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So, how do you pronounce…

Jilles Vreeken

Yill-less Fray-can

Okay, now we can talk.



Questions of the day

How do we 
preprocess data before we 

can extract anything meaningful?

How can we 
convert, normalise, and reduce, 
Big Data into Mineable Data?
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IRDM Chapter 2.1, overview
1. Data type conversion
2. Data normalisation
3. Sampling
4. Dimensionality Reduction

You’ll find this covered in 
Aggarwal Chapter 2—2.4.3.2
Zaki & Meira, Ch. 1, 2.4, 3.5, 6, 7

(Aggarwal, Chapter 2—2.4.3.2)
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From now on, all lectures will be in HS 002
That is, Tuesday AND Thursday.

We’re here to stay
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action speaks louder than words
Homework
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Homework Guidelines
Almost every week, we hand out a new homework 
assignment. You make these individually at home.

Homework Timeline:
 week 𝑛𝑛: Homework 𝑖𝑖 handed out
 week 𝑛𝑛 + 1: Hand in results of Homework 𝑖𝑖 at start of lecture
 week 𝑛𝑛 + 2: Tutorial session on Homework 𝑖𝑖

Questions are to be asked during Tutorial sessions.
 in exceptional cases of PANIC you may email your tutors and 

kindly ask for an appointment – this is beyond their official duty.
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From one data type to another
Conversion

Ch. 2.2.2
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Data
During IRDM we will consider a lot of data. 

We will refer to our data as 𝑫𝑫. We will consider many types. 
Depending on context 𝑫𝑫 can be a table, matrix, sequence, 
etc., with binary, categorical, or real-valued entries.

Most algorithms work only for one type of data. 

How can we convert 𝑫𝑫 from one type into another?
Today we discuss two basic techniques to get us started.
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Numeric to Categorical - Discretisation

How to go from numeric to categorical?
 by partitioning the domain of numeric attribute 𝒅𝒅𝑖𝑖 into 
𝑘𝑘 adjacent ranges, and assigning a symbolic label to each. 

 e.g. we partition attribute ‘age’ into ranges of 10 years: [0,10), [10,20), etc. 

Standard approaches to choose ranges include
 Equi-width: choose [𝑎𝑎, 𝑏𝑏] such that 𝑏𝑏 − 𝑎𝑎 is the same for all ranges
 Equi-log: choose [𝑎𝑎, 𝑏𝑏] such that log 𝑏𝑏 − log 𝑎𝑎 is the same for all
 Equi-height: choose ranges such each has the same number of records

Choosing 𝒌𝒌 is difficult. Too low, and you introduce spurious associations. Too 
high, and your method may not be able to find anything. So, be careful; use 
domain knowledge, just try, or, use more advanced techniques.
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Categorical to Numeric - Binarisation

How to go from categorical to numeric or binary data?
 by creating a new attribute per categorical attribute-value combination. 
 for each categorical attribute 𝒅𝒅 with 𝜙𝜙 possible values, 

we create 𝜙𝜙 new attributes, and set their values to 0 or 1 accordingly.

For example, for attribute ‘colour’ with domain {𝒓𝒓𝒓𝒓𝒓𝒓,𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃,𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈}, 
we create 3 new attributes, resp. corresponding to 
‘𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 = 𝒓𝒓𝒓𝒓𝒓𝒓’, ‘𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 = 𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃’, and ‘𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 = 𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈’.

Note! If you are not careful, the downstream method does not know 
what the ‘old’ attributes are, and will get lost (or, go wild) with the all 
the correlations that exist between the ‘new’ attributes. 
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Missing Values and Normalisation
Cleaning

Ch. 2.3
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Missing Values
Missing values are common in real-world data
 in fact, complete data is the rare case
 values are often unobserved, wrongly observed, or lost

Data with missing values needs to be dealt with care
 some methods are robust to missing values

 e.g. naïve Bayes classifiers
 some methods cannot handle missing values (natively) (at all)

 e.g. support vector machines
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Handling missing values
Two common techniques to handle missing values are
 ignoring them
 imputing them

In imputation, we replace them with ‘educated guesses’
 either we use high level statistics, e.g. the mean of the variable

 perhaps stratified over some class
 e.g. the mean height vs. the mean height of all professors

 or, we fit a model to the data, and draw values from it
 e.g. a Bayesian network, a low-rank matrix factorization, etc,

 matrix completion is often used when lots of values are missing
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Some problems
Imputed values may be wrong!
 this may have a significant effect on results
 especially categorical data is hard

 the effect of imputation is never ‘smooth’

Ignoring records or variables with 
missing values may not be possible
 there may not be any data left

Binary data has the problem of distinguishing 
non-existent and non-observed data
 did you never see the polar bear living in the Dudweiler forest, 

or does it not exist?
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Centering
Consider 𝑫𝑫 of 𝑛𝑛 observations over 𝑚𝑚 variables
 if you want, you can see this as an 𝑛𝑛-by-𝑚𝑚 matrix 𝑫𝑫

We say 𝑫𝑫 is zero centered
if 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝒅𝒅𝑖𝑖) = 0 for each column 𝒅𝒅𝑖𝑖 of 𝑫𝑫

We can center any dataset
by subtracting the mean from each columns
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Unit variance
An attribute 𝒅𝒅 has unit variance if 𝑣𝑣𝑣𝑣𝑣𝑣 𝒅𝒅 = 1
A dataset 𝑫𝑫 has unit variance iff ∀𝒅𝒅𝑖𝑖var 𝒅𝒅𝑖𝑖 = 1

We obtain unit variance by dividing every column 
by its standard deviation.
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Standardisation
Data that is zero centered and has unit variance 
is called standardised, or the 𝒛𝒛-scores
 many methods (implicitly) assume data is standardised

Of course, we may apply non-linear transformations
to the data before standardising.
 for example, by taking a logarithm, or the cubic root we can 

diminish the importance of LARGE values
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Why centering?
Consider the red data elipse
 the main dimension of variance

is from the origin to the data
 the second is orthogonal to the first
 they don’t show the variance of the data!

If we center the data, however,
the directions are correct!
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When not to center?
Centering cannot be applied to all sorts of data

It destroys non-negativity
 e.g. NMF becomes impossible

Centered data won’t contain integers
 e.g. no more count or binary data
 can hurt integratability
 itemset mining becomes impossible

Centering destroys sparsity
 bad for algorithmic efficiency
 (we can retain sparsity by only changing non-zero values)
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Why unit variance?
Assume one observation is height in meters,
and one observation is weight in grams
 now weight contains much higher values (for humans, at least)
 weight has more weight in calculations

Division by standard deviation makes 
all observations equally important
 most values now fall between -1 and 1

Question to the audience: 
What’s the catch? What’s the assumption?
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What’s wrong with unit variance?
Dividing by standard deviation is based on the 
assumption that the values follow a Gaussian distribution
 often this is plausible: Law of Large Numbers, Central Limit Theorem, etc.

Not all data is Gaussian. 
 integer counts (especially over small ranges_
 transaction data

Not all data distributions have a mean
 powerlaw distributions
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From many to few(er) dimensions
Dimensionality Reduction

Ch. 2.4.2—2.4.3.2
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Curse of Dimensionality
Life gets harder, exponentially harder as 
dimensionality increases. Not just computationally…

The data volume grows too fast
 100 evenly-spaced points in a unit interval 

have a max distance of 0.01
 to get the same distance for adjacent points in 

a 10-dimensional unit hypercube we need 
1020 points – that is an increase of factor 1018 (!)

And, ten dimensions is really not so many
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Hypercube and Hypersphere
A hypercube is a 𝑑𝑑-dimensional cube
 with edge length 2𝑟𝑟, its volume is 𝑣𝑣𝑣𝑣𝑣𝑣(𝐻𝐻𝑑𝑑(2𝑟𝑟)) = 2𝑟𝑟 𝑑𝑑

A Hypersphere is the 𝑑𝑑-dimensional ball of radius 𝑟𝑟
 𝑣𝑣𝑣𝑣𝑣𝑣 𝑆𝑆1 𝑟𝑟 = 2𝑟𝑟
 𝑣𝑣𝑣𝑣𝑣𝑣 𝑆𝑆2 𝑟𝑟 = 𝜋𝜋𝑟𝑟2

 𝑣𝑣𝑣𝑣𝑣𝑣 𝑆𝑆3 𝑟𝑟 = 4
3
𝜋𝜋𝑟𝑟3

 𝑣𝑣𝑣𝑣𝑣𝑣 𝑆𝑆𝑑𝑑 𝑟𝑟 = 𝐾𝐾𝑑𝑑𝑟𝑟𝑑𝑑 where 𝐾𝐾𝑑𝑑 = 𝜋𝜋𝑑𝑑/2

Γ 𝑑𝑑/2+1

 Γ 𝑑𝑑
2

+ 1 = 𝑑𝑑
2

! for even 𝑑𝑑
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Where is Waldo? (1)
Let’s say we consider that any two points 
within the hypersphere are ‘close’ to each other.

The question then is, how many points are close?
Or, better, how large is the ball in the box?
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Hypersphere within a Hypercube

Fraction of volume hypersphere has of surrounding hypercube:

lim
𝑑𝑑→∞

𝑣𝑣𝑣𝑣𝑣𝑣 𝑆𝑆𝑑𝑑 𝑟𝑟
𝑣𝑣𝑣𝑣𝑣𝑣 𝐻𝐻𝑑𝑑 2𝑟𝑟

= lim
𝑑𝑑→∞

𝜋𝜋𝑑𝑑/2

2𝑑𝑑Γ 𝑑𝑑
2 + 1

→ 0

Mass is in the corners!

II-1: 28



IRDM ‘15/16

Hypersphere within a Hypercube

Mass is in the corners!

2D 3D 4D higher dimensions
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Where is Waldo? (2)
Let’s now say we consider any two points 
outside the sphere, in the same ‘corner’ of the box, 
are ‘close’ to each other.

Then, the question is, how many points will be close?
Or, better, how cornered is the data?
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Volume of thin shell of hypersphere
𝑆𝑆𝑑𝑑(𝑟𝑟, 𝜀𝜀)

𝑣𝑣𝑣𝑣𝑣𝑣(𝑆𝑆𝑑𝑑(𝑟𝑟, 𝜀𝜀))
= 𝑣𝑣𝑣𝑣𝑣𝑣(𝑆𝑆𝑑𝑑(𝑟𝑟)) – 𝑣𝑣𝑣𝑣𝑣𝑣(𝑆𝑆𝑑𝑑(𝑟𝑟– 𝜀𝜀))

= 𝐾𝐾𝑑𝑑𝑟𝑟𝑑𝑑 – 𝐾𝐾𝑑𝑑 𝑟𝑟– 𝜀𝜀 𝑑𝑑

Fraction of volume in the shell:   𝑣𝑣𝑣𝑣𝑣𝑣 𝑆𝑆𝑑𝑑 𝑟𝑟,𝜖𝜖
𝑣𝑣𝑣𝑣𝑣𝑣 𝑆𝑆𝑑𝑑 𝑟𝑟

= 1 − 1 − 𝜖𝜖
𝑟𝑟

𝑑𝑑

Mass is in the shell!

lim
𝑑𝑑→∞

𝑣𝑣𝑣𝑣𝑣𝑣 𝑆𝑆𝑑𝑑 𝑟𝑟, 𝜖𝜖
𝑣𝑣𝑣𝑣𝑣𝑣 𝑆𝑆𝑑𝑑 𝑟𝑟

= lim
𝑑𝑑→∞

1 − 1 −
𝜖𝜖
𝑟𝑟

𝑑𝑑
→ 1
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Dimensionality Reduction
Back to the Future
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Dimensionality Reduction
Aim: reduce the number of dimensions by 
replacing them with new ones
 the new features should capture the “essential part” of the data
 what is considered essential is defined by method you want to use
 using ‘wrong’ dimensionality reduction can lead to useless results

Usually dimensionality reduction methods 
work on numerical data
 for categorical or binary data, feature selection is often more appropriate
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Feature Subset Selection
Data 𝑫𝑫 may include attributes that are redundant
and/or irrelevant to the task at hand. Removing these 
will improve efficiency and performance. 

That is, given data 𝑫𝑫 over attributes 𝐴𝐴, we want that subset 
𝑆𝑆 ⊆ 𝐴𝐴 of 𝑘𝑘 attributes such that performance is maximal.

Two big problems:
1) how to quantify ‘performance’?
2) how to search for good subsets?
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Searching for Subsets
How many subsets of 𝐴𝐴 are there? 
 2 𝐴𝐴

When do we need to do feature selection?
 when 𝐴𝐴 is large… oops.

Can we efficiently search for the optimal 𝑘𝑘-subset?
 the theoretical answer: depends on your score
 the practical answer: almost never
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Scoring Feature Subsets
There are two main approaches for scoring feature spaces

Wrapper methods optimise for your method directly
 score each candidate subset by running your method
 only makes sense when your score is comparable
 slow, as it needs to run your method for every candidate

Filter methods use an external quality measure
 score each candidate subset using a proxy
 only makes sense when the proxy optimises your goal
 can be fast, but may optimise the wrong thing
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Principle component analysis
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Principle component analysis
The goal of principle component analysis (PCA) is to 
project the data onto linearly uncorrelated variables in a 
(possibly) lower-dimensional subspace that preserves as 
much of the variance of the original data as possible
 it is also known as Karhunen–Lòeve transform or Hotelling transform

 and goes by many other names

In matrix terms, we want to find a column-orthogonal 
𝑛𝑛-by-𝑟𝑟 matrix 𝑼𝑼 that projects an 𝑛𝑛-dimensional 
data vector 𝒙𝒙 into an 𝑟𝑟-dimensional vector 𝒂𝒂 = 𝑼𝑼𝑇𝑇𝒙𝒙
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Linear Algebra Recap
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Vectors
A vector is 
 a 1D array of numbers
 a geometric entity with magnitude and direction

The norm of a vector
defines its magnitude
 Euclidean (𝐿𝐿2) norm:
𝒙𝒙 = 𝒙𝒙 2 = ∑𝑖𝑖=1𝑛𝑛 𝒙𝒙𝑖𝑖2

1/2

 𝐿𝐿𝑝𝑝 norm (1 ≤ 𝑝𝑝 ≤ ∞)
𝒙𝒙 𝑝𝑝 = ∑𝑖𝑖=1𝑛𝑛 |𝒙𝒙𝑖𝑖|𝑝𝑝 1/𝑝𝑝

The direction is 
the angle
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Basic operations on vectors
A transpose 𝒗𝒗𝑇𝑇transposes a 
row vector into a column vector and vice versa

If 𝒗𝒗,𝒘𝒘 ∈ ℝ𝑛𝑛, 𝒗𝒗 + 𝒘𝒘 is a vector with 𝒗𝒗 + 𝒘𝒘 𝑖𝑖 = 𝑣𝑣𝑖𝑖 + 𝑤𝑤𝑖𝑖

For vector 𝒗𝒗 and scalar 𝛼𝛼, 𝛼𝛼𝒗𝒗 𝑖𝑖 = 𝛼𝛼𝒗𝒗𝑖𝑖

A dot product of two vectors 𝒗𝒗,𝒘𝒘 ∈ ℝ𝑛𝑛 is 𝒗𝒗 ⋅ 𝒘𝒘 = ∑𝑖𝑖=1𝑛𝑛 𝒗𝒗𝑖𝑖𝒘𝒘𝒊𝒊
 a.k.a. scalar product or inner product
 alternative notation: 𝒗𝒗,𝒘𝒘 , 𝒗𝒗𝑇𝑇𝒘𝒘, 𝒗𝒗𝒘𝒘𝑇𝑇

 in Euclidean space  𝒗𝒗 ⋅ 𝒘𝒘 = 𝒗𝒗 𝒘𝒘 cos 𝜽𝜽
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Basic operations on matrices
Matrix transpose 𝑨𝑨𝑇𝑇 has the rows of 𝑨𝑨 as its columns 

If 𝑨𝑨 and 𝑩𝑩 are 𝑛𝑛-by-𝑚𝑚 matrices, then 𝑨𝑨 + 𝑩𝑩 is an 
𝑛𝑛-by-𝑚𝑚 matrix with 𝑨𝑨 + 𝑩𝑩 𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑖𝑖𝑖𝑖 + 𝑛𝑛𝑖𝑖𝑖𝑖

If 𝑨𝑨 is 𝑛𝑛-by-𝑘𝑘 and 𝑩𝑩 is 𝑘𝑘-by-𝑚𝑚, then 𝑨𝑨𝑩𝑩 is an 𝑛𝑛-by-𝑚𝑚
matrix with 

 the inner dimension (𝑘𝑘) must agree (!)
 vector outer product 𝒗𝒗𝒘𝒘𝑇𝑇 (for column vectors) is 

the matrix product of 𝑛𝑛-by-1 and 1-by-𝑚𝑚 matrices
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Types of matrices
Diagonal 𝑛𝑛-by-𝑛𝑛 matrix
 identity matrix 𝑰𝑰𝑛𝑛 is a diagonal 

𝑛𝑛-by-𝑛𝑛 matrix with 1s in diagonal

Upper triangular matrix
 lower triangular is the transpose
 if diagonal is full of 0s, matrix is

strictly triangular

Permutation matrix
 Each row and column has exactly one 1, rest are 0

Symmetric matrix: 𝑴𝑴 = 𝑴𝑴𝑇𝑇
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Basic concepts
Two vectors 𝒙𝒙 and 𝒚𝒚 are orthogonal
if their inner product ⟨𝒙𝒙,𝒚𝒚⟩ is 0
 vectors are orthonormal if they have unit norm, ||𝒙𝒙|| = ||𝒚𝒚|| = 1
 in Euclidean space, this means that ||𝒙𝒙|| ||𝒚𝒚|| cos𝜃𝜃 = 0 which happens 

iff cos𝜃𝜃 = 0 which means 𝒙𝒙 and 𝒚𝒚 are perpendicular to each other  

A square matrix X is orthogonal
if its rows and columns are orthonormal
 an 𝑛𝑛-by-𝑚𝑚 matrix 𝑿𝑿 is 

row-orthogonal if 𝑛𝑛 < 𝑚𝑚 and its rows are orthogonal and 
column-orthogonal if 𝑛𝑛 > 𝑚𝑚 and its columns are orthogonal

II-1: 44



IRDM ‘15/16

Linear Independency
Vector 𝒗𝒗 ∈ ℝ𝑛𝑛 is linearly dependent from 
a set of vectors 𝑊𝑊 = {𝒘𝒘𝑖𝑖 ∈ ℝ𝑛𝑛 ∶ 𝑖𝑖 = 1, … ,𝑚𝑚} if 
there exists a set of coefficients 𝛼𝛼𝑖𝑖 such that
 if 𝒗𝒗 is not linearly dependent, it is linearly independent
 that is, 𝒗𝒗 cannot be expressed as a linear combination of the vectors in 𝑊𝑊

A set of vectors 𝑉𝑉 = {𝑣𝑣𝑣𝑣 ∈ ℝ𝑛𝑛 ∶ 𝑖𝑖 = 1, … ,𝑚𝑚} is
linearly independent if 𝒗𝒗𝑖𝑖 is linearly independent 
from 𝑉𝑉 {𝒗𝒗𝑖𝑖} for all 𝑖𝑖
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Matrix rank
The column rank of an 𝑛𝑛-by-𝑚𝑚 matrix 𝑴𝑴 is 
the number of linearly independent columns of 𝑴𝑴

The row rank is the number of 
linearly independent rows of 𝑴𝑴

The Schein rank of 𝑴𝑴 is the least integer 𝑘𝑘 such that 𝑴𝑴 =
𝑨𝑨𝑨𝑨 for some 𝑛𝑛-by-𝑘𝑘 matrix 𝑨𝑨 and 𝑘𝑘-by-𝑚𝑚 matrix 𝑩𝑩
 equivalently, the least 𝑘𝑘 such that 𝑴𝑴 is a sum of 𝑘𝑘 vector outer products

All these ranks are equivalent!
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The matrix inverse
The inverse of a matrix 𝑴𝑴 is the unique matrix 𝑵𝑵 for 
which 𝑴𝑴𝑴𝑴 = 𝑵𝑵𝑵𝑵 = 𝑰𝑰
 the inverse is denoted by 𝑴𝑴−1

𝑴𝑴 has an inverse (is invertible) iff
 𝑴𝑴 is square (𝑛𝑛-by-𝑛𝑛)
 the rank of 𝑴𝑴 is 𝑛𝑛 (full rank)

Non-square matrices can have left or right inverses
 𝑴𝑴𝑴𝑴 = 𝑰𝑰 or 𝑳𝑳𝑳𝑳 = 𝑰𝑰

If 𝑴𝑴 is orthogonal, then (and only then) 𝑴𝑴−1 = 𝑴𝑴𝑇𝑇

 that is, 𝑴𝑴𝑴𝑴𝑇𝑇 = 𝑴𝑴𝑇𝑇𝑴𝑴 = 𝑰𝑰
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Fundamental decompositions
A matrix decomposition (or factorization) presents an 𝑛𝑛-by-
𝑚𝑚 matrix 𝑨𝑨 as a product of two (or more) factor matrices
 𝑨𝑨 = 𝑩𝑩𝑩𝑩

For approximate decompositions, 𝑨𝑨 ≈ 𝑩𝑩𝑩𝑩

The decomposition size is the inner dimension of 𝑩𝑩 and 𝑪𝑪
 number of columns in 𝑩𝑩 and number of rows in 𝑪𝑪
 for exact decompositions, the size is no less than the rank of the matrix
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Eigenvalues and eigenvectors
If 𝑿𝑿 is an 𝑛𝑛-by-𝑛𝑛 matrix and 𝒗𝒗 is a vector such that 
𝑿𝑿𝑿𝑿 = 𝜆𝜆𝒗𝒗 for some scalar 𝜆𝜆, then
 𝜆𝜆 is an eigenvalue of 𝑿𝑿
 𝒗𝒗 is an eigenvector of 𝑿𝑿 associated to 𝜆𝜆

That is, eigenvectors are those vectors 𝒗𝒗 for which 𝑿𝑿𝑿𝑿
only changes their magnitude, not direction 
 it is possible to exactly reverse the direction
 the change in magnitude is the eigenvalue

If 𝒗𝒗 is an eigenvector of 𝑿𝑿 and 𝛼𝛼 is a scalar, then 𝛼𝛼𝒗𝒗 is 
also an eigenvector with the same eigenvalue
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Properties of eigenvalues
Multiple linearly independent eigenvectors can 
be associated with the same eigenvalue
 the algebraic multiplicity of the eigenvalue

Every 𝑛𝑛-by-𝑛𝑛 matrix has 𝑛𝑛 eigenvectors and 𝑛𝑛 eigenvalues 
(counting multiplicity)
 some of these can be complex numbers

If a matrix is symmetric, then all its eigenvalues are real

Matrix is invertible iff all its eigenvalues are non-zero

II-1: 50



IRDM ‘15/16

Eigendecomposition
The (real-valued) eigendecomposition of an 𝑛𝑛-by-𝑛𝑛
matrix 𝑿𝑿 is 𝑿𝑿 = 𝑸𝑸𝚲𝚲𝑸𝑸−1

 𝚲𝚲 is a diagonal matrix with eigenvalues in the diagonal
 columns of 𝑸𝑸 are the eigenvectors associated with the eigenvalues in 𝚲𝚲

Matrix 𝑿𝑿 has to be diagonalizable
 𝑷𝑷𝑷𝑷𝑷𝑷−1 is a diagonal matrix for some invertible matrix 𝑷𝑷

Matrix 𝑿𝑿 has to have 𝑛𝑛 real eigenvalues (counting 
multiplicity)
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Some useful facts
Not all matrices have eigendecomposition
 not all invertible matrices have eigendecomposition
 not all matrices that have eigendecomposition are invertible
 if 𝑿𝑿 is invertible and has eigendecomposition, then 𝑿𝑿−1 = 𝑸𝑸𝚲𝚲−1𝑸𝑸−1

If 𝑿𝑿 is symmetric and invertible (and real), then 𝑿𝑿 has 
eigendecomposition 𝑿𝑿 = 𝑸𝑸𝚲𝚲𝑸𝑸𝑇𝑇
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Back to PCA
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Example of 1-D PCA (again)
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Principle component analysis, again
The goal of principle component analysis (PCA) is to 
project the data onto linearly uncorrelated variables in a 
(possibly) lower-dimensional subspace that preserves as 
much of the variance of the original data as possible
 it is also known as Karhunen–Lòeve transform or Hotelling transform

 and goes by many other names

In matrix terms, we want to find a column-orthogonal 
𝑛𝑛-by-𝑟𝑟 matrix 𝑼𝑼 that projects an 𝑛𝑛-dimensional 
data vector 𝒙𝒙 into an 𝑟𝑟-dimensional vector 𝒂𝒂 = 𝑼𝑼𝑇𝑇𝒙𝒙
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Deriving PCA: 1-D case (1)
We assume our data is standardised. We want to find a unit 
vector 𝒖𝒖 that maximises the variance of the projections 𝒖𝒖𝑇𝑇𝒙𝒙𝑖𝑖𝑼𝑼. 

Scalar 𝒖𝒖𝑇𝑇𝒙𝒙𝑖𝑖 gives the coordinate of 𝒙𝒙𝑖𝑖 along 𝒖𝒖. As our data is 
centered the mean is 0, projected to 𝒖𝒖 this has coordinate 0.

The variance of the projection is

The covariance matrix 
for centered data

𝜎𝜎2 =
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝒖𝒖𝑇𝑇𝒙𝒙𝑖𝑖 − 𝜇𝜇𝒖𝒖

= 𝒖𝒖𝑇𝑇𝚺𝚺𝒖𝒖

𝚺𝚺 =
1
n
�
𝑖𝑖

𝑛𝑛

𝒙𝒙𝑖𝑖𝒙𝒙𝑖𝑖𝑇𝑇
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Deriving PCA: 1-D case (2)
To maximise the variance 𝜎𝜎2, we maximise

𝑱𝑱 𝒖𝒖 = 𝒖𝒖𝑇𝑇𝚺𝚺𝒖𝒖 − 𝜆𝜆(𝒖𝒖𝑇𝑇𝒖𝒖 − 1)

where the second term ensures 𝒖𝒖 is a unit vector

Solving the derivative gives 𝚺𝚺𝒖𝒖 = 𝜆𝜆𝒖𝒖
 𝒖𝒖 is an eigenvector and 𝜆𝜆 is an eigenvalue
 further, 𝒖𝒖𝑇𝑇𝚺𝚺𝒖𝒖 = 𝒖𝒖𝑇𝑇𝜆𝜆𝒖𝒖 implies that 𝜎𝜎2 = 𝜆𝜆
 so, to maximise variance, we need to take the largest eigenvalue

Thus, the first principal component 𝒖𝒖 is the 
dominant eigenvector of the covariance matrix 𝚺𝚺
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Example of 1-D PCA
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Deriving PCA: 𝑟𝑟-dimensions
The second principal component should be 
orthogonal to the first one, and maximise variance
 adding this constraint and doing the derivation shows that 

the second principal component is the eigenvector associated with 
the second highest eigenvalue

 in fact, to find 𝑟𝑟 principal components we simply take 
the 𝑟𝑟 eigenvectors of 𝚺𝚺 associated to the 𝑟𝑟 highest eigenvalues

 the total variance is the sum of the eigenvalues

It also turns out that maximising the variance 
minimises the mean squared error

1
𝑛𝑛�
𝑖𝑖=1

𝑛𝑛

𝒙𝒙𝑖𝑖 − 𝑼𝑼𝑇𝑇𝒙𝒙𝒙𝒙
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Computing PCA
We have two options. Either
 we compute the covariance matrix,

and its top-𝑘𝑘 eigenvectors, or
 we use singular value decomposition (SVD)

 because the covariance matrix 𝚺𝚺 = 𝑿𝑿𝑿𝑿𝑇𝑇 and if 𝑿𝑿 = 𝑼𝑼𝑼𝑼𝑽𝑽𝑇𝑇, 
the columns of 𝑼𝑼 are the eigenvectors of 𝑿𝑿𝑿𝑿𝑇𝑇

 as computing the covariance matrix can cause numerical stability 
issues with the eigendecomposition, this approach is preferred
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SVD: The Definition
Theorem. For every 𝑨𝑨 ∈ ℝ𝑛𝑛×𝑚𝑚

there exists an 𝑛𝑛-by-𝑛𝑛 orthogonal matrix 𝑼𝑼
and an 𝑚𝑚-by-𝑚𝑚 orthogonal matrix V
such that 𝑼𝑼𝑇𝑇𝑨𝑨𝑨𝑨 is an 𝑛𝑛-by-𝑚𝑚 diagonal matrix 𝚺𝚺 with 
values 𝜎𝜎1 ≥ 𝜎𝜎2 ≥ ⋯ ≥ 𝜎𝜎min 𝑛𝑛,𝑚𝑚 ≥ 0 in its diagonal

That is, every 𝑨𝑨 has decomposition 𝑨𝑨 = 𝑼𝑼𝚺𝚺𝑽𝑽𝑇𝑇

It is called the singular value decomposition of 𝑨𝑨
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SVD in a Picture

𝒗𝒗𝑖𝑖 are the right singular vectors

𝜎𝜎𝑖𝑖 are the singular values

𝒖𝒖𝑖𝑖 are the left singular vectors
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SVD, some useful equations

 𝑨𝑨 = 𝑼𝑼𝚺𝚺𝑽𝑽𝑇𝑇 = ∑𝑖𝑖 𝜎𝜎𝑖𝑖𝒖𝒖𝑖𝑖𝒗𝒗𝑖𝑖𝑇𝑇

 SVD expresses 𝑨𝑨 as a sum of rank-1 matrices

 𝑨𝑨−1 = 𝑼𝑼𝚺𝚺𝑽𝑽𝑇𝑇 −1 = 𝑽𝑽𝚺𝚺−1𝑼𝑼𝑇𝑇

 if 𝑨𝑨 is invertible, so is its SVD 

 𝑨𝑨𝑇𝑇𝑨𝑨𝒗𝒗𝑖𝑖 = 𝜎𝜎𝑖𝑖2𝒗𝒗𝑖𝑖 (for any 𝑨𝑨)
 𝑨𝑨𝑨𝑨𝑇𝑇𝒖𝒖𝑖𝑖 = 𝜎𝜎𝑖𝑖2𝒖𝒖𝑖𝑖 (for any 𝑨𝑨)
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Truncated SVD
The rank of the matrix is the number of its 
non-zero singular values (write 𝑨𝑨 = ∑𝑖𝑖 𝜎𝜎𝑖𝑖𝒖𝒖𝑖𝑖𝒗𝒗𝑖𝑖𝑇𝑇)

The truncated SVD takes the first 𝑘𝑘 columns of 𝑼𝑼
and 𝑽𝑽 and the main 𝑘𝑘-by-𝑘𝑘 submatrix of 𝚺𝚺

 𝑨𝑨𝑘𝑘 = 𝑼𝑼𝑘𝑘𝚺𝚺𝑘𝑘𝑽𝑽𝑘𝑘𝑇𝑇

 𝑼𝑼𝑘𝑘 and 𝑽𝑽𝑘𝑘 are column-orthogonal

II-1: 64



IRDM ‘15/16

Truncated SVD

Full

Truncated
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Why is SVD important?
It lets us compute various norms

It tells about the sensitivity of linear systems

It shows the dimensions of the fundamental subspaces

It gives optimal solutions to least-square linear systems

It gives the least-error rank-k-decomposition

Every matrix has one
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SVD as Low-Rank Approximation
Theorem: 
Let 𝑨𝑨 be an 𝑚𝑚-by-𝑛𝑛 matrix with rank 𝑟𝑟, and let 𝑨𝑨𝑘𝑘 = 𝑼𝑼𝑘𝑘×𝚺𝚺𝑘𝑘×𝑽𝑽𝑘𝑘𝑇𝑇, where
the 𝑘𝑘 × 𝑘𝑘 diagonal matrix 𝚺𝚺𝑘𝑘 contains the 𝑘𝑘 largest singular values of 𝑨𝑨 and 
the 𝑚𝑚 × 𝑘𝑘 matrix 𝑼𝑼𝑘𝑘 and the 𝑛𝑛 × 𝑘𝑘 matrix 𝑽𝑽𝑘𝑘 contain the corresponding
Eigenvectors from the SVD of A.

Among all 𝑚𝑚-by-𝑛𝑛 matrices 𝑪𝑪 with rank at most 𝑘𝑘
𝑨𝑨𝒌𝒌 is the matrix that minimizes the Frobenius norm

𝑨𝑨 − 𝑪𝑪 𝐹𝐹
2 = �

𝑖𝑖=1

𝑚𝑚

�
𝑗𝑗=1

𝑛𝑛

𝑨𝑨𝑖𝑖𝑖𝑖 − 𝑪𝑪𝑖𝑖𝑖𝑖
2

x

y

Example:
𝑚𝑚 = 2,𝑛𝑛 = 8, 𝑘𝑘 = 1
projection onto 𝑥𝑥𝑥 axis 
minimizes „error“ or
maximizes „variance“
in 𝑘𝑘-dimensional space
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SVD as Low-Rank Approximation
Theorem: 
Let 𝑨𝑨 be an 𝑚𝑚-by-𝑛𝑛 matrix with rank 𝑟𝑟, and let 𝑨𝑨𝑘𝑘 = 𝑼𝑼𝑘𝑘×𝚺𝚺𝑘𝑘×𝑽𝑽𝑘𝑘𝑇𝑇, where
the 𝑘𝑘 × 𝑘𝑘 diagonal matrix 𝚺𝚺𝑘𝑘 contains the 𝑘𝑘 largest singular values of 𝑨𝑨 and 
the 𝑚𝑚 × 𝑘𝑘 matrix 𝑼𝑼𝑘𝑘 and the 𝑛𝑛 × 𝑘𝑘 matrix 𝑽𝑽𝑘𝑘 contain the corresponding
Eigenvectors from the SVD of A.

Among all 𝑚𝑚-by-𝑛𝑛 matrices 𝑪𝑪 with rank at most 𝑘𝑘
𝑨𝑨𝒌𝒌 is the matrix that minimizes the Frobenius norm

𝑨𝑨 − 𝑪𝑪 𝐹𝐹
2 = �

𝑖𝑖=1

𝑚𝑚

�
𝑗𝑗=1

𝑛𝑛

𝑨𝑨𝑖𝑖𝑖𝑖 − 𝑪𝑪𝑖𝑖𝑖𝑖
2

x‘

y‘
Example:
𝑚𝑚 = 2,𝑛𝑛 = 8, 𝑘𝑘 = 1
projection onto 𝑥𝑥𝑥 axis 
minimizes „error“ or
maximizes „variance“
in 𝑘𝑘-dimensional space
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SVD as Low-Rank Approximation
Theorem: 
Let 𝑨𝑨 be an 𝑚𝑚-by-𝑛𝑛 matrix with rank 𝑟𝑟, and let 𝑨𝑨𝑘𝑘 = 𝑼𝑼𝑘𝑘×𝚺𝚺𝑘𝑘×𝑽𝑽𝑘𝑘𝑇𝑇, where
the 𝑘𝑘 × 𝑘𝑘 diagonal matrix 𝚺𝚺𝑘𝑘 contains the 𝑘𝑘 largest singular values of 𝑨𝑨 and 
the 𝑚𝑚 × 𝑘𝑘 matrix 𝑼𝑼𝑘𝑘 and the 𝑛𝑛 × 𝑘𝑘 matrix 𝑽𝑽𝑘𝑘 contain the corresponding
Eigenvectors from the SVD of A.

Among all 𝑚𝑚-by-𝑛𝑛 matrices 𝑪𝑪 with rank at most 𝑘𝑘
𝑨𝑨𝒌𝒌 is the matrix that minimizes the Frobenius norm

𝑨𝑨 − 𝑪𝑪 𝐹𝐹
2 = �

𝑖𝑖=1

𝑚𝑚

�
𝑗𝑗=1

𝑛𝑛

𝑨𝑨𝑖𝑖𝑖𝑖 − 𝑪𝑪𝑖𝑖𝑖𝑖
2

Example:
𝑚𝑚 = 2,𝑛𝑛 = 8, 𝑘𝑘 = 1
projection onto 𝑥𝑥‘ axis 
minimizes „error“ or
maximizes „variance“
in 𝑘𝑘-dimensional space
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Problems with PCA and SVD

Many characteristics of the input data are lost
 non-negativity
 integrality
 sparsity
 …

Also, computation is costly for big matrices
 approximate methods exist that can do SVD in a single sweep
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Conclusions
Preprocessing your data is crucial
 Conversion, normalisation, and dealing with missing values

Too much data is a problem
 computational complexity
 can ‘solved’ by sampling

Too high dimensional data is a problem
 everything is evenly far from everything
 feature selections retains important features of the data 
 PCA and SVD reduce dimensionality with global guarantees
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Thank you!
Preprocessing your data is crucial
 Conversion, normalisation, and dealing with missing values

Too much data is a problem
 computational complexity
 can ‘solved’ by sampling

Too high dimensional data is a problem
 everything is evenly far from everything
 feature selections retains important features of the data 
 PCA and SVD reduce dimensionality with global guarantees

II-1: 72


	Slide Number 1
	So, how do you pronounce…
	Questions of the day
	IRDM Chapter 2.1, overview
	Slide Number 5
	Slide Number 6
	Homework Guidelines
	Homework Guidelines
	Slide Number 9
	Data
	Numeric to Categorical - Discretisation
	Categorical to Numeric - Binarisation
	Slide Number 13
	Missing Values
	Handling missing values
	Some problems
	Centering
	Unit variance
	Standardisation
	Why centering?
	When not to center?
	Why unit variance?
	What’s wrong with unit variance?
	Slide Number 24
	Curse of Dimensionality
	Hypercube and Hypersphere
	Where is Waldo? (1)
	Hypersphere within a Hypercube
	Hypersphere within a Hypercube
	Where is Waldo? (2)
	Volume of thin shell of hypersphere
	Slide Number 32
	Dimensionality Reduction
	Feature Subset Selection
	Searching for Subsets
	Scoring Feature Subsets
	Principle component analysis
	Principle component analysis
	Slide Number 39
	Vectors
	Basic operations on vectors
	Basic operations on matrices
	Types of matrices
	Basic concepts
	Linear Independency
	Matrix rank
	The matrix inverse
	Fundamental decompositions
	Eigenvalues and eigenvectors
	Properties of eigenvalues
	Eigendecomposition
	Some useful facts
	Slide Number 53
	Example of 1-D PCA (again)
	Principle component analysis, again
	Deriving PCA: 1-D case (1)
	Deriving PCA: 1-D case (2)
	Example of 1-D PCA
	Deriving PCA: 𝑟-dimensions
	Computing PCA
	SVD: The Definition
	SVD in a Picture
	SVD, some useful equations
	Truncated SVD
	Truncated SVD
	Why is SVD important?
	SVD as Low-Rank Approximation
	SVD as Low-Rank Approximation
	SVD as Low-Rank Approximation
	Problems with PCA and SVD
	Conclusions
	Thank you!

