Information Retrieval & Data Mining

Information Retrieval & Data Mining Universität des Saarlandes, Saarbrücken Winter Semester 2013/14

Chapter VII: Frequent Itemsets and Association Rules*

- 1. Definitions: Frequent Itemsets and Association Rules
- 2. Algorithms for Frequent Itemset Mining
 - Monotonicity and candidate pruning, Apriori, ECLAT, FPGrowth
- **3. Association Rules**
 - Measures of interestingness
- 4. Summarizing Itemsets
 - Closed, maximal, and non-derivable itemsets

*Zaki & Meira, Chapters 10 and 11; Tan, Steinbach & Kumar, Chapter 6 IR&DM '13/14 6 February 2014

Example of pruning itemsets

If {e} and {ab} are infrequent

FP-tree example

From Figure 8.9 of Zaki & Meira

Pseudo-code for generating association rules

Algorithm 8.6: Algorithm ASSOCIATIONRULES **ASSOCIATION RULES** (\mathcal{F} , *minconf*): 1 foreach $Z \in \mathcal{F}$, such that $|Z| \geq 2$ do $\mathcal{A} \leftarrow \{ X \mid X \subset Z, X \neq \emptyset \}$ 2 while $\mathcal{A} \neq \emptyset$ do 3 $X \leftarrow \text{maximal element in } \mathcal{A}$ 4 $\mathcal{A} \leftarrow \mathcal{A} \setminus X / /$ remove X from \mathcal{A} 5 $c \leftarrow sup(Z)/sup(X)$ 6 if $c \geq minconf$ then 7 print $X \longrightarrow Y$, sup(Z), c 8 else 9 $| \mathcal{A} \leftarrow \mathcal{A} \setminus \{W \mid W \subset X\} // \text{ remove all subsets of } X \text{ from } \mathcal{A}$ 10

Algorithm 8.6 of Zaki & Meira

Measures for association rules

Measure (Symbol)	Definition
Goodman-Kruskal (λ)	$\left(\sum_{j} \max_{k} f_{jk} - \max_{k} f_{+k}\right) / \left(N - \max_{k} f_{+k}\right)$
Mutual Information (M)	$\left(\sum_{i}\sum_{j}\frac{f_{ij}}{N}\log\frac{Nf_{ij}}{f_{i+}f_{+j}}\right)/\left(-\sum_{i}\frac{f_{i+}}{N}\log\frac{f_{i+}}{N}\right)$
J-Measure (J)	$\frac{f_{11}}{N} \log \frac{Nf_{11}}{f_{1+}f_{+1}} + \frac{f_{10}}{N} \log \frac{Nf_{10}}{f_{1+}f_{+0}}$
Gini index (G)	$\frac{f_{1+}}{N} \times \left(\frac{f_{11}}{f_{1+}}\right)^2 + \left(\frac{f_{10}}{f_{1+}}\right)^2 - \left(\frac{f_{+1}}{N}\right)^2$
	$+ \frac{f_{0+}}{N} \times \left[\left(\frac{f_{01}}{f_{0+}} \right)^2 + \left(\frac{f_{00}}{f_{0+}} \right)^2 \right] - \left(\frac{f_{+0}}{N} \right)^2$
Laplace (L)	$(f_{11}+1)/(f_{1+}+2)$
Conviction (V)	$(f_{1+}f_{+0})/(Nf_{10})$
Certainty factor (F)	$\left(\frac{f_{11}}{f_{1+}} - \frac{f_{+1}}{N}\right) / \left(1 - \frac{f_{+1}}{N}\right)$
Added Value (AV)	$\frac{f_{11}}{f_{1+}} - \frac{f_{+1}}{N}$

Example of maximal frequent itemsets

Itemset taxonomy

Non-Derivable Itemsets

- Let *F* be the set of all frequent itemsets. Itemset $X \in F$ is **non-derivable** if we cannot derive its support from its subsets.
 - We can derive the support of *X* from its subsets if, by knowing the supports of all of the subsets of *X* we can compute the support of *X*
- If X is derivable, it doesn't add any new information
 - -Knowing just the non-derivable frequent itemsets, we can construct every frequent itemset
 - We only return itemsets that add new information on top of what we already knew

Chapter VIII: Clustering*

1. Basic idea

2. Representative-based clustering

- 2.1. *k*-means
- 2.2. EM-clustering

3. Hierarchical clustering

- 3.1. Basic idea
- **3.2. Cluster distances**
- 4. Density-based clustering
- 5. Co-clustering

6. Discussion and clustering applications

*Zaki & Meira, Chapters 13–15; Tan, Steinbach & Kumar, Chapter 8 IR&DM '13/14 6 February 2014

An iterative k-means algorithm

- 1. select k random cluster centroids
- 2. assign each point to its closest centroid and compute the error

3. do

- 3.1. for each cluster C_i
 - 3.1.1. compute new centroid as $\mu_i = \frac{1}{|C_i|} \sum_{x_j \in C_i} x_j$
- 3.2. for each element $x_j \in U$
 - 3.2.1. assign x_j to its closest cluster centroid
- 4. while error decreases

The general EM clustering algorithm

- Initialization
 - Initialize parameters θ randomly
- Expectation step
 - -Compute the posterior probability $P(C_i | x_j)$
 - -Per Bayes's theorem

$$P(C_i \mid \mathbf{x}_j) = \frac{P(\mathbf{x}_j \mid C_i)P(C_i)}{\sum_{\alpha=1}^k P(\mathbf{x}_j \mid C_\alpha)P(C_\alpha)}$$

Maximization step

-Re-estimate θ given $P(C_i | x_j)$

• Repeat *E* and *M* steps until convergence

The general EM algorithm

- A way to find maximum-likelihood parameters when the model depends on latent variables
 - In clustering, the latent variables are the cluster indicators
 - And the parameters are those for the distribution
- We're given data X, we assume there's some latent variables Z and parameters θ together with a log-likelihood function $L(\theta; X, Z)$
- In **E-step** we compute the expectation of *L* over *Z* given *X* and $\theta(t)$, $Q(\theta \mid \theta^{(t)}) = E_{Z|X,\theta^{(t)}}[L(\theta; X, Z]$
- In **M-step** we maximize Q, $\theta^{(t+1)} = \arg \max_{\theta} Q(\theta \mid \theta^{(t)})$

EM in IR&DM

- Latent topic models
 - -Parameters for pLSI and LDA
- Hidden Markov models in IE
 - Parameters for the models
- Clustering
 - Parameters for the Gaussian distributions
 - -k-means

Single link

• The distance between two clusters is the distance between the closest points

 $-d(B,C) = \min\{d(x,y) : x \in B \text{ and } y \in C\}$

Density-based clusters

• A **density-based cluster** is a maximal set of density connected points

Chapter IX: Classification*

- 1. Basic idea
- 2. Decision trees
- 3. Naïve Bayes classifier
- 4. Support vector machines
- 5. Ensemble methods

* Zaki & Meira: Ch. 18, 19, 21 & 22; Tan, Steinbach & Kumar: Ch. 4, 5.3–5.6

Example: decision tree

Building the classifier

• Training phase

- Learn the posterior probabilities $\Pr[Y|X]$ for every combination of *X* and *Y* based on training data

• Test phase

- For test record X', compute the class Y' that maximizes the posterior probability Pr[Y' | X']
 - $Y' = \arg \max_i \{ \Pr[c_i | X'] \} = \arg \max_i \{ \Pr[X' | c_i] \Pr[c_i] / \Pr[X'] \}$ = $\arg \max_i \{ \Pr[X' | c_i] \Pr[c_i] \}$
- So we need $\Pr[X' | c_i]$ and $\Pr[c_i]$
 - $\Pr[c_i]$ is the fraction of test records that belong to class c_i - $\Pr[X' | c_i]$?

Linear, non-separable SVM

• What if the data is not linearly separable?

The dual

Chapter X: Graph Mining

- **1. Introduction to Graph Mining**
- 2. Centrality and Other Graph Properties
- **3. Frequent Subgraph Mining**
 - **3.1. Graphs and Isomorphism**
 - **3.2. Canonical Codes**
 - 3.3. gSpan
- 4. Graph Clustering
 - 4.1. Clustering as Graph Cutting
 - 4.2. Spectral Clustering
 - 4.3. Markov Clustering

Centrality

- Six degrees of Kevin Bacon
 - -"Every actor is related to Kevin Bacon by no more than 6 hops"
 - Kevin Bacon has acted with many, that have acted with many others, that have acted with many others...
- That makes Kevin Bacon a *centre* of the co-acting graph
 - Although he's not the centre: the average distance to him is 2.998
 but to Harvey Keitel it is only 2.848

http://oracleofbacon.org

An Example

An Example

Example

ZM Figure 16.4

Cuts using matrices

$$\operatorname{RatioCut} = \sum_{i=1}^{k} \frac{W(C_i, V \setminus C_i)}{|C_i|} = \sum_{i=1}^{k} \frac{c_i^T L c_i}{||c_i||^2}$$
$$\operatorname{NormalizedCut} = \sum_{i=1}^{k} \frac{W(C_i, V \setminus C_i)}{\operatorname{vol}(C_i)} = \sum_{i=1}^{k} \frac{c_i^T L c_i}{c_i^T \Delta c_i}$$

Chapter XI: Two Matrix Factorizations

- **1. Non-Negative Matrix Factorization**
 - 1.1. Idea and motivation
 - **1.2. Algorithms**
- 2. Boolean Matrix Factorization
 - 2.1. Idea and motivation
 - 2.2. Algorithms

Geometry of NMF

NMF factors Data points Convex cone Projections

Boolean Matrix Factorization

Long-haired	•	•	×
Well-known	 Image: A set of the set of the	 Image: A set of the set of the	
Male	×	~	~

BMF example

 \mathbf{a}_1

$$X = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} = \mathbf{A} \circ \mathbf{B}$$
$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \mathbf{b}_{1}$$

$$\begin{aligned} & \begin{pmatrix} 0 & 1 & 1 \end{pmatrix} = \mathbf{b}_2 \\ \mathbf{a}_2 &= \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} = \mathbf{a}_2 \mathbf{b}_2 \end{aligned}$$

Chapter XII: Data Pre and Post Processing

- **1. Data Normalization**
- 2. Missing Values
- **3. Curse of Dimensionality**
- 4. Feature Extraction and Selection
 - 4.1. PCA and SVD
 - 4.2. Johnson–Lindenstrauss lemma
 - 4.3. CX and CUR decompositions
- 5. Visualization and Analysis of the Results

6. Tales from the Wild

Zaki & Meira, Ch. 2.4, 6 & 8

Why centering?

- Consider the red data ellipse
 - The main direction of variance is from the origin to the data
 - The second direction is orthogonal to the first
 - These don't tell the variance of the data!
- If we center the data, the directions are correct

Example of 1-D PCA

Figure 7.2: Best One-dimensional or Line Approximation

Heat maps with dendrograms

Image: Wikipedia

Data mining = voodoo science

