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Chapter VII: Frequent Itemsets 
and Association Rules*
1. Definitions: Frequent Itemsets and Association 

Rules
2. Algorithms for Frequent Itemset Mining

• Monotonicity and candidate pruning, Apriori, 
ECLAT, FPGrowth

3. Association Rules
• Measures of interestingness

4. Summarizing Itemsets
• Closed, maximal, and non-derivable itemsets
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*Zaki & Meira, Chapters 10 and 11; Tan, Steinbach & Kumar, Chapter 6
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Example of pruning itemsets
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If {e} and {ab} are infrequent
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FP-tree example
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CHAPTER 8. ITEMSET MINING 261

∅(6)

B(6)

C(1)

D(1)

E(5)

A(4)

C(2)

D(1)

D(2)

C(1)

∅(4)

B(4)

C(1) E(3)

A(3)

C(1)

∅(4)

B(4)

E(3)

A(2)

∅(4)

B(4)

E(4)

∅(5)

B(5)

RD RC RA RE

Figure 8.9: FPGrowth Algorithm: Frequent Pattern Tree Projection

whether the confidence of the rule X −→ Z \ X is at least minconf (Line 6). If
so, we output the rule. Otherwise, we remove all subsets W ⊂ X from the set of
possible antecedents (Line 10).

Example 8.13: Consider the frequent itemset ABDE(3) from Table 8.1, whose
support is shown within the brackets. Assume that minconf = 0.9. To generate

Itemset BCE
Itemset ABDE
appears twice

From Figure 8.9 of Zaki & Meira
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Pseudo-code for generating association 
rules
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Algorithm 8.6: Algorithm AssociationRules

AssociationRules (F, minconf ):
foreach Z ∈ F , such that |Z| ≥ 2 do1

A←
{
X | X ⊂ Z,X ̸= ∅

}
2

while A ≠ ∅ do3

X ← maximal element in A4

A← A \X// remove X from A5

c← sup(Z)/sup(X)6

if c ≥ minconf then7

print X −→ Y , sup(Z), c8

else9

A← A \
{
W | W ⊂ X

}
// remove all subsets of X from A10

strong association rules we initialize the set of antecedents to

A = {ABD(3), ABE(4), ADE(3), BDE(3), AB(3), AD(4), AE(4),

BD(4), BE(5),DE(3), A(4), B(6),D(4), E(5)}

The first subset is X = ABD, and the confidence of ABD −→ E is 3/3 = 1.0, so we
output it. The next subset is X = ABE, but the corresponding rule ABE −→ D
is not strong since conf (ABE −→ D) = 3/4 = 0.75. We can thus remove from A
all subsets of ABE; the updated set of antecedents is therefore

A = {ADE(3), BDE(3), AD(4), BD(4),DE(3),D(4)}

Next, we select X = ADE, which yields a strong rule, and so do X = BDE and
X = AD. However, when we process X = BD, we find that conf (BD −→ AE) =
3/4 = 0.75, and thus we can prune all subsets of BD from A, to yield

A = {DE(3)}

The last rule to be tried is DE −→ AB which is also strong. The final set of strong
rules that are output are as follows

ABD −→ E, conf = 1.0

ADE −→ B, conf = 1.0

BDE −→ A, conf = 1.0

AD −→ BE, conf = 1.0

DE −→ AB, conf = 1.0

Algorithm 8.6 of Zaki & Meira
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Measures for association rules

6

Tan, Steinbach & Kumar Table 6.12

378 Chapter 6 Association Analysis

Table 6.12. Examples of asymmetric objective measures for the rule A −→ B.

Measure (Symbol) Definition

Goodman-Kruskal (λ)
( ∑

j maxk fjk − maxkf+k

)/(
N − maxk f+k

)

Mutual Information (M)
( ∑

i

∑
j

fij

N log Nfij

fi+f+j

)/(
−

∑
i

fi+

N log fi+

N

)

J-Measure (J) f11

N log Nf11

f1+f+1
+ f10

N log Nf10

f1+f+0

Gini index (G) f1+

N × ( f11

f1+
)2 + ( f10

f1+
)2] − ( f+1

N )2

+ f0+

N × [( f01

f0+
)2 + ( f00

f0+
)2] − ( f+0

N )2

Laplace (L)
(
f11 + 1

)/(
f1+ + 2

)

Conviction (V )
(
f1+f+0

)/(
Nf10

)

Certainty factor (F )
( f11

f1+
− f+1

N

)/(
1 − f+1

N

)

Added Value (AV ) f11

f1+
− f+1

N

Table 6.13. Example of contingency tables.

Example f11 f10 f01 f00

E1 8123 83 424 1370
E2 8330 2 622 1046
E3 3954 3080 5 2961
E4 2886 1363 1320 4431
E5 1500 2000 500 6000
E6 4000 2000 1000 3000
E7 9481 298 127 94
E8 4000 2000 2000 2000
E9 7450 2483 4 63
E10 61 2483 4 7452

Suppose the symmetric and asymmetric measures are applied to rank the
ten contingency tables shown in Table 6.13. These contingency tables are cho-
sen to illustrate the differences among the existing measures. The ordering
produced by these measures are shown in Tables 6.14 and 6.15, respectively
(with 1 as the most interesting and 10 as the least interesting table). Although
some of the measures appear to be consistent with each other, there are certain
measures that produce quite different ordering results. For example, the rank-
ings given by the φ-coefficient agree with those provided by κ and collective
strength, but are somewhat different than the rankings produced by interest
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Example of maximal frequent itemsets
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Itemset taxonomy

8

Frequent 
itemsets

Closed 
frequent 
itemsets

Maximal 
frequent 
itemsets
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Non-Derivable Itemsets
• Let F be the set of all frequent itemsets. Itemset 

X ∈ F is non-derivable if we cannot derive its 
support from its subsets.
–We can derive the support of X from its subsets if, by 

knowing the supports of all of the subsets of X we can 
compute the support of X 

• If X is derivable, it doesn’t add any new information
–Knowing just the non-derivable frequent itemsets, we can 

construct every frequent itemset
–We only return itemsets that add new information on top of 

what we already knew

9
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Chapter VIII: Clustering*
1. Basic idea
2. Representative-based clustering

2.1. k-means
2.2. EM-clustering

3. Hierarchical clustering
3.1. Basic idea
3.2. Cluster distances

4. Density-based clustering
5. Co-clustering
6. Discussion and clustering applications

10

*Zaki & Meira, Chapters 13–15; Tan, Steinbach & Kumar, Chapter 8
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An iterative k-means algorithm
1. select k random cluster centroids
2. assign each point to its closest centroid and compute 

the error
3. do

3.1. for each cluster Ci 
3.1.1. compute new centroid as 

3.2. for each element xj ∈ U 
3.2.1. assign xj to its closest cluster centroid

4. while error decreases

11

µ

i

= 1
|
Ci|

P
xj2Ci

x

j
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The general EM clustering algorithm
• Initialization
– Initialize parameters θ randomly

• Expectation step
–Compute the posterior probability P(Ci | xj)
– Per Bayes’s theorem

• Maximization step
–Re-estimate θ given P(Ci | xj)

• Repeat E and M steps until convergence

12

P(Ci | xj) =
P(xj | Ci)P(Ci)Pk

a=1 P(xj | Ca)P(Ca)



IR&DM ’13/14 DM recap-6 February 2014

The general EM algorithm
• A way to find maximum-likelihood parameters when 

the model depends on latent variables
– In clustering, the latent variables are the cluster indicators 
•And the parameters are those for the distribution

• We’re given data X, we assume there’s some latent 
variables Z and parameters θ together with a log-
likelihood function L(θ; X, Z)
• In E-step we compute the expectation of L over Z 

given X and θ(t),
• In M-step we maximize Q,  

13

Q(✓ | ✓ (t ) ) = EZ |X,✓ (t ) [L(✓; X, Z]

✓ (t+1) = arg max✓ Q(✓ | ✓ (t )
)
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EM in IR&DM
• Latent topic models
– Parameters for pLSI and LDA

• Hidden Markov models in IE
– Parameters for the models

• Clustering
– Parameters for the Gaussian distributions
– k-means

14
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Single link
• The distance between two clusters is the distance 

between the closest points
– d(B,C) = min{d(x,y) : x ∈ B and y ∈ C}

15
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Density-based clusters
• A density-based cluster is a maximal set of density 

connected points

16

Image: Wikipedia
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Chapter IX: Classification*
1. Basic idea
2. Decision trees
3. Naïve Bayes classifier
4. Support vector machines
5. Ensemble methods

17

* Zaki & Meira: Ch. 18, 19, 21 & 22; Tan, Steinbach & Kumar: Ch. 4, 5.3–5.6 
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Example: decision tree

18

age?

31..40≤ 30 > 40

student? credit rating?yes

no yes excellent fair

yes yesno no
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Building the classifier
• Training phase
–Learn the posterior probabilities Pr[Y | X] for every 

combination of X and Y based on training data
• Test phase
– For test record X’, compute the class Y’ that maximizes the 

posterior probability Pr[Y’ | X’]
• Y’ = arg maxi{Pr[ci | X’]} = arg maxi{Pr[X’ | ci]Pr[ci]/Pr[X’]}

    = arg maxi{Pr[X’ | ci]Pr[ci]}

• So we need Pr[X’ | ci] and Pr[ci]
– Pr[ci] is the fraction of test records that belong to class ci 
– Pr[X’ | ci]?

19
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Linear, non-separable SVM

20

• What if the data is not linearly separable?

Support Vector Machines

• What if the problem is not linearly separable?
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The dual

21

substitute to

 Lagrangian}
Dual

 Lagrangian

Linear, non-separable SVM, dual form. 
                    maxλ Ld = ∑i λi – 1/2∑i,j λiλjyiyjxiTxj
subject to    0 ≤ λi ≤ C, i = 1, …, N

The same as before!

Partial
derivatives
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Solving weight and bias with kernel

22

n = # of support vectors

Has Φ

substitute

Has kernelClassify new z:

substitute
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Chapter X: Graph Mining
1. Introduction to Graph Mining
2. Centrality and Other Graph Properties
3. Frequent Subgraph Mining

3.1. Graphs and Isomorphism
3.2. Canonical Codes
3.3. gSpan

4. Graph Clustering
4.1. Clustering as Graph Cutting
4.2. Spectral Clustering
4.3. Markov Clustering

23

ZM Ch. 4, 11, 16



IR&DM ’13/14 DM recap-6 February 2014

Centrality
• Six degrees of Kevin Bacon
– ”Every actor is related to Kevin 

Bacon by no more than 6 hops”
–Kevin Bacon has acted with many,

that have acted with many others,
that have acted with many others…

• That makes Kevin Bacon a
centre of the co-acting graph
–Although he’s not the centre: the

average distance to him is 2.998
but to Harvey Keitel it is only
2.848

24

http://oracleofbacon.org

http://oracleofbacon.org
http://oracleofbacon.org
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An Example

25
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An Example

26
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Example

27

CHAPTER 16. SPECTRAL AND GRAPH CLUSTERING 454

For instance the first point is computed as

y1 =
1√

(−0.378)2 + (−0.2262)
(−0.378,−0.226)T = (−0.859,−0.513)T

Figure 16.3 plots the new dataset Y. Clustering the points into k = 2 groups
using K-means yields the two clusters C1 = {1, 2, 3, 4} and C2 = {5, 6, 7}.

Figure 16.4: Normalized Cut on Iris Graph

iris-setosa iris-virginica iris-versicolor

C1 (triangle) 50 0 4
C2 (square) 0 36 0
C3 (circle) 0 14 46

Table 16.1: Contingency Table: Clusters versus Iris Types

Example 16.8: We apply spectral clustering on the Iris graph in Figure 16.1;
we used the normalized cut objective with the asymmetric Laplacian matrix La.

ZM Figure 16.4
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Cuts using matrices

28

RatioCut =

kX

i=1

W (Ci ,V \ Ci )

|Ci |
=

kX

i=1

cTi Lci

kci k2
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Chapter XI: Two Matrix 
Factorizations
1. Non-Negative Matrix Factorization

1.1. Idea and motivation
1.2. Algorithms

2. Boolean Matrix Factorization
2.1. Idea and motivation
2.2. Algorithms

29
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Geometry of NMF
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Boolean Matrix Factorization
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BMF example
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Chapter XII: Data Pre and Post 
Processing
1. Data Normalization
2. Missing Values
3. Curse of Dimensionality
4. Feature Extraction and Selection

4.1. PCA and SVD
4.2. Johnson–Lindenstrauss lemma 
4.3. CX and CUR decompositions

5. Visualization and Analysis of the Results
6. Tales from the Wild

33
Zaki & Meira, Ch. 2.4, 6 & 8
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Why centering?
• Consider the red data ellipse
–The main direction of variance

is from the origin to the data
–The second direction is orthogonal

to the first
–These don’t tell the variance of the data!

• If we center the data, the directions
are correct

34
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Example of 1-D PCA

35

CHAPTER 7. DIMENSIONALITY REDUCTION 212

Further, by (2.28), we have

var(D) = tr(Σ) =
d∑

i=1

σ2
i

Thus, we may rewrite (7.15) as

MSE(u) = var(D)− uTΣu =
d∑

i=1

σ2
i − uTΣu

Since the first term, var(D), is a constant for a given dataset D, the vector u

that minimizes MSE(u) is thus the same one that maximizes the second term, the
projected variance uTΣu. Since we know that u1, the dominant eigenvector of Σ,
maximizes the projected variance, we have

MSE(u1) = var(D)− uT
1 Σu1 = var(D)− uT

1 λ1u1 = var(D)− λ1 (7.16)

Thus, the principal component u1, which is the direction that maximizes the pro-
jected variance, is also the direction that minimizes the mean squared error.

X1

X2

X3

u1

Figure 7.2: Best One-dimensional or Line Approximation
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Heat maps with dendrograms
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Image: Wikipedia
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Data mining = voodoo science
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