6. Efficiency & Scalability
Outline

6.1. Motivation
6.2. Index Construction & Maintenance
6.3. Static Index Pruning
6.4. Document Reordering
6.5. Query Processing
1. Motivation

- Focus in the lecture so far has been on **effectiveness**, i.e., "doing the right things" (e.g., returning useful query results)

- **Efficiency** is about "doing things right", i.e., accomplishing a task using minimal resources (e.g., CPU, memory, disk)

- **Scalability** is about making use of additional resources (e.g., faster/more CPUs, more memory/disk) to accomplish a task
Our focus will be on two major aspects of every IR system:

- **Indexing**: how can we efficiently construct & maintain an inverted index that consumes little space?
- **Query processing**: how can we efficiently identify the top-k results for a given query without having to read posting lists completely?

Other aspects which we will not cover include:

- **Caching** (e.g., posting lists, query results, snippets)
- **Modern hardware** (e.g., GPU query processing, SIMD compression)
Hardware & Software Trends

- CPU speed has increased more than that of disk and memory: faster to read & decompress than to read uncompressed.

- More memory is available; disks have become larger but not faster: now common to keep indexes in (distributed) memory.

- Many (less powerful) instead of few (powerful) machines; platforms for distributed data processing (e.g., MapReduce, Spark).

- More CPU cores instead of faster CPUs; SSDs (fast reads, slow writes, wear out) in addition to HDDs; GPUs and FPGAs.
2. Index Construction & Maintenance

- **Inverted index** as widely used index structure in IR consists of:
 - **dictionary** mapping terms to term identifiers and statistics (e.g., idf)
 - **posting lists** for every term recording details about its occurrences

- How to construct an inverted index from a document collection?
- How to maintain an inverted index as documents are inserted, modified, or deleted?
2.1. Index Construction

- **Observation**: Constructing an inverted index (aka. inversion) can be seen as **sorting a large number of** (term, did, tf) tuples
 - seen in (did)-order when processing documents
 - needed in (term, did)-order for the inverted index

- Typically, the set of all (term, did, tf) tuples does **not fit into the main memory** of a single machine, so that we need to **sort using external memory** (e.g., hard-disk drives)
Lester al. [7] describe the following algorithm by Heinz and Zobel to construct an inverted index on a single machine.

1. Let \(B \) be the number of \((\text{term}, \text{did}, \text{tf})\) tuples that fit into main memory.
2. While not all documents have been processed:
 - Read (up to) \(B \) tuples from the input (documents).
 - Construct in-memory inverted index by grouping & sorting the tuples.
 - Write in-memory inverted index as sorted run of \((\text{term}, \text{did}, \text{tf})\) tuples to disk.
 - Merge on-disk runs to obtain global inverted index.
Index Construction in MapReduce

- **MapReduce** as a platform for **distributed data processing**
 - was developed at **Google**
 - operates on large clusters of **commodity hardware**
 - handles **hard- and software failures** transparently
 - open-source implementations (e.g., **Apache Hadoop**) available
 - programming model operates on **key-value (kv) pairs**
 - **map()** reads input data \((k_1, v_1)\) and emits kv pairs \((k_2, v_2)\)
 - platform groups and sorts kv pairs \((k_2, v_2)\) automatically
 - **reduce()** sees kv pairs \((k_2, \text{list}<v_2>)\) and emits kv pairs \((k_3, v_3)\)
Index Construction in MapReduce

map

\[
\text{map}(\text{did, list<term>})
\]

\[
\text{map<term, integer> tfs = new map<term, integer>();}
\]

// determine term frequencies

\[
\text{for each term in list<term>:}
\]

\[
\text{tfs.adjustCount(term, +1);}
\]

// emit postings

\[
\text{for each term in tfs.keys():}
\]

\[
\text{emit (term, (did, tfs.get(term))));
\]

// platform groups & sorts output of map phase by term

reduce

\[
\text{reduce}(\text{term, list<(did, tf)>>}
\]

// emit posting list

\[
\text{emit (term, list<(did, tf)>)}
\]
2.2. Index Maintenance

- Document collections are **not static**, but documents are **inserted, modified, or deleted** as time passes; changes to the document collection should **quickly be visible in search results**.

- **Typical approach**: Collect changes in main memory
 - **deletion list** of deleted documents
 - **in-memory delta inverted index** of inserted and modified documents
 - **process queries over both** the on-disk global and in-memory delta inverted index and **filter out** result documents from the deletion list

- **What if the available main memory has been exhausted?**
Rebuild

- Rebuild the on-disk global index from scratch
 - in a separate location; switch over to new index once completed
 - attractive for small document collections
 - attractive when document deletions are common
 - requires re-processing of entire document collection
 - easy to implement
Merge

- **Merge** the on-disk global index with the in-memory delta index
 - in a *separate location*; switch over to new index once completed
 - for each term, **read** posting lists from on-disk global index and in-memory delta index, **merge** them, **filter out** deleted documents, and **write** the merged posting list to disk
 - requires **reading entire on-disk global index**

- **Analysis:** Let B be capacity of the in-memory delta index (in terms of postings) and N be the total number of postings
 - N / B merge operations each having cost $O(N)$
 - total cost is in $O(N^2)$
Geometric Merge

- Lester et al. [5] propose to **partition the inverted index** into index partitions of geometrically increasing sizes
 - tunable by parameter \(r \)
 - index partition \(P_0 \) is in **main memory** and contains up to \(B \) postings
 - index partitions \(P_1, P_2, \ldots \) are on disk with capacity invariants
 - partition \(P_j \) contains at most \((r-1) r^{(j-1)} B \) postings
 - partition \(P_j \) is either empty or contains at least \(r^{(j-1)} B \) postings
 - whenever \(P_0 \) **overflows**, a **merge** is triggered

- **Query processing** has to access all (non-empty) partitions \(P_i \), leading to **higher cost** due to required disk seeks
Geometric Merge

<table>
<thead>
<tr>
<th>Partition 3</th>
<th>Partition 2</th>
<th>Partition 1</th>
<th>Partition 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>1, 2</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

$r=3$

Geometric Merge

- **Analysis**: Let B be the capacity of the in-memory partition P_0 and N be the total number of postings.
 - There are at most $1 + \lceil \log_r(N/B) \rceil$ partitions.
 - Each posting merged at most once into each partition.
 - Total cost is $O(N \log N/B)$.
Logarithmic Merge

- **Logarithmic merge** is a simplified variant of geometric merge
 - partition P_0 is in **main memory** and contains B postings
 - partition P_1 is on disk and contains up to $2B$ postings
 - partition P_2 is on disk and contains up to $4B$ postings
 - partition P_j is on disk and contains up to 2^jB postings
 - whenever P_0 overflows, a cascade of merges is triggered

- **Log-structured merge tree** (LSM-Tree) prominent in database systems (e.g., to manage logs) is based on the same principle

- Wu et al. [9] use the same idea in their **log-structured inverted index** to support high update rates when indexing **social media**
3. Static Index Pruning

- **Static index pruning** is a form of **lossy compression** that
 - removes postings from the inverted index
 - allows for **control of index size** to make it fit, for instance, into main memory or on low-capacity device (e.g., smartphone)

<table>
<thead>
<tr>
<th></th>
<th>a: [d_1, 2, d_3, 5, d_7, 2, d_9, 1, d_{11}, 3, d_{13}, 2]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b: [d_5, 3, d_7, 2, d_8, 9, d_{11}, 4, d_{15}, 2]</td>
</tr>
<tr>
<td></td>
<td>c: [d_5, 3, d_8, 1, d_{11}, 7, d_{15}, 2]</td>
</tr>
</tbody>
</table>

- **Dynamic index pruning**, in contrast, refers to query processing methods (e.g., WAND or NRA) that avoid reading the entire index
3. Static Index Pruning

- **Static index pruning** is a form of **lossy compression** that
 - removes postings from the inverted index
 - allows for **control of index size** to make it fit, for instance, into main memory or on low-capacity device (e.g., smartphone)

\[
\begin{array}{cccc}
\text{a} & d_3, 5 & d_{11}, 3 \\
\text{b} & d_5, 3 & d_8, 9 & d_{11}, 4 \\
\text{c} & d_5, 3 & d_{11}, 7 \\
\end{array}
\]

- **Dynamic index pruning**, in contrast, refers to query processing methods (e.g., WAND or NRA) that avoid reading the entire index
3.1. Term-Centric Index Pruning

- Carmel et al. [4] propose **term-centric** static index pruning

- **Idea**: Remove postings from posting list for term \(v \) that are **unlikely to contribute** to top-k result of query including \(v \)

- **Algorithm**: For each term \(v \)
 - determine **k-th highest score** \(z_v \) of any posting in posting list for \(v \)
 - remove all postings having a score less than \(\varepsilon \cdot z_v \)

- Despite its simplicity the method guarantees for any query \(q \) consisting of \(|q| < 1 / \varepsilon \) terms a “close enough” top-k result
3.2. Document-Centric Index Pruning

Idea: Remove postings for document d corresponding to non-important terms for which it is unlikely to be in the query result.

Importance of term v for document d is measured using its contribution to the KL divergence from background model D.

$$P[v | \theta_d] \log \left(\frac{P[v | \theta_d]}{P[v | \theta_D]} \right)$$

$\text{DCP}_{\text{Const}}$ selects constant number k of postings per document.

DCP_{Rel} selects a percentage λ of postings per document.
Term-Centric vs. Document-Centric

- Büttcher and Clarke [3] compare term-centric (TCP) and document-centric (DCP) index pruning on TREC Terabyte
- **Okapi BM25** as baseline retrieval model
- **on-disk inverted index**: 12.9 GBytes, 190 ms response time
- **pruned in-memory inverted index**: 1 GByte, 18 ms response time

[TREC 2004 Terabyte queries (topics 701-750)]

<table>
<thead>
<tr>
<th></th>
<th>BM25 Baseline</th>
<th>DCP_{\lambda=0.062}^{\text{Rel}}</th>
<th>DCP_{\text{Const}}^{(k=21)}</th>
<th>TCP_{(n=16000)}^{(k=24500)}</th>
</tr>
</thead>
<tbody>
<tr>
<td>P@5</td>
<td>0.5224</td>
<td>0.5020</td>
<td>0.4735</td>
<td>0.4490*</td>
</tr>
<tr>
<td>P@10</td>
<td>0.5347</td>
<td>0.4837</td>
<td>0.4755</td>
<td>0.4347*</td>
</tr>
<tr>
<td>P@20</td>
<td>0.4959</td>
<td>0.4490</td>
<td>0.4224</td>
<td>0.4163</td>
</tr>
<tr>
<td>MAP</td>
<td>0.2575</td>
<td>0.1963</td>
<td>0.1621**</td>
<td>0.1808</td>
</tr>
</tbody>
</table>

[TREC 2005 Terabyte queries (topics 751-800)]

<table>
<thead>
<tr>
<th></th>
<th>BM25 Baseline</th>
<th>DCP_{\lambda=0.062}^{\text{Rel}}</th>
<th>DCP_{\text{Const}}^{(k=21)}</th>
<th>TCP_{(n=16000)}^{(k=24500)}</th>
</tr>
</thead>
<tbody>
<tr>
<td>P@5</td>
<td>0.6840</td>
<td>0.6760</td>
<td>0.6000**</td>
<td>0.5640**</td>
</tr>
<tr>
<td>P@10</td>
<td>0.6400</td>
<td>0.5980</td>
<td>0.5300*</td>
<td>0.5380**</td>
</tr>
<tr>
<td>P@20</td>
<td>0.5660</td>
<td>0.5310</td>
<td>0.4560**</td>
<td>0.4630**</td>
</tr>
<tr>
<td>MAP</td>
<td>0.3346</td>
<td>0.2465</td>
<td>0.1923**</td>
<td>0.2364</td>
</tr>
</tbody>
</table>
4. Document Reordering

- Sequences of non-decreasing integers (here: document identifiers) in posting lists are compressed using:
 - **delta encoding** representing elements as difference to predecessor
 \[\langle 1, 7, 11, 21, 42, 66 \rangle \rightarrow \langle 1, 6, 4, 10, 21, 24 \rangle \]
 - **bit-wise or byte-wise integer encoding** (e.g., 7-bit encoding or Gamma encoding) representing smaller integers with fewer bits
 \[314 = 00000000 \, 00000000 \, 00000001 \, 00111010 \rightarrow 00000010 \, 10111010 \]

- Document reordering methods seek to improve compression effectiveness by assigning document identifiers so as to obtain small gaps
4.1. Content-Based Document Reordering

- Silvestri et al. [10] develop methods for the scenario when **only document contents** are available but no meta-data (e.g., URL)

- **Intuition:** Similar documents, having many terms in common, should be assigned **numerically close document identifiers**

- Documents are modeled as **sets** (not bags) of terms

- Document similarity is measured using the **Jaccard coefficient**

\[J(d_i, d_j) = \frac{|d_i \cap d_j|}{|d_i \cup d_j|} \]
Top-Down Bisecting

- **Algorithm:** TDAssign(document collection \(D \))

 // split \(D \) into equal-sized partitions \(D_L \) and \(D_R \)

 pick representatives \(d_L \) and \(d_R \) (e.g., randomly)

 - **if** \(|D_L| \geq |D| / 2\) \(\lor \) \(|D_R| \geq |D| / 2\)

 assign \(d \) to smaller partition

 - **else if** \(J(d, d_L) < J(d, d_R) \)

 assign \(d \) to \(D_L \)

 - **else**

 assign \(d \) to \(D_R \)

 return TDAssign(\(D_L \)) \(\oplus \) TDAssign(\(D_R \))

- TDAssign has **time complexity** in \(O(|D| \log |D|) \)
Algorithm: kScan(document collection D)

// split D into k equal-sized partitions D_i

n = |D|

for i = 1 ... k

pick longest document d_i from D

assign n/k documents with highest similarity J(d, d_i) to D_i

D = D \ D_i

return < d from D₁ > ⊕ ... ⊕ < d from D_k >

- **kScan** has **time complexity** in O(k |D|)

- **kScan** **outperforms** TDAAssign **in terms of compression effectiveness** (bits per posting) in experiments on collections of web documents
4.2. URL-Based Document Reordering

- **Intuition**: Documents with lexicographically close URLs tend to have similar contents (e.g., www.x.com/a and www.x.com/b).

- **Algorithm**:
 - sort documents lexicographically according to their URL
 - assign consecutive document identifiers (1 … |D|)
Silvestri [11] reports experiments conducted on a large-scale crawl of the Brazilian Web (about 6 million documents).

<table>
<thead>
<tr>
<th></th>
<th>VByte</th>
<th>Gamma</th>
<th>Delta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random</td>
<td>11.40</td>
<td>12.72</td>
<td>12.71</td>
</tr>
<tr>
<td>URL</td>
<td>9.72</td>
<td>7.72</td>
<td>7.69</td>
</tr>
<tr>
<td>kScan</td>
<td>9.81</td>
<td>8.82</td>
<td>8.80</td>
</tr>
</tbody>
</table>

URL-based document ordering outperforms content-based document ordering (kScan), requiring fewer bits per posting on average.
5. Query Processing

- **Query processing methods** operate on inverted index
 - **holistic query processing methods** determine the full query results (e.g., document-at-a-time and term-at-a-time)
 - **top-k query processing methods** (aka. dynamic index pruning) determine only the top-k query result and avoid reading posting lists completely
 - Fagin’s **TA** and **NRA** for score-ordered posting lists
 - **WAND** and **Block-Max WAND** for document-ordered posting lists
Broder et al. [2] describe **WAND** (weak AND) as a **top-k query processing method** for document-ordered posting lists:

- **DAAT-style traversal** of posting lists in parallel.
- Assumes that the **maximum score** \(\max(i) \) per posting list is known.
- **Pivoted cursor movement** based on current top-k result:
 - Let \(\text{min}_k \) denote the worst score in the current top-k result (1).
 - Sort cursors for posting lists based on their current document identifier \(\text{cdid}(i) \) (2).
 - Pivot document identifier \(p \) is the smallest \(\text{cdid}(j) \) such that (3):
 \[
 \text{min}_k < \sum_{i \leq j} \max(i)
 \]
 - Move all cursors \(i \) with \(\text{cdid}(i) < p \) up to pivot \(p \).
Example: Pivoted cursor movement based on top-1 result

It is safe to move the cursor for posting lists \(a\) and \(b\) forward to \(d_9\).
Example: Pivoted cursor movement based on top-1 result

Top-1

<table>
<thead>
<tr>
<th></th>
<th>d₁, 2</th>
<th>...</th>
<th>d₃, 1</th>
<th>...</th>
<th>max(a) = 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
\min_k = 8
\]
Example: Pivoted cursor movement based on top-1 result

- Top-1
 - $d_1: 8$
 - $a \quad d_1, 2 \quad ... \quad d_3, 1 \quad ... \quad \max(a) = 3$

- $b \quad d_1, 3 \quad ... \quad d_2, 3 \quad ... \quad \max(b) = 3$

- $c \quad d_1, 3 \quad ... \quad d_9, 3 \quad ... \quad \max(c) = 3$

It is safe to move the cursor for posting lists a and b forward to d_9.

<table>
<thead>
<tr>
<th>cdid</th>
<th>Σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d_2, 3$</td>
<td>3</td>
</tr>
<tr>
<td>$d_3, 1$</td>
<td>6</td>
</tr>
<tr>
<td>$d_9, 3$</td>
<td>9</td>
</tr>
</tbody>
</table>

$\min_k = 8$
Example: Pivoted cursor movement based on top-1 result

Top-1

\[a \quad d_1, 2 \quad \ldots \quad d_3, 1 \quad \ldots \quad \max(a) = 3 \]

\[b \quad d_1, 3 \quad \ldots \quad d_2, 3 \quad \ldots \quad \max(b) = 3 \]

\[c \quad d_1, 3 \quad \ldots \quad d_9, 3 \quad \ldots \quad \max(c) = 3 \]

It is safe to move the cursor for posting lists \(a\) and \(b\) forward to \(d_9\)

\[\min_k = 8 \]

\(c_{did}\) \(\Sigma\)

\[d_2, 3 \quad 3 \]

\[d_3, 1 \quad 6 \]

\[d_9, 3 \quad 9 \]

\(p = d_9\)

(1) \quad (2) \quad (3)
4.2. Block-Max WAND

- Ding and Suel [5] propose the **block-max inverted index**
 - store posting list as sequence of **compressed posting blocks**
 - each block contains a **fixed number of postings** (e.g., 64)
 - keep **minimum document identifier** and **maximum score** per block

\[
\begin{align*}
(1, 5) & \quad (7, 2) & \quad (11, 3) \\
\text{a} & \quad d_1, 2 & \quad d_3, 5 & \quad d_7, 2 & \quad d_9, 1 & \quad d_{11}, 3 & \quad d_{13}, 2 \\
\text{max}(a) &= 5
\end{align*}
\]

these are available without having to decompress the block
Block-Max WAND

- Pivoted cursor movement considering per-block maximum scores
 - determine pivot p according to WAND
 - perform shallow cursor movement for all cursors i with $\text{cdid}(i) < p$ (i.e., do not decompress if a new posting block is reached)
 - if any document from current blocks can make it into top-k, i.e.:
 $$\min_k < \sum_{i: \text{cdid}(i) \leq p} \text{block_max}(i)$$
 perform deep cursor movement (i.e., decompress posting blocks) and continue as in WAND
 - else move cursor with minimal $\text{cdid}(i)$ to
 $$\min \left(\min_{i: \text{cdid}(i) \leq p} \text{next_block_mdid}(i), \text{cdid}(p + 1) \right)$$
Example: Pivoted cursor movement based on top-1 result

Top-1

<table>
<thead>
<tr>
<th></th>
<th>d₁, 2</th>
<th>...</th>
<th>d₃, 1</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>d₁, 2</td>
<td>...</td>
<td>d₃, 1</td>
<td>...</td>
</tr>
<tr>
<td>b</td>
<td>d₁, 3</td>
<td>...</td>
<td>d₂, 3</td>
<td>...</td>
</tr>
<tr>
<td>c</td>
<td>d₁, 3</td>
<td>...</td>
<td>d₉, 3</td>
<td>...</td>
</tr>
<tr>
<td>d</td>
<td>d₂, 3</td>
<td>...</td>
<td>d₁₁, 3</td>
<td>...</td>
</tr>
</tbody>
</table>

max(a) = 3

max(b) = 3

max(c) = 3

max(d) = 3
Block-Max WAND

Example: Pivoted cursor movement based on top-1 result

<table>
<thead>
<tr>
<th>Top-1</th>
<th>a</th>
<th>d₁, 2</th>
<th>...</th>
<th>d₃, 1</th>
<th>...</th>
<th>max(a) = 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>d₁ : 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>b</th>
<th>d₁, 3</th>
<th>...</th>
<th>d₂, 3</th>
<th>...</th>
<th>max(b) = 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>d₁</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>c</th>
<th>d₁, 3</th>
<th>...</th>
<th>d₉, 3</th>
<th>...</th>
<th>max(c) = 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>d₁</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>d</th>
<th>d₂, 3</th>
<th>...</th>
<th>d₁₁, 3</th>
<th>...</th>
<th>max(d) = 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>d₂</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

max(d₁) = 3
max(d₂) = 3
max(d₃) = 3
shallow
Example: Pivoted cursor movement based on top-1 result

\[
\begin{align*}
\textbf{Top-1} & \quad \begin{array}{c}
\textbf{a} & d_1, 2 \quad \ldots \quad d_3, 1 \quad \ldots \quad \max(a) = 3
\end{array} \\
\quad \begin{array}{c}
\textbf{b} & d_1, 3 \quad \ldots \quad d_2, 3 \quad \ldots \quad \max(b) = 3
\end{array} \\
\quad \begin{array}{c}
\textbf{c} & d_1, 3 \quad \ldots \quad d_9, 3 \quad \ldots \quad \max(c) = 3
\end{array} \\
\quad \begin{array}{c}
\textbf{d} & d_2, 3 \quad \ldots \quad d_{11}, 3 \quad \ldots \quad \max(d) = 3
\end{array}
\end{align*}
\]

\(\text{shallow}\)
Summary

- **Inverted indexes** can be **efficiently constructed** offline by using external memory sort or MapReduce.

- **Inverted indexes** can be **efficiently maintained** by using logarithmic/geometric partitioning.

- **Static index pruning methods** reduce index size by systematically **removing postings**.

- **Document reordering methods** reduce index size by assigning document identifiers so as to yield **smaller gaps**.

- **Query processing** on document-ordered inverted indexes can be greatly sped up by **pivoted cursor movement** as part of WAND and Block-Max WAND.
References

References
