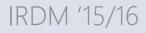
### Chapter 4: Frequent Itemsets and Association Rules Jilles Vreeken

Revision 1, November 9<sup>th</sup> small typo fixed





• ---

3 Nov 2015





#### Question of the week



How can we mine interesting patterns and useful rules from data?

#### Motivational Example

You run an on-line store, and want to increase sales. You decide on **associative advertising**: show ads of relevant products **before** your users search for these



Easy, knowing the left-hand side. What if we don't?

### IRDM Chapter 4, overview

#### 1. Definitions

- 2. Algorithms for Frequent Itemset Mining
- 3. Association Rules and Interestingness
- 4. Summarising Itemset Collections



You'll find this covered in Aggarwal Chapter 4, 5.2 Zaki & Meira, Ch. 10, 11

## Chapter IV.1: Definitions



#### Transaction data model

The data type considered in **itemset mining** is called **transaction data**.

Let  $\mathcal{I}$  be a set of items, e.g. the products for sale in a shop. A transaction  $t \in \mathcal{P}(\mathcal{I})$ , or,  $t \subseteq \mathcal{I}$ , is a set of items e.g. representing the items a customer bought. A dataset D is a bag of transactions, e.g. the different sale transactions on a given day.

### Market Basket Data



Items for sale:  $\mathcal{I} = \{apple, beer, cola, diapers, eggs\}$ 

Transactions: 1: {apple, cola}, 2: {apple, beer, diapers, eggs}, 3: {cola, beer, diapers}, 4: {apple, beer, cola, diapers}, 5: {apple, cola, diapers}

**Transaction IDs** 

| TID | Apple        | Beer         | Cola         | Diapers      | Eggs |
|-----|--------------|--------------|--------------|--------------|------|
| 1   | ✓            |              | $\checkmark$ |              |      |
| 2   | ~            | $\checkmark$ |              | ✓            | ~    |
| 3   |              | $\checkmark$ | $\checkmark$ | $\checkmark$ |      |
| 4   | √            | $\checkmark$ | $\checkmark$ | $\checkmark$ |      |
| 5   | $\checkmark$ |              | $\checkmark$ | $\checkmark$ |      |

#### Transaction data as subsets null С Е В D А {apple, cola} DE AB AC AD AE BC BD BE CD CE {apple, cola, diapers} {apple, cola, diapers} ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE a: apples ABCE ABDE ACDE ABCD BCDE b: beer c: cola {apple, beer, {apple, beer, ABCDE d: diapers cola, diapers} diapers, eggs} e: eggs $2^m$ subsets of m items. Layer k has $\binom{m}{k}$ subsets.

#### Transaction data as a binary matrix

| TID | Apple | Beer | Cola | Diapers | Eggs |
|-----|-------|------|------|---------|------|
| 1   | 1     | 0    | 1    | 0       | 0    |
| 2   | 1     | 1    | 0    | 1       | 1    |
| 3   | 0     | 1    | 1    | 1       | 0    |
| 4   | 1     | 1    | 1    | 1       | 0    |
| 5   | 1     | 0    | 1    | 1       | 0    |

Any data that can be represented as a binary matrix can be used

#### Itemsets, support, and frequency

An **itemset** is a set of items, e.g.  $X \subseteq \mathcal{I}$ 

- a transaction t = (tid, X) contains itemset Y if  $Y \subseteq X$
- the support of itemset X in database D is the number of transactions in D that contain it,

 $supp(X, D) = |\{t \in D : t \text{ contains } X\}|$ 

• the **frequency** of itemset X in database **D** is its relative support,  $freq(X, \mathbf{D}) = \frac{supp(X, \mathbf{D})}{|\mathbf{D}|}$ 

An itemset X is said to be **frequent** if its frequency is above a user-defined threshold  $\sigma$ .

people often exchange the meaning of frequency and support

#### Frequent itemset example

| TID | Apple | Beer | Cola | Diapers | Eggs |
|-----|-------|------|------|---------|------|
| 1   | 1     | 0    | 1    | 0       | 0    |
| 2   | 1     | 1    | 0    | 1       | 1    |
| 3   | 0     | 1    | 1    | 1       | 0    |
| 4   | 1     | 1    | 1    | 1       | 0    |
| 5   | 1     | 0    | 1    | 1       | 0    |

Itemset {apple, cola} has support 3 and frequency 3/5 Itemset {apple, cola, eggs} has support and frequency 0 For  $minfreq = \frac{1}{2}$ , the frequent itemsets are: {apple},{cola},{diapers},{beer},{apple, cola}, {apple, diapers},{cola, diapers}, and {diapers, beer}

#### Association Rules and Confidence

An **association rule** is a rule of type  $X \rightarrow Y$ where X and Y are disjoint itemsets  $(X \cap Y = \emptyset)$ 

• "if a transaction supports *X* it likely also supports *Y*"

The support of rule  $X \to Y$  in data **D** is  $supp(X \to Y, \mathbf{D}) = supp(X \cup Y, \mathbf{D})$ 

The **confidence** of a rule  $X \to Y$  in data **D** is  $conf(X \to Y, \mathbf{D}) = supp(X \cup Y, \mathbf{D})/supp(X, \mathbf{D})$ 

confidence is the empirical conditional probability that a transaction t supporting itemset X also contains itemset Y

#### Association rule example

| TID | Apple | Beer | Cola | Diapers | Eggs |
|-----|-------|------|------|---------|------|
| 1   | 1     | 0    | 1    | 0       | 0    |
| 2   | 1     | 1    | 0    | 1       | 1    |
| 3   | 0     | 1    | 1    | 1       | 0    |
| 4   | 1     | 1    | 1    | 1       | 0    |
| 5   | 1     | 0    | 1    | 1       | 0    |

{apple, cola}  $\rightarrow$  {diapers} has support 2 and frequency 2/3 {diapers}  $\rightarrow$  {apple, cola} has support 2 and frequency 1/2 {eggs}  $\rightarrow$  {apple, beer, diapers} has support 1 and frequency 1

### Applications

#### Frequent itemset mining

- which items often appear together?
  - what products do people buy together?
  - which pages of a website people often see in one visit?
  - which genes are often co-activated?
- later we'll learn better concepts for this

#### Association rule mining

- implication analysis: if X is bought/observed what else will probably be bought/observed?
  - if people who buy milk and cereal also buy bananas, we can locate bananas close to milk or cereal to improve sales
  - if people who search for swimsuits and cameras also search for holidays, we should show holiday advertisements to those who search for swimsuits and cameras

# Chapter IV.2: Algorithms

The Naïve Algorithm The Apriori Algorithm Improving Apriori: Eclat The FP-Growth Algorithm

## The Naïve Algorithm

Try every possible itemset and check if it is frequent!

How to try the itemsets?

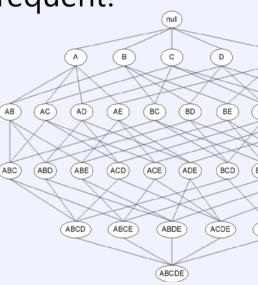
breadth-first or depth-first in subset lattice

How to compute the support?

check for every transaction is the itemset included

#### Time complexity

- computing the support of an itemset takes  $O(|I| \times |D|)$ , and there are  $2^{|I|}$  possible itemsets, so worst-case complexity is  $O(|I| \times |D| \times 2^{|I|})$
- I/O complexity is  $O(2^{|I|})$  database accesses



### The Apriori Algorithm

#### The **downward closure** of support:

- if X and Y are itemsets s.t.  $X \subseteq Y$  then  $supp(X) \ge supp(Y)$
- in other words, if *X* is infrequent, so are **all its supersets**

The Apriori algorithm uses this to prune the search space
Apriori never generates a candidate that has an infrequent subset

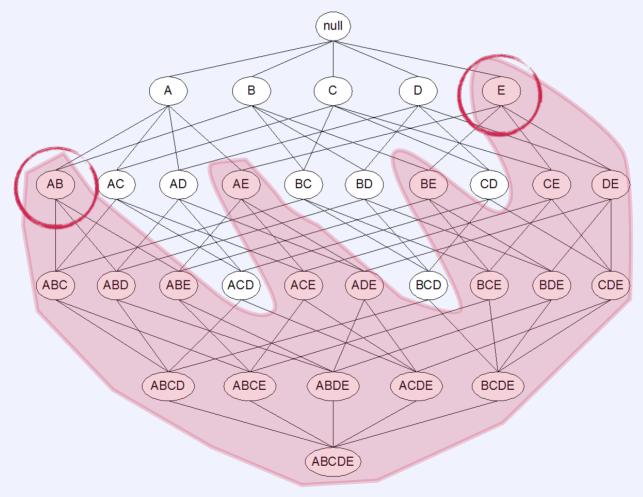
Worst-case time complexity is still  $O(|\mathcal{I}| \times |\mathbf{D}| \times 2^{|\mathcal{I}|})$ 

in practice, it can be much much less

(Agrawal & Srikant, 1994, 18k cites; Mannila, Toivonen & Verkamo, 1994, 1k cites; Agrawal, Mannila, Srikant, Toivonen & Verkamo, 1996, 3k cites)

### Apriori pruning

What happens when {e} and {ab} are infrequent?



### Improving I/O

The Naïve algorithm computes the frequency of every candidate itemset **indendepently** 

exponential number of database scans

It's much smarter to loop over the transactions:

- collect all candidate k-itemsets
- iterate over every transaction
  - for every k-subitemset of the transaction, if it is a candidate, increase the candidate's support by 1

Now we need to sweep over the data only once per level (!)

• at most  $O(|\mathcal{I}|)$  database scans

#### Example of Apriori – blackboard

|   | Α | В | С | D | E |
|---|---|---|---|---|---|
| 1 | 1 | 1 | 0 | 1 | 1 |
| 2 | 0 | 1 | 1 | 0 | 1 |
| 3 | 1 | 1 | 0 | 1 | 1 |
| 4 | 1 | 1 | 1 | 0 | 1 |
| 5 | 1 | 1 | 1 | 1 | 1 |
| 6 | 0 | 1 | 1 | 1 | 0 |
| Σ | 4 | 6 | 4 | 4 | 5 |

#### Improving over Apriori: Eclat

In Apriori, the support computation requires creating all *k*-subitemsets of all transactions

many of them might not be in the candidate set

Way to speed up things: index the database so that we compute the support directly

- a **tidset** of itemset X, t(X), is the set of transaction IDs of D that contain X, i.e.  $t(X) = \{tid: (tid, Y) \in D \text{ with } X \subseteq Y\}$ 
  - supp(X) = |t(X)|
  - $t(XY) = t(X) \cap t(Y)$ 
    - *XY* is shorthand notation for  $X \cup Y$

## We can compute support by **intersecting** tidsets, and counting the cardinality of such an intersection.

## The Eclat algorithm

The **Eclat** algorithm uses tidsets to compute support

#### A prefix equivalence class (PEC) is

a set of all itemsets that share the same prefix

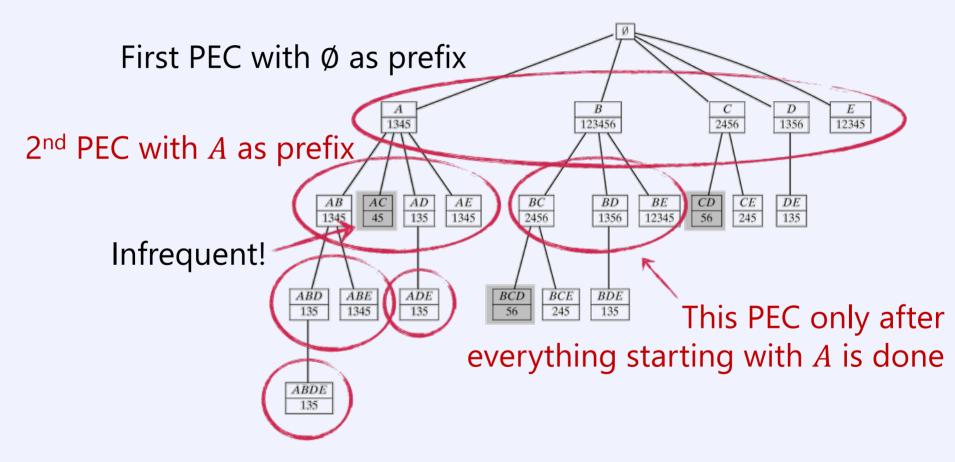
- we assume some (arbitrary) order on the items
- e.g. all itemsets that contain items A and B

Eclat merges two itemsets from the same PEC and intersects their tidsets to compute support

 if the result is frequent, it is moved down to a PEC with prefix matching the first itemset

Eclat traverses the prefix tree in a DFS-like manner

#### Eclat in Action





### dEclat: differences of tidsets

Long tidsets slow down Eclat

A **diffset** stores the differences of the tidsets

- the diffset of *ABC*, d(ABC) is  $t(AB) \setminus t(ABC)$ 
  - i.e. all tids that contain the prefix *AB* but **not** *ABC*

Updates: $d(ABC) = d(C) \setminus d(AB)$ Support:supp(ABC) = supp(AB) - |d(ABC)|

#### We can replace tidsets with diffsets if they are shorter

this replacement can happen at any move to a new PEC

### The FP-Growth algorithm

The **FP-Growth** algorithm is the most widely-used algorithm for mining frequent itemsets

- it preprocesses the data to build an **FP-tree** data structure
- itemsets are then mined using this data structure

An FP-tree is a condensed representation of the data

the smaller, the more efficient the mining

It looks very different but is intrinsically similar to Eclat.

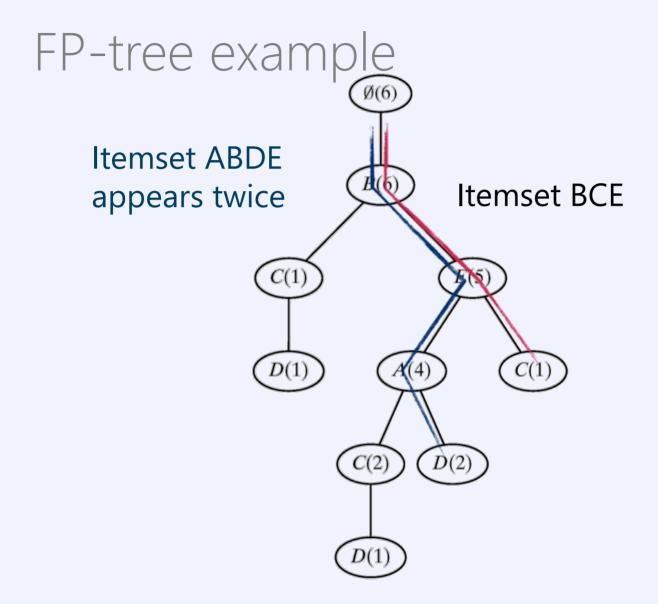
### Building an FP-tree

Initially the tree contains the empty set as a root

For each transaction, we will add a branch that contains one node for each item in the transaction

- if a prefix of the transaction is already in the tree, we increase the counts of these nodes, and add only the suffix (with count 1)
- every transaction is now in a path from the root to a leaf
  - transactions that are proper subsets of others do not reach the leaf

Items in transactions are added in decreasing order of support goal: as small as tree as possible



### Mining frequent itemsets

To mine itemsets, we **project** the FP-tree onto a prefix

- initially these contain single items in increasing order of support
- the result is another FP-tree

If the projected tree is a path, we add all subsets of nodes together with the prefix as frequent itemsets

- the support is the smallest count
- if the projected tree is not a path, we call FP-growth recursively

#### How to project?

To project tree T to item i we first find all occurrences of i from T

- for each occurrence, find the path from root to node
- copy this path to the projected tree without the node corresponding to i
- increase the count of every node in the copied path by the count of the node corresponding to *i*

Item *i* is added to the prefix

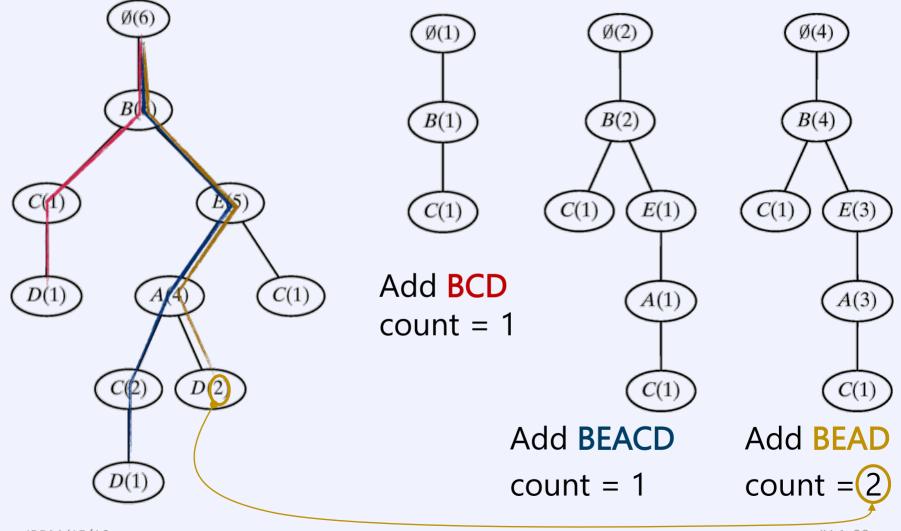
Remove nodes of elements with support  $\leq$  **minsup** 

• the support of an element is the sum of counts in its corresponding nodes

If the resulting tree is a path, list the frequent itemsets

 else, add all itemsets with current prefix and any single item from the tree, and call FP-Growth recursively

## Example of projection



IV-1:30

IRDM '15/16

## Example of mining frequent itemsets

The tree projected onto prefix D

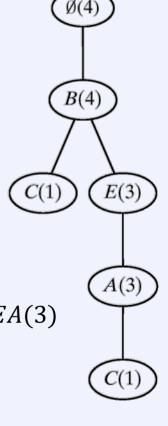
Nodes with *C* are infrequent

can be removed

The result is a path, so the frequent itemsets are all subsets of nodes with prefix *D* 

- their support is the smallest count
- *DB*(4), *DE*(3), *DA*(3), *DBE*(3), *DBA*(3), *DEA*(3) and *DBEA*(3)

Similar process is done to other prefixes, possibly with recursive calls



### An oldie but a goodie

Apriori is much faster than the naïve algorithm.

• it is not, however, the most efficient algorithm.

Eclat and FP-growth use tricks to speed-up counting.

- i.e. projection and smart data structures
- these tricks work only if **all data fits in memory**.

As Apriori limits the I/O operations to  $O(|\mathcal{I}|)$  it **is the fastest** of the three when data does not fit in memory.

#### Conclusions

#### Transaction data

• co-occurrence data, any binary table or matrix can be considered.

#### Frequent itemsets

• those itemsets that occur more often in **D** than *minsup* times

#### Mining frequent itemsets

- exponential output space
- Apriori prunes infrequent candidates by monotonicity
- Eclat considers tidlists to reduce number of database passes
- FP-growth considers prefix trees

Thank you!

#### Transaction data

• co-occurrence data, any binary table or matrix can be considered.

#### Frequent itemsets

• those itemsets that occur more often in **D** than *minsup* times

#### Mining frequent itemsets

- exponential output space
- Apriori prunes infrequent candidates by monotonicity
- Eclat considers tidlists to reduce number of database passes
- FP-growth considers prefix trees