5. Novelty & Diversity

Outline

- 5.1. Why Novelty & Diversity?
- 5.2. Probability Ranking Principled Revisited
- 5.3. Implicit Diversification
- 5.4. Explicit Diversification
- 5.5. Evaluating Novelty & Diversity

1. Why Novelty & Diversity?

 Redundancy in returned results (e.g., near duplicates) has a negative effect on retrieval effectiveness (i.e., user happiness)

- No benefit in showing relevant yet redundant results to the user
- Bernstein and Zobel [2] identify near duplicates in TREC GOV2; mean MAP dropped by 20.2% when treating them as irrelevant and increased by 16.0% when omitting them from results
- Novelty: How well do returned results avoid redundancy?

1. Why Novelty & Diversity?

 Redundancy in returned results (e.g., near duplicates) has a negative effect on retrieval effectiveness (i.e., user happiness)

- No benefit in showing relevant yet redundant results to the user
- Bernstein and Zobel [2] identify near duplicates in TREC GOV2; mean MAP dropped by 20.2% when treating them as irrelevant and increased by 16.0% when omitting them from results
- Novelty: How well do returned results avoid redundancy?

Why Novelty & Diversity?

 Ambiguity of query needs to be reflected in the returned results to account for uncertainty about the user's information need

- Query ambiguity comes in different forms
 - topic (e.g., jaguar, eclipse, defender, cookies)
 - intent (e.g., java 8 download (transactional), features (informational))
 - time (e.g., olympic games 2012, 2014, 2016)
- Diversity: How well do returned results reflect query ambiguity?

Implicit vs. Explicit Diversification

- Implicit diversification methods do not represent query aspects explicitly and instead operate directly on document contents and their (dis)similarity
 - Maximum Marginal Relevance [3]
 - BIR [11]
- Explicit diversification methods represent query aspects explicitly (e.g., as categories, subqueries, or key phrases) and consider which query aspects individual documents relate to
 - IA-Diversify [1]
 - xQuad [10]
 - PM [7,8]

2. Probability Ranking Principle Revisited

If an IR system's response to each query is a ranking of documents in order of decreasing probability of relevance, the overall effectiveness of the system to its user will be maximized.

(Robertson [6] from Cooper)

- Probability ranking principle as bedrock of Information Retrieval
- Robertson [9] proves that ranking by decreasing probability of relevance optimizes (expected) recall and precision@k under two assumptions
 - probability of relevance P[R|d,q] can be determined accurately
 - probabilities of relevance are pairwise independent

Probability Ranking Principle Revisited

- Probability ranking principle (PRP) and the underlying assumptions have shaped retrieval models and effectiveness measures
 - retrieval scores (e.g., cosine similarity, query likelihood, probability of relevance) are determined looking at documents in isolation
 - effectiveness measures (e.g., precision, nDCG) look at documents in isolation when considering their relevance to the query
 - relevance assessments are typically collected (e.g., by benchmark initiatives like TREC) by looking at (query, document) pairs

3. Implicit Diversification

 Implicit diversification methods do not represent query aspects explicitly and instead operate directly on document contents and their (dis)similarity

3.1. Maximum Marginal Relevance

 Carbonell and Goldstein [3] return the next document d as the one having maximum marginal relevance (MMR) given the set S of already-returned documents

$$\underset{d \notin S}{\operatorname{arg\,max}} \left(\lambda \cdot sim(q, d) - (1 - \lambda) \cdot \underset{d' \in S}{\operatorname{max}} sim(d', d) \right)$$

with λ as a **tunable parameter** controlling relevance vs. novelty and *sim* a **similarity measure** (e.g., cosine similarity) between queries and documents

3.2. Beyond Independent Relevance

- Zhai et al. [11] generalize the ideas behind Maximum Marginal Relevance and devise an approach based on language models
- Given a query q, and already-returned documents d₁, ..., d_{i-1},
 determine next document d_i as the one minimizes

$$value_R(\theta_i; \theta_q)(1 - \rho - value_N(\theta_i; \theta_1, \dots, \theta_{i-1}))$$

- with value_R as a measure of relevance to the query (e.g., the likelihood of generating the query **q** from θ_i),
- value_N as a measure of novelty relative to documents d₁, ..., d_{i-1},
- and $\rho \ge 1$ as a tunable parameter trading off relevance vs. novelty

Beyond Independent Relevance

- The novelty value_N of d_i relative to documents d₁, ..., d_{i-1} is estimated based on a two-component mixture model
 - let θ₀ be a language model estimated from documents d₁, ..., d_{i-1}
 - \bullet let θ_B be a **background language** model estimated from the **collection**
 - the log-likelihood of generating di from a mixture of the two is

$$l(\lambda|d_i) = \sum_{v} \log((1-\lambda) P[v | \theta_O] + \lambda P[v | \theta_B])$$

 the parameter value λ that maximizes the log-likelihood can be interpreted as a measure of how novel document d_i is and can be determined using expectation maximization

4. Explicit Diversification

- Explicit diversification methods represent query aspects explicitly (e.g., as categories, subqueries, or topic terms) and consider which query aspects individual documents relate to
- Redundancy-based explicit diversification methods (IA-SELECT and XQUAD) aim at covering all query aspects by including at least one relevant result for each of them and penalizing redundancy
- Proportionality-based explicit diversification methods
 (PM-1/2) aim at a result that represents query aspects according to their popularity by promoting proportionality

4.1. Intent-Aware Selection

- Agrawal et al. [1] model query aspects as categories (e.g., from a topic taxonomy such as the Open Directory Project)
 - query q belongs to category c with probability P[c|q]
 - document d relevant to query q and category c with probability P[d|q,c]
- Given a query q, a baseline retrieval result R, their objective is to find a set of documents S of size k that maximizes

$$P[S | q] := \sum_{c} P[c | q] \left(1 - \prod_{d \in S} (1 - P[d | q, c])\right)$$

which corresponds to the probability that an average user finds at least one relevant result among the documents in S

Intent-Aware Selection

- Probability P[c|q] can be estimated using query classification methods (e.g., Naïve Bayes on pseudo-relevant documents)
- Probability P[d|q,c] can be decomposed into
 - probability P[c|d] that document belongs to category c
 - query likelihood P[q|d] that document d generates query q
- Theorem: Finding the set S of size k that maximizes

$$\mathbf{P}\left[S \mid q\right] := \sum_{c} \mathbf{P}\left[c \mid q\right] \left(1 - \prod_{d \in S} \left(1 - \mathbf{P}\left[q \mid d\right] \cdot \mathbf{P}\left[c \mid d\right]\right)\right)$$

is **NP-hard** in the general case (reduction from MAX COVERAGE)

IA-SELECT (Greedy Algorithm)

Greedy algorithm (IA-SELECT) iteratively builds up the set S
by selecting document with highest marginal utility

$$\sum_{c} P \left[\neg c \mid S \right] \cdot P \left[q \mid d \right] \cdot P \left[c \mid d \right]$$

with $P[\neg c|S]$ as the probability that none of the documents already in S is relevant to query q and category c

$$P[\neg c \mid S] = \prod_{d \in S} (1 - P[q \mid d] \cdot P[c \mid d])$$

which is initialized as P[c|q]

Submodularity & Approximation

- Definition: Given a finite ground set N, a function f:2^N → R is submodular if and only if for all sets S,T ⊆ N such that S ⊆ T, and d ∈ N \ T, f(S ∪ {d}) f(S) ≥ f(T ∪ {d}) f(T)
- Theorem: P[S|q] is a submodular function
- Theorem: For a submodular function f, let S* be the optimal set of k elements that maximizes f. Let S' be the k-element set constructed by greedily selecting element one at a time that gives the largest marginal increase to f, then f(S') ≥ (1 - 1/e) f(S*)
- Corollary: IA-SELECT is (1-1/e)-approximation algorithm

4.2. eXplicit Query Aspect Diversification

 Santos et al. [10] use query suggestions from a web search engine as query aspects Searches related to jaguar
jaguar xj jaguar animal
audi jaguar price
jaguar xf jaguar fittings
jaguar mining jaguar india

 Greedy algorithm, inspired by IA-SELECT, iteratively builds up a set S of size k by selecting document having highest probability

$$(1 - \lambda) P[d | q] + \lambda P[d, \neg S | q]$$

jaguar

jaguar

jaguar xe

jaguar.de

jaguar f-type

jaguar xf

jaguar xe 2015

jaguar forum

jaguar e type

where P[d|q] is the document likelihood and captures **relevance** and P[d,¬S|q] is the probability that d covers a query aspect not yet covered by documents in S and captures **diversity**

XQUAD

Probability P[d,¬S|q] can be decomposed into

$$\sum_{i} P \left[\neg S \mid q_i \right] P \left[q_i \mid q \right]$$

- Probability P[q_i|q] of subquery (suggestion) given query q estimated as uniform or proportional to result sizes
- Probability P[¬S|q_i] that none of the documents already in S satisfies the query aspect q_i estimated as

$$P[\neg S \mid q_i] = \prod_{d \in S} (1 - P[d \mid q_i])$$

IA-SELECT and xQUAD Criticized

- Redundancy-based methods (IA-SELECT and XQUAD) degenerate
 - IA-SELECT does not select more results for a query aspect, once it has been fully satisfied by a single highly relevant result, which is not effective for informational intents that require more than one result
 - IA-Select starts selecting random results, once all query aspects have been satisfied by highly relevant results
 - XQUAD selects results only according to P[d|q], once all query aspects have been satisfied by highly relevant results, thus ignoring diversity

4.3. Diversity by Proportionality

 Dang and Croft [7,8] develop the proportionality-based explicit diversification methods PM-1 and PM-2

- Given a query q and a baseline retrieval result R, their objective is to find a set of documents S of size k, so that S proportionally represents the query aspects qi
- <u>Example</u>: Query jaguar refers to query aspect car with 75% probability and to query aspect cat with 25% probability

$$S_1 = \{d_1, d_2, d_3, d_4\}$$
 $S_2 = \{d_1, d_2, d_5, d_6\}$ $S_3 = \{d_1, d_2, d_5, d_7\}$

S₁ more proportional than S₂ more proportional than S₃

Sainte-Laguë Method

- Ensuring proportionality is a classic problem that also arises when assigning parliament seats to parties after an election
- Sainte-Laguë method for seat allocation as used in New Zealand
 - Let v_i denote the number of votes received by party p_i
 - Let s_i denote the number of seats allocated to party p_i
 - While not all seats have been allocated
 - assign next seat to party p_i with highest quotient

$$\frac{v_i}{2s_i+1}$$

increment number of seats s_i allocated to party p_i

PM-1

- PM-1 is a naïve adaption of the Sainte-Laguë method to the problem of selecting documents from D for the result set S
 - members of parliament (MoPs) belong to a single party only, hence a document d represents only a single aspect q_i, namely the one for which it has the highest probability P[d|q_i]
 - allocate the k seats available to the query aspects (parties) according to their popularity P[qi|q] using the Sainte-Laguë method
 - when allocated a seat, the query aspect (party) q_i assigns it to the document (MoP) d having highest P[d|q_i] which is not yet in S
- Problem: Documents relate to more than a single query aspect in practice, but the Sainte-Laguë method cannot handle this

PM-2

- PM-2 is a probabilistic adaption of the Sainte-Laguë method that considers to what extent documents relate to query aspects
 - Let $v_i = P[q_i|q]$ and s_i denote the proportion of seats assigned to q_i
 - While not all seats have been allocated
 - select query aspect q_i with highest quotient

$$\frac{v_i}{2s_i+1}$$

select document d having the highest score

$$\lambda \cdot \frac{v_i}{2 s_i + 1} \cdot P[d \mid q_i] + (1 - \lambda) \cdot \sum_{j \neq i} \frac{v_j}{2 s_j + 1} \cdot P[d \mid q_j]$$

with parameter λ trading off relatedness to aspect q_i vs. all other aspects

• update \mathbf{s}_i for all query aspects as $s_i = s_i + \frac{\mathrm{P}\left[d \mid q_i\right]}{\sum_{j} \mathrm{P}\left[d \mid q_j\right]}$

5. Evaluating Novelty & Diversity

- Traditional effectiveness measures (e.g., MAP and NDCG) and relevance assessments capture neither novelty nor diversity
- Relevance assessments are collected for (query, document)
 pairs in isolation, not considering what the user has seen
 already or to which query aspects the document relates
- <u>Example</u>: Query jaguar with aspects car and cat

$$R_1 = \langle d_1, d_1', d_1'', d_2 \rangle$$
 $R_2 = \langle d_2, d_3, d_3', d_4 \rangle$ $R_3 = \langle d_1, d_3, d_5, d_4 \rangle$

assuming that **all documents** (e.g., d₁) **and duplicates** (e.g., d₁') **are relevant**, **all three results** are considered **equally good** by existing retrieval effectiveness measures

5.1. Measuring Diversity

- Agrawal et al. [1], along with IA-SELECT, propose intent-aware adaptations of existing retrieval effectiveness measures
- Let q_i denote the intents (query aspects), P[q_i|q] denote their popularity, and assume that documents have been assessed with regard to their relevance to each intent q_i
- <u>Example</u>: Intent-aware NDCG (NDCG-IA)
 - Let NDCG(qi, k) denote the NDCG at cut-off k, assuming qi as the user's intent behind the query q

NDCG-IA
$$(q, k) = \sum_{i} P[q_i | q] \text{ NDCG}(q_i, k)$$

Intent-Aware Effectiveness Measures

- Other existing retrieval effectiveness measures (e.g., MAP and MRR) can be made intent-aware using the same approach
- Intent-aware adaptations only capture diversity, i.e., whether different intents are covered by the query result; they do not capture whether what is shown for each of the intents is novel and avoids redundancy

5.2. Measuring Novelty & Diversity

- Measuring novelty requires breaking with the assumption of the PRP that probabilities of relevance are pairwise independent
- Clarke et al. [5] propose the α-nDCG effectiveness measure which can be instantiated to capture diversity, novelty, or both
 - based on the idea of (information) nuggets n_i which can represent any binary property of documents (e.g., query aspect, specific fact)
 - users and documents represented as sets of information nuggets

- Probability $P[n_i \in u]$ that nugget n_i is of interest to user u
 - assumed constant γ (e.g., uniform across all nuggets)
- Probability $P[n_i \in d]$ that document d is relevant to n_i
 - obtained from relevance judgment J(d,i) as

$$P[n_i \in d] = \begin{cases} \alpha : J(d,i) = 1\\ 0 : \text{otherwise} \end{cases}$$

with parameter a reflecting trust in reviewers' assessments

Probability that document d is relevant to user u is

$$P[R = 1 | u, d] = 1 - \prod_{i=1}^{m} (1 - P[n_i \in u] P[n_i \in d])$$

- Probability $P[n_i \in u]$ that nugget n_i is of interest to user u
 - assumed constant γ (e.g., uniform across all nuggets)
- Probability $P[n_i \in d]$ that document d is relevant to n_i
 - obtained from relevance judgment J(d,i) as

$$P[n_i \in d] = \begin{cases} \alpha : J(d,i) = 1\\ 0 : \text{otherwise} \end{cases}$$

with parameter a reflecting trust in reviewers' assessments

Probability that document d is relevant to user u is

$$P[R = 1 \mid u, d] = 1 - \prod_{i=1}^{m} (1 - \gamma \alpha J(d, i))$$

 Probability that nugget n_i is still of interest to user u, after having seen documents d₁,...,d_{k-1}

$$P[n_i \in u \mid d_1, ..., d_{k-1}] = P[n_i \in u] \prod_{j=1}^{\kappa-1} P[n_i \notin d_j]$$

 Probability that user sees a relevant document at rank k, after having seen documents d₁,...d_{k-1}

$$P[R_k = 1 | u, d_1, \dots, d_k] = 1 - \prod_{i=1}^{m} (1 - P[n_i \in u | d_1, \dots, d_{k-1}] P[n_i \in d_k])$$

α-NDCG uses probabilities P[R_k=1|u,d₁,...,d_k] as gain values G[j]

$$DCG[k] = \sum_{j=1}^{k} \frac{G[j]}{\log_2(1+j)}$$

- Finding the ideal gain vector required to compute the idealized
 DCG for normalization is NP-hard (reduction from VERTEX COVER)
- In practice, the idealized DCG, required to obtain nDCG, is approximated by selecting documents using a greedy algorithm

5.3. TREC Diversity Task

- Diversity task within TREC Web Track 2009 2012
 - ClueWeb09 as document collection (1 billion web pages)
 - ~50 ambiguous/faceted topics per year

effectiveness measure: α-nDCG@k and MAP-IA among others

5.3. TREC Diversity Task

- Diversity task within TREC Web Track 2009 2012
 - ClueWeb09 as document collection (1 billion web pages)
 - ~50 ambiguous/faceted topics per year

```
<topic number="162" type="ambiguous">
<query>dnr</query>
<description>
  What are "do not resuscitate" orders and how do you get one in place?
</description>
<subtopic number="1" type="inf">
  What are "do not resuscitate" orders and how do you get one in place?
</subtopic>
<subtopic number="2" type="nav">
  What is required to get a hunting license online from the Michigan Department of
  Natural Resources?
</subtopic>
<subtopic number="3" type="inf">
  What are the Maryland Department of Natural Resources' regulations for deer hunting?
</subtopic>
</topic>
```

effectiveness measure: α-nDCG@k and MAP-IA among others

TREC Diversity Task Results

- Dang and Croft [9] report the following results based on TREC Diversity Track 2009 + 2010, using either the specified subtopics or query suggestions, and comparing
 - Query likelihood based on unigram language model with Dirichlet smoothing
 - Maximum Marginal Relevance
 - XQUAD
 - PM-1 / PM-2

			, , , , , , , , , , , , , , , , , , ,
		α -NDCG	Prec-IA
Sub-topics	Query-likelihood	0.2979	0.1146
	MMR	0.2963	0.1221
	xQuAD	$0.3300_{Q,M}$	0.1190
	PM-1	0.3076	0.1140
	PM-2	0.3473^{P}	0.1197
Suggestions	Query-likelihood	0.2875	0.1095
	MMR	0.2926	0.1108
	xQuAD	0.2995	0.1089
	PM-1	0.2870	0.0929^{X}
	PM-2	0.3200	0.1123^{P}
WT-2009 Best (uogTrDYCcsB) [10]		0.3081	N/A
Sub-topics	Query-likelihood	0.3236	0.1713
	MMR	0.3349_{Q}	0.1740
	xQuAD	$0.4074_{Q,M}$	0.2028
	PM-1	$0.4323_{Q,M}^{X}$	0.1827
	PM-2	$0.4323_{Q,M}^{X,P} \ 0.4546_{Q,M}^{X,P}$	0.2030
Suggestions	Query-likelihood	0.3268	0.1730
	MMR	0.3361_{Q}	0.1746
	xQuAD	$0.3582_{Q,M}$	0.1785
	PM-1	0.3664^{X}	0.1654
-5	PM-2	${\bf 0.4374}^{X,P}_{Q,M}$	0.1841
01		Q,M	
	Γ-2010 Best (uogTrB67xS) [11]	0.4178	N/A

Summary

- Novelty reflects how well the returned results avoid redundancy
- Diversity reflects how well the returned results resolve ambiguity
- Probability ranking principle and its underlying assumptions need to be revised when aiming for novelty and/or diversity
- Implicit methods for novelty and/or diversity operate directly on the document contents without representing query aspects
- Explicit methods for novelty and/or diversity rely on an explicit representation of query aspects (e.g., as query suggestions)
- Standard effectiveness measures do neither capture novelty nor diversity; intent-aware measures capture diversity; cascade measures (e.g., a-nDCG) can also capture novelty

References

- [1] **R. Agrawal, S. Gollapudi, A. Halverson, S. leong**: *Diversifying Search Results*, WSDM 2009
- [2] **Y. Bernstein and J. Zobel**: Redundant Documents and Search Effectiveness, CIKM 2005
- [3] **J. Carbonell and J. Goldstein**: The Use of MMR, Diversity-Based Reranking for Reordering Documents and Producing Summaries, SIGIR 1998
- [4] **O. Chapelle, D. Metzler, Y. Zhang, P. Grinspan**: Expected Reciprocal Rank for Graded Relevance, CIKM 2009
- [5] C. L. A. Clarke, M. Kolla, G. V. Cormack, O. Vechtomova, A. Ashkan, S. Büttcher, I. MacKinnon: Novelty and Diversity in Information Retrieval Evaluation, SIGIR 2008
- [6] C. L. A. Clarke, N. Craswell, I. Soboroff, A. Ashkan: A Comparative Analysis of Cascade Measures for Novelty and Diversity, WSDM 2011

References

- [7] Van Dang and W. Bruce Croft: Diversity by Proportionality: An Election-based Approach to Search Result Diversification, SIGIR 2012
- [8] **Van Dang and W. Bruce Croft**: *Term Level Search Result Diversification*, SIGIR 2013
- [9] **S. Robertson**: The Probability Ranking Principle in Information Retrieval, Journal of Documentation 33(4), 1977
- [10] R. L. T. Santos, C. Macdonald, I. Ounis: Exploiting Query Reformulations for Web Search Result Diversification, WWW 2010
- [11] C. Zhai, W. W. Cohen, J. Lafferty: Beyond Independent Relevance: Methods and Evaluation Metrics for Subtopic Retrieval, SIGIR 2003