithm

35

1. input data matrix X and two integers k and l
2. Cluster the rows of X to R (using e.g. k-means)
3. Cluster the columns of X to C
4. Let M = (µIJ), µIJ =  
5. return R, C, and M

(|I| |J|)-1
X

i2I,j2J

xij
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Chapter VIII.6: Discussion and
clustering applications
1. Kleinberg’s impossibility theorem

1.1. Kannan—Hopcroft possibility theorem
2. Example clustering applications

36
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Kleinberg’s impossibility theorem
• A clustering function is a function f that takes a 

distance matrix D and returns a partition Γ
–We expect nothing on the type of points
–Distance is given using an implicit distance matrix
–The number of clusters is defined somehow by the 

clustering function (build-in constant or something else)
– For example, an algorithm returning a k-means clustering to 

k=10 clusters could be one clustering function
• Idea: list some properties any clustering function 

should satisfy and show that none can satisfy them all

37
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Three properties
• Scale-invariance
–Clustering does not change if we multiply the distances
– f(D) = f(αD) for any α > 0

• Richness
– For any partition Γ, there is a distance matrix D such that 

f(D) = Γ
• Consistency
–The clustering does not change if we move points in the 

same cluster closer to each other and points in different 
clusters further away from each other

38
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Impossibility result

39

Theorem [Kleinberg ’02]. There does not exist
any clustering function f that satisfies all three
properties.

• Single-link hierarchical clustering that stops at k < n clusters 
satisfies scale-invariance and consistency

• Single-link clustering that stops when the link length is some 
predefined fraction of maximum pairwise distance satisfies 
scale-invariance and richness

• Single-link that stops when the link length is longer than some 
predefined length satisfies richness and consistency
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Kannan—Hopcroft possibility theorem
• Let’s assume we work on a finite Euclidean space
• Let’s replace Richness with Richness II:
– For any set C of k points in the Euclidean space, there is an 

n and a set D of n points such that the centers of the 
clustering f(D) are exactly the k points in C 
•Richness: all clusterings are achievable with proper metric
•Richness II: all set of centers are achievable with proper set of 

points

40

Theorem [Kannan & Hopcroft ’13]. There is a 
clustering function f that satisfies Scale invariance, 
Consistency, and Richness II.
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Some clustering applications

41

• Biology
–Creation of phylogenies (relations between organisms)
– Inferring population structures from clusterings of DNA 

data
–Analysis of genes and cellular processes (co-clustering)

• Business
–Grouping of consumers into market segments

• Computer science
– Pre-processing step to reduce computation (representative-

based methods)
–Automatic discovery of similar items
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More clustering applications

42

18 October 2011IR&DM, WS'11/12

Clustering for Medical Data

10

90 4 Studies on real data

Figure 4.8: Temperament cluster centers in the NFBC66 best model as
starplots, normalized data. The male and female seem similar to each other,
despite having been learned independently. The subscales are as follows:
HA-1: anticipatory worry, HA-2: fear of uncertainty, HA-3: shyness, HA-
4: fatigability; NS-1: exploratory excitability, NS-2: impulsiveness, NS-3:
extravagance, NS-4: disorderliness; RD-1: sentimentality, RD-3: attachment,
RD-4: dependence; P: persistence.

Stable, persistent, not very impulsive
High socio-economical status and education

18 October 2011IR&DM, WS'11/12

Clustering for Medical Data

10

90 4 Studies on real data

Figure 4.8: Temperament cluster centers in the NFBC66 best model as
starplots, normalized data. The male and female seem similar to each other,
despite having been learned independently. The subscales are as follows:
HA-1: anticipatory worry, HA-2: fear of uncertainty, HA-3: shyness, HA-
4: fatigability; NS-1: exploratory excitability, NS-2: impulsiveness, NS-3:
extravagance, NS-4: disorderliness; RD-1: sentimentality, RD-3: attachment,
RD-4: dependence; P: persistence.

Shy, pessimistic, prefer routines and privacy
Low socio-economic status, high levels of depression and 

schizophrenia

Wessman: Clustering methods in the analysis of complex diseases
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Even more clustering applications

43possibly because herbivore distributions are most directly

influenced by the maritime–continental climate gradient.

The species with the highest grid cell incidence give more

coherent clusters than other groups (Fig. 1). Those with an

incidence of 10–20% give coherence values approaching those

of all species and small mammals, but higher incidence values

give lower coherence, perhaps because the species with the

highest incidence are few and widespread. The subset of species

‘at risk’ gives spatially the least coherent clusters found in this

study, even less coherent than seen for large mammals (Fig. 1).

The regional divisions identified by the clusterings show

significant differences in the values of basic climate variables

and elevation (Table 4). All cluster pairs in the ‘all species’

clustering seen in Fig. 3 differ significantly in at least two

environmental variables, and most cluster pairs differ in all of

the variables (Table 4a,b). For almost all groupings tempera-

ture is the variable for which the cluster pairs have the most

significant differences (Table 4c). For precipitation, the num-

ber of significant differences is also high. For all environmental

variables the set ‘species at risk’ has the smallest number of

significantly different cluster pairs, while the species set with

the largest number of significant differences is different for

each considered variable. However, more important than these

relatively minor differences is the high overall percentage of

significant differences. The results of the anova tests complete

with P-values for all of the species groupings are provided as

Table S3 in the supplementary material.

DISCUSSION

We find that Europe can be divided into coherent subregions

based on the distributions of mammal species. We also find a

high degree of geographical coherence displayed by the

clusters, and consistency in the basic spatial pattern among

non-overlapping subsets of the data and despite changes in the

number of clusters. These observations, in combination with

the environmental contrast observed between the clusters and

the concordance of the geographical cluster pattern with the

EnS environmental stratification strongly suggest that the

clusters represent real biological units rather than arbitrary

constructs generated by the clustering algorithms. We take

this to indicate that, even in present-day Europe with its

long history of intensive human presence, the main con-

trols on mammalian metacommunity distributions remain

Figure 3 The k-means clustering of the
mammal data cells in 12 clusters with the ‘all
species’ set. The clustering is the best out of
100 clustering runs in terms of squared error.
The cells are projected on to the map with the
Mollweide (equal-area) NAD27 projection.

Clustering of European mammals

Journal of Biogeography 7
ª 2007 The Authors. Journal compilation ª 2007 Blackwell Publishing Ltd

Heikinheimo et al.: Clustering of European mammals, 2007
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Summary

44

• Clustering is one of the most important and often-
used data analysis methods
• Many different types of clustering
–We covered representative-based, hierarchical, density-

based, and co-clustering
• Analysis of the clustering methods is not always easy
• Always think what you’re doing if you use clustering
– In fact, just always think what you’re doing 


