5. Novelty & Diversity
5.1. Why Novelty & Diversity?
5.2. Probability Ranking Principled Revisited
5.3. Implicit Diversification
5.4. Explicit Diversification
5.5. Evaluating Novelty & Diversity
1. Why Novelty & Diversity?

- Redundancy in returned results (e.g., near duplicates) has a negative effect on retrieval effectiveness (i.e., user happiness).

- No benefit in showing relevant yet redundant results to the user.

- Bernstein and Zobel [2] identify near duplicates in TREC GOV2; mean MAP dropped by 20.2% when treating them as irrelevant and increased by 16.0% when omitting them from results.

- Novelty: How well do returned results avoid redundancy?
1. Why Novelty & Diversity?

- **Redundancy in returned results** (e.g., near duplicates) has a **negative effect** on retrieval effectiveness (i.e., user happiness)

- **No benefit** in showing **relevant yet redundant** results to the user

- Bernstein and Zobel [2] identify **near duplicates** in TREC GOV2; mean **MAP dropped by 20.2%** when treating them as **irrelevant** and **increased by 16.0%** when **omitting them** from results

- **Novelty**: How well do returned results avoid redundancy?
Why Novelty & Diversity?

- **Ambiguity of query** needs to be reflected in the returned results to account for uncertainty about the user’s information need.

 ![Jaguar](image1.png) ![Question Mark](image2.png) ![Jaguar](image3.png) ![Eclipse](image4.png) ![Defender](image5.png) ![Cookies](image6.png)

- **Query ambiguity** comes in different forms:
 - **topic** (e.g., jaguar, eclipse, defender, cookies)
 - **intent** (e.g., java 8 – download (transactional), features (informational))
 - **time** (e.g., olympic games – 2012, 2014, 2016)

- **Diversity**: How well do returned results reflect query ambiguity?
Implicit vs. Explicit Diversification

- **Implicit diversification methods** do not represent query aspects explicitly and instead operate directly on document contents and their (dis)similarity
 - Maximum Marginal Relevance [3]
 - BIR [11]

- **Explicit diversification methods** represent query aspects explicitly (e.g., as categories, subqueries, or key phrases) and consider which query aspects individual documents relate to
 - IA-Diversify [1]
 - xQuad [10]
 - PM [7,8]
2. Probability Ranking Principle Revisited

If an IR system’s response to each query is a ranking of documents in order of decreasing probability of relevance, the overall effectiveness of the system to its user will be maximized.

(Robertson [6] from Cooper)

- Probability ranking principle as bedrock of Information Retrieval

- Robertson [9] proves that ranking by decreasing probability of relevance optimizes (expected) recall and precision@k under two assumptions
 - probability of relevance \(P[R|d,q] \) can be determined accurately
 - probabilities of relevance are pairwise independent
Probability Ranking Principle Revisited

- Probability ranking principle (PRP) and the underlying assumptions have shaped retrieval models and effectiveness measures.
 - **retrieval scores** (e.g., cosine similarity, query likelihood, probability of relevance) are determined looking at documents in isolation.
 - **effectiveness measures** (e.g., precision, nDCG) look at documents in isolation when considering their relevance to the query.
 - **relevance assessments** are typically collected (e.g., by benchmark initiatives like TREC) by looking at **(query, document) pairs**.
3. Implicit Diversification

- Implicit diversification methods do not represent query aspects explicitly and instead operate directly on document contents and their (dis)similarity
3.1. Maximum Marginal Relevance

Carbonell and Goldstein [3] return the next document d as the one having maximum marginal relevance (MMR) given the set S of already-returned documents.

$$\arg \max_{d \notin S} \left(\lambda \cdot \text{sim}(q, d) - (1 - \lambda) \cdot \max_{d' \in S} \text{sim}(d', d) \right)$$

with λ as a tunable parameter controlling relevance vs. novelty and sim a similarity measure (e.g., cosine similarity) between queries and documents.
3.2. Beyond Independent Relevance

- Zhai et al. [11] generalize the ideas behind Maximum Marginal Relevance and devise an approach based on language models.

- Given a query q, and already-returned documents d_1, \ldots, d_{i-1}, determine next document d_i as the one minimizes

$$\text{value}_R(\theta_i; \theta_q)(1 - \rho - \text{value}_N(\theta_i; \theta_1, \ldots, \theta_{i-1}))$$

- with value_R as a measure of relevance to the query (e.g., the likelihood of generating the query q from θ_i),

- value_N as a measure of novelty relative to documents d_1, \ldots, d_{i-1},

- and $\rho \geq 1$ as a tunable parameter trading off relevance vs. novelty.
The novelty value N of d_i relative to documents d_1, \ldots, d_{i-1} is estimated based on a two-component mixture model

- let θ_O be a language model estimated from documents d_1, \ldots, d_{i-1}
- let θ_B be a background language model estimated from the collection

the log-likelihood of generating d_i from a mixture of the two is

$$l(\lambda|d_i) = \sum_v \log((1 - \lambda) P[v | \theta_O] + \lambda P[v | \theta_B])$$

the parameter value λ that maximizes the log-likelihood can be interpreted as a measure of how novel document d_i is and can be determined using expectation maximization
4. Explicit Diversification

- **Explicit diversification methods** represent query aspects explicitly (e.g., as categories, subqueries, or topic terms) and consider which query aspects individual documents relate to.

- **Redundancy-based explicit diversification methods** (IA-SELECT and xQUAD) aim at covering all query aspects by including at least one relevant result for each of them and penalizing redundancy.

- **Proportionality-based explicit diversification methods** (PM-1/2) aim at a result that represents query aspects according to their popularity by promoting proportionality.
4.1. Intent-Aware Selection

- Agrawal et al. [1] model **query aspects as categories** (e.g., from a topic taxonomy such as the Open Directory Project)
 - query \(q \) belongs to category \(c \) with probability \(P[c|q] \)
 - document \(d \) relevant to query \(q \) and category \(c \) with probability \(P[d|q,c] \)

- Given a query \(q \), a baseline retrieval result \(R \), their objective is to find a set of documents \(S \) of size \(k \) that maximizes

\[
P[S \mid q] := \sum_c P[c \mid q] \left(1 - \prod_{d \in S} (1 - P[d \mid q, c]) \right)
\]

which corresponds to the **probability that an average user finds at least one relevant result** among the documents in \(S \)
Intent-Aware Selection

- Probability $P[c|q]$ can be estimated using **query classification methods** (e.g., Naïve Bayes on pseudo-relevant documents)

- Probability $P[d|q,c]$ can be decomposed into
 - probability $P[c|d]$ that document belongs to category c
 - query likelihood $P[q|d]$ that document d generates query q

Theorem: Finding the set S of size k that maximizes

$$P[S|q] := \sum_c P[c|q] \left(1 - \prod_{d \in S} (1 - P[q|d] \cdot P[c|d]) \right)$$

is **NP-hard** in the general case (reduction from MAX COVERAGE)
IA-SELECT (Greedy Algorithm)

- **Greedy algorithm** (IA-SELECT) iteratively builds up the set S by selecting document with **highest marginal utility**

\[
\sum_c P[\neg c | S] \cdot P[q | d] \cdot P[c | d]
\]

with $P[\neg c | S]$ as the probability that none of the documents already in S is relevant to query q and category c

\[
P[\neg c | S] = \prod_{d \in S} (1 - P[q | d] \cdot P[c | d])
\]

which is initialized as $P[c | q]$
Submodularity & Approximation

- **Definition**: Given a finite ground set \(N \), a function \(f: 2^N \rightarrow \mathbb{R} \) is **submodular** if and only if for all sets \(S, T \subseteq N \) such that \(S \subseteq T \), and \(d \in N \setminus T \), \(f(S \cup \{d\}) - f(S) \geq f(T \cup \{d\}) - f(T) \)

- **Theorem**: \(P[S|q] \) is a submodular function

- **Theorem**: For a submodular function \(f \), let \(S^* \) be the optimal set of \(k \) elements that maximizes \(f \). Let \(S' \) be the \(k \)-element set constructed by greedily selecting element one at a time that gives the largest marginal increase to \(f \), then \(f(S') \geq (1 - 1/e) f(S^*) \)

- **Corollary**: IA-SELECT is \((1-1/e)\)-approximation algorithm
4.2. eXplicit Query Aspect Diversification

- Santos et al. [10] use query suggestions from a web search engine as query aspects.

- **Greedy algorithm**, inspired by IA-SELECT, iteratively builds up a set S of size k by selecting document having highest probability

\[
(1 - \lambda) \cdot P[d | q] + \lambda \cdot P[d, \neg S | q]
\]

where $P[d|q]$ is the document likelihood and captures **relevance** and $P[d, \neg S|q]$ is the probability that d covers a query aspect not yet covered by documents in S and captures **diversity**.
Probability $P[d, \neg S | q]$ can be decomposed into

$$\sum_i P[\neg S | q_i] \cdot P[q_i | q]$$

Probability $P[q_i | q]$ of subquery (suggestion) given query q estimated as uniform or proportional to result sizes

Probability $P[\neg S | q_i]$ that none of the documents already in S satisfies the query aspect q_i estimated as

$$P[\neg S | q_i] = \prod_{d \in S} (1 - P[d | q_i])$$
IA-SELECT and xQUAD Criticized

- Redundancy-based methods (IA-SELECT and xQUAD) degenerate
 - IA-SELECT does not select more results for a query aspect, once it has been fully satisfied by a single highly relevant result, which is not effective for informational intents that require more than one result
 - IA-SELECT starts selecting random results, once all query aspects have been satisfied by highly relevant results
 - xQUAD selects results only according to \(P[d|q] \), once all query aspects have been satisfied by highly relevant results, thus ignoring diversity
4.3. Diversity by Proportionality

- Dang and Croft [7,8] develop the proportionality-based explicit diversification methods PM-1 and PM-2

- Given a query q and a baseline retrieval result R, their objective is to find a set of documents S of size k, so that S proportionally represents the query aspects q_i

- **Example**: Query *jaguar* refers to query aspect *car* with 75% probability and to query aspect *cat* with 25% probability

 $$S_1 = \{d_1, d_2, d_3, d_4\} \quad S_2 = \{d_1, d_2, d_5, d_6\} \quad S_3 = \{d_1, d_2, d_5, d_7\}$$

 S_1 more proportional than S_2 more proportional than S_3
Sainte-Laguë Method

- **Ensuring proportionality** is a classic problem that also arises when **assigning parliament seats** to parties after an election.

- **Sainte-Laguë method** for seat allocation as used in New Zealand:
 - Let v_i denote the number of votes **received** by party p_i.
 - Let s_i denote the number of seats **allocated** to party p_i.
 - While not all seats have been allocated:
 - assign next seat to party p_i with highest quotient $\frac{v_i}{2s_i + 1}$.
 - increment number of seats s_i allocated to party p_i.

<table>
<thead>
<tr>
<th>Party</th>
<th>Votes</th>
<th>Seats</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>48%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14%</td>
<td></td>
</tr>
</tbody>
</table>
PM-1

- PM-1 is a naïve adaption of the Sainte-Laguë method to the problem of selecting documents from D for the result set S

- Members of parliament (MoPs) belong to a single party only, hence a document d represents only a single aspect q_i, namely the one for which it has the highest probability $P[d|q_i]$

- Allocate the k seats available to the query aspects (parties) according to their popularity $P[q_i|q]$ using the Sainte-Laguë method

- When allocated a seat, the query aspect (party) q_i assigns it to the document (MoP) d having highest $P[d|q_i]$ which is not yet in S

- Problem: Documents relate to more than a single query aspect in practice, but the Sainte-Laguë method cannot handle this
PM-2

PM-2 is a **probabilistic adaption** of the Sainte-Laguë method that considers to what extent documents relate to query aspects.

- Let \(v_i = P[q_i|q] \) and \(s_i \) denote the proportion of seats assigned to \(q_i \).
- While not all seats have been allocated:
 - **select query aspect** \(q_i \) with highest quotient
 \[
 \frac{v_i}{2s_i + 1}
 \]
 - **select document** \(d \) having the highest score
 \[
 \lambda \cdot \frac{v_i}{2s_i + 1} \cdot P[d|q_i] + (1 - \lambda) \cdot \sum_{j \neq i} \frac{v_j}{2s_j + 1} \cdot P[d|q_j]
 \]
 with parameter \(\lambda \) trading off relatedness to aspect \(q_i \) vs. all other aspects.
 - **update** \(s_i \) for all query aspects as \(s_i = s_i + \frac{P[d|q_i]}{\sum_j P[d|q_j]} \).
5. Evaluating Novelty & Diversity

- Traditional effectiveness measures (e.g., MAP and NDCG) and relevance assessments capture neither novelty nor diversity.

- Relevance assessments are collected for (query, document) pairs in isolation, not considering what the user has seen already or to which query aspects the document relates.

- Example: Query *jaguar* with aspects *car* and *cat*

 $$R_1 = \langle d_1, d_1', d_1'', d_2 \rangle \quad R_2 = \langle d_2, d_3, d_3', d_4 \rangle \quad R_3 = \langle d_1, d_3, d_5, d_4 \rangle$$

 Assuming that all documents (e.g., d_1) and duplicates (e.g., d_1') are relevant, all three results are considered equally good by existing retrieval effectiveness measures.
5.1. Measuring Diversity

- Agrawal et al. [1], along with IA-SELECT, propose **intent-aware adaptations** of existing retrieval effectiveness measures.

- Let q_i denote the intents (query aspects), $P[q_i|q]$ denote their popularity, and assume that documents have been assessed with regard to their relevance to each intent q_i.

- **Example:** **Intent-aware NDCG** (NDCG-IA)

 - Let $\text{NDCG}(q_i, k)$ denote the NDCG at cut-off k, assuming q_i as the user’s intent behind the query q.

 \[
 \text{NDCG-IA}(q, k) = \sum_i P[q_i|q] \cdot \text{NDCG}(q_i, k)
 \]
Other existing retrieval effectiveness measures (e.g., MAP and MRR) can be made intent-aware using the same approach.

Intent-aware adaptations only capture diversity, i.e., whether different intents are covered by the query result; they do not capture whether what is shown for each of the intents is novel and avoids redundancy.
5.2. Measuring Novelty & Diversity

- Measuring novelty requires **breaking with the assumption** of the PRP that probabilities of relevance are **pairwise independent**

- Clarke et al. [5] propose the **α-nDCG effectiveness measure** which can be instantiated to **capture diversity, novelty, or both**
 - based on the idea of **(information) nuggets** \(n_i \) which can represent any binary property of documents (e.g., query aspect, specific fact)
 - **users** and **documents** represented as **sets of information nuggets**
Probability $P[n_i \in u]$ that nugget n_i is of interest to user u
- assumed constant γ (e.g., uniform across all nuggets)

Probability $P[n_i \in d]$ that document d is relevant to n_i
- obtained from relevance judgment $J(d,i)$ as
 \[
P[n_i \in d] = \begin{cases}
\alpha & : J(d, i) = 1 \\
0 & : \text{otherwise}
\end{cases}
\]
 with parameter α reflecting trust in reviewers’ assessments

Probability that document d is relevant to user u is
\[
P[R = 1 | u, d] = 1 - \prod_{i=1}^{m} (1 - P[n_i \in u] P[n_i \in d])
\]
α-nDCG

- Probability $P[n_i \in u]$ that nugget n_i is of interest to user u
 - assumed constant γ (e.g., uniform across all nuggets)
- Probability $P[n_i \in d]$ that document d is relevant to n_i
 - obtained from relevance judgment $J(d,i)$ as
 $$P[n_i \in d] = \begin{cases} \alpha & : J(d, i) = 1 \\ 0 & : \text{otherwise} \end{cases}$$
 with parameter α reflecting trust in reviewers’ assessments
- Probability that document d is relevant to user u is
 $$P[R = 1 | u, d] = 1 - \prod_{i=1}^{m} (1 - \gamma \alpha J(d, i))$$
\(\alpha \)-nDCG

- Probability that nugget \(n_i \) is **still of interest to user** \(u \), after having seen documents \(d_1, \ldots, d_{k-1} \)

\[
P[n_i \in u \mid d_1, \ldots, d_{k-1}] = P[n_i \in u] \prod_{j=1}^{k-1} P[n_i \not\in d_j]
\]

- Probability that user sees a **relevant document at rank** \(k \), after having seen documents \(d_1, \ldots d_{k-1} \)

\[
P[R_k = 1 \mid u, d_1, \ldots, d_k] = 1 - \prod_{i=1}^{m} (1 - P[n_i \in u \mid d_1, \ldots, d_{k-1}] P[n_i \in d_k])
\]
α-nDCG

- α-NDCG uses probabilities $P[R_k=1|u,d_1,\ldots,d_k]$ as gain values $G[j]$.

$$DCG[k] = \sum_{j=1}^{k} \frac{G[j]}{\log_2(1+j)}$$

- Finding the ideal gain vector required to compute the idealized DCG for normalization is NP-hard (reduction from VERTEX COVER).

- In practice, the idealized DCG, required to obtain nDCG, is approximated by selecting documents using a greedy algorithm.
5.3. TREC Diversity Task

- **Diversity task** within **TREC Web Track** 2009 – 2012
 - **ClueWeb09** as document collection (1 billion web pages)
 - ~50 ambiguous/faceted topics per year

```xml
<topic number="155" type="faceted">
  <query>last supper painting</query>
  <description>
    Find a picture of the Last Supper painting by Leonardo da Vinci.
  </description>
  <subtopic number="1" type="nav">
    Find a picture of the Last Supper painting by Leonardo da Vinci.
  </subtopic>
  <subtopic number="2" type="nav">
    Are tickets available online to view da Vinci’s Last Supper in Milan, Italy?
  </subtopic>
  <subtopic number="3" type="inf">
    What is the significance of da Vinci’s interpretation of the Last Supper in Catholicism?
  </subtopic>
</topic>
```

- Effectiveness measure: \(\alpha \)-nDCG@k and MAP-IA among others
5.3. TREC Diversity Task

- **Diversity task** within TREC Web Track 2009 – 2012

- ClueWeb09 as document collection (1 billion web pages)

- ~50 ambiguous/faceted topics per year

```
<topic number="162" type="ambiguous">
<query>dnr</query>
<description>
  What are "do not resuscitate" orders and how do you get one in place?
</description>
<subtopic number="1" type="inf">
  What are "do not resuscitate" orders and how do you get one in place?
</subtopic>
<subtopic number="2" type="nav">
  What is required to get a hunting license online from the Michigan Department of Natural Resources?
</subtopic>
<subtopic number="3" type="inf">
  What are the Maryland Department of Natural Resources’ regulations for deer hunting?
</subtopic>
</topic>
```

- effectiveness measure: α-nDCG@k and MAP-IA among others
Dang and Croft [9] report the following results based on TREC Diversity Track 2009 + 2010, using either the specified subtopics or query suggestions, and comparing

- **Query likelihood** based on unigram language model with Dirichlet smoothing
- **Maximum Marginal Relevance**
- **xQuAD**
- **PM-1 / PM-2**

Table 2: Performance of all techniques in several standard retrieval tasks

<table>
<thead>
<tr>
<th>Sub-topics</th>
<th>α-NDCG</th>
<th>Prec-IA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Query-likelihood</td>
<td>0.2979</td>
<td>0.1146</td>
</tr>
<tr>
<td>MMR</td>
<td>0.2963</td>
<td>0.1221</td>
</tr>
<tr>
<td>xQuAD</td>
<td>0.3300<sub>Q,M</sub></td>
<td>0.1190</td>
</tr>
<tr>
<td>PM-1</td>
<td>0.3076</td>
<td>0.1140</td>
</tr>
<tr>
<td>PM-2</td>
<td>0.3473<sup>**</sup></td>
<td>0.1197</td>
</tr>
<tr>
<td>Suggestions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Query-likelihood</td>
<td>0.2875</td>
<td>0.1095</td>
</tr>
<tr>
<td>MMR</td>
<td>0.2926</td>
<td>0.1108</td>
</tr>
<tr>
<td>xQuAD</td>
<td>0.2995</td>
<td>0.1089</td>
</tr>
<tr>
<td>PM-1</td>
<td>0.2870</td>
<td>0.0929<sup>†</sup></td>
</tr>
<tr>
<td>PM-2</td>
<td>0.3200</td>
<td>0.1123<sup>**</sup></td>
</tr>
<tr>
<td>WT-2009 Best (uogTrDYCseB) [10]</td>
<td>0.3081</td>
<td>N/A</td>
</tr>
<tr>
<td>Sub-topics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Query-likelihood</td>
<td>0.3236</td>
<td>0.1713</td>
</tr>
<tr>
<td>MMR</td>
<td>0.3349<sub>Q</sub></td>
<td>0.1740</td>
</tr>
<tr>
<td>xQuAD</td>
<td>0.4074<sub>Q,M</sub></td>
<td>0.2028</td>
</tr>
<tr>
<td>PM-1</td>
<td>0.4323<sup>†</sup><sub>Q,M</sub></td>
<td>0.1827</td>
</tr>
<tr>
<td>PM-2</td>
<td>0.4546<sup>†</sup><sub>Q,M</sub></td>
<td>0.2030</td>
</tr>
<tr>
<td>Suggestions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Query-likelihood</td>
<td>0.3268</td>
<td>0.1730</td>
</tr>
<tr>
<td>MMR</td>
<td>0.3361<sub>Q</sub></td>
<td>0.1746</td>
</tr>
<tr>
<td>xQuAD</td>
<td>0.3582<sub>Q,M</sub></td>
<td>0.1785</td>
</tr>
<tr>
<td>PM-1</td>
<td>0.3664<sup>†</sup></td>
<td>0.1654</td>
</tr>
<tr>
<td>PM-2</td>
<td>0.4374<sup>†</sup><sub>Q,M</sub></td>
<td>0.1841</td>
</tr>
<tr>
<td>WT-2010 Best (uogTrB67xS) [11]</td>
<td>0.4178</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Summary

- **Novelty** reflects how well the returned results avoid **redundancy**.
- **Diversity** reflects how well the returned results resolve **ambiguity**.
- **Probability ranking principle** and its **underlying assumptions** need to be **revised** when aiming for novelty and/or diversity.
- **Implicit methods** for novelty and/or diversity operate directly on the **document contents** without representing query aspects.
- **Explicit methods** for novelty and/or diversity rely on an explicit representation of query aspects (e.g., as query suggestions).
- Standard effectiveness measures do neither capture novelty nor diversity; **intent-aware measures** capture diversity; **cascade measures** (e.g., α-nDCG) can also capture novelty.
References

References

