
IRDM ‘15/16

Jilles Vreeken

Chapter 4: Frequent Itemsets and 
Association Rules

3 Nov 2015

Revision 1, November 9th

small typo fixed



Question of the week

How can we mine
interesting patterns 

and useful rules
from data?
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Motivational Example
You run an on-line store, and want to increase sales. 
You decide on associative advertising: show ads of 
relevant products before your users search for these

Easy, knowing the left-hand side. What if we don’t?
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IRDM Chapter 4, overview
1. Definitions
2. Algorithms for Frequent Itemset Mining
3. Association Rules and Interestingness
4. Summarising Itemset Collections

You’ll find this covered in 
Aggarwal Chapter 4, 5.2
Zaki & Meira, Ch. 10, 11
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Chapter IV.1: Definitions
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Transaction data model
The data type considered in itemset mining 
is called transaction data.

Let ℐ be a set of items, 
e.g. the products for sale in a shop.  

A transaction 𝑡𝑡 ∈ 𝒫𝒫(ℐ), or, 𝑡𝑡 ⊆ ℐ, is a set of items 
e.g. representing the items a customer bought. 

A dataset 𝑫𝑫 is a bag of transactions, 
e.g. the different sale transactions on a given day.
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Market Basket Data
Items for sale: ℐ = {apple, beer, cola, diapers, eggs}
Transactions: 1: {apple, cola}, 2: {apple, beer, diapers, eggs}, 

3: {cola, beer, diapers}, 4: {apple, beer, cola, diapers}, 
5: {apple, cola, diapers}

IV-1: 7

TID Apple Beer Cola Diapers Eggs

1 ✔ ✔

2 ✔ ✔ ✔ ✔

3 ✔ ✔ ✔

4 ✔ ✔ ✔ ✔

5 ✔ ✔ ✔

Transaction IDs
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Transaction data as subsets

IV-1: 8

a: apples
b: beer
c: cola
d: diapers
e: eggs

2𝑚𝑚 subsets of 𝑚𝑚 items. Layer 𝑘𝑘 has 𝑚𝑚𝑘𝑘 subsets.

{apple, beer,
cola, diapers}

{apple, cola, diapers}

{apple, beer,
diapers, eggs}

{apple, cola, diapers}

{apple, cola}
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Transaction data as a binary matrix

IV-1: 9

TID Apple Beer Cola Diapers Eggs

1 1 0 1 0 0

2 1 1 0 1 1

3 0 1 1 1 0

4 1 1 1 1 0

5 1 0 1 1 0

Any data that can be represented as a binary matrix can be used
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Itemsets, support, and frequency
An itemset is a set of items, e.g. 𝑋𝑋 ⊆ ℐ
 a transaction 𝑡𝑡 = (tid,𝑋𝑋) contains itemset 𝑌𝑌 if 𝑌𝑌 ⊆ 𝑋𝑋
 the support of itemset 𝑋𝑋 in database 𝑫𝑫 is the number 

of transactions in 𝑫𝑫 that contain it, 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑋𝑋,𝑫𝑫 = 𝑡𝑡 ∈ 𝑫𝑫: 𝑡𝑡 contains 𝑋𝑋

 the frequency of itemset 𝑋𝑋 in database 𝑫𝑫 is its relative support,

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑋𝑋,𝑫𝑫 =
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑋𝑋,𝑫𝑫

𝑫𝑫

An itemset 𝑋𝑋 is said to be frequent if its frequency is above a 
user-defined threshold 𝜎𝜎. 

 people often exchange the meaning of frequency and support
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Frequent itemset example

Itemset {apple, cola} has support 3 and frequency 3/5
Itemset {apple, cola, eggs} has support and frequency 0
For 𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 1

2
, the frequent itemsets are:

{apple},{cola},{diapers},{beer},{apple, cola},
{apple, diapers},{cola, diapers}, and {diapers, beer}

IV-1: 11

TID Apple Beer Cola Diapers Eggs

1 1 0 1 0 0

2 1 1 0 1 1

3 0 1 1 1 0

4 1 1 1 1 0

5 1 0 1 1 0
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Association Rules and Confidence
An association rule is a rule of type 𝑋𝑋 → 𝑌𝑌
where 𝑋𝑋 and 𝑌𝑌 are disjoint itemsets (𝑋𝑋 ∩ 𝑌𝑌 = ∅)
 “if a transaction supports 𝑋𝑋 it likely also supports 𝑌𝑌”

The support of rule 𝑋𝑋 → 𝑌𝑌 in data 𝑫𝑫 is
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑋𝑋 → 𝑌𝑌,𝑫𝑫 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋 ∪ 𝑌𝑌,𝑫𝑫)

The confidence of a rule 𝑋𝑋 → 𝑌𝑌 in data 𝑫𝑫 is
𝑐𝑐𝑐𝑐𝑚𝑚𝑓𝑓 𝑋𝑋 → 𝑌𝑌,𝑫𝑫 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋 ∪ 𝑌𝑌,𝑫𝑫)/𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋,𝑫𝑫)

 confidence is the empirical conditional probability that a 
transaction 𝑡𝑡 supporting itemset 𝑋𝑋 also contains itemset 𝑌𝑌

IV-1: 12
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Association rule example

apple, cola → {diapers} has support 2 and frequency 2/3
diapers → {apple, cola} has support 2 and frequency 1/2
eggs → {apple, beer, diapers} has support 1 and frequency 1

IV-1: 13

TID Apple Beer Cola Diapers Eggs

1 1 0 1 0 0

2 1 1 0 1 1

3 0 1 1 1 0

4 1 1 1 1 0

5 1 0 1 1 0
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Applications
Frequent itemset mining
 which items often appear together?

 what products do people buy together?
 which pages of a website people often see in one visit?
 which genes are often co-activated?

 later we’ll learn better concepts for this

Association rule mining
 implication analysis: if 𝑋𝑋 is bought/observed what else will 

probably be bought/observed?
 if people who buy milk and cereal also buy bananas, 

we can locate bananas close to milk or cereal to improve sales
 if people who search for swimsuits and cameras also search for 

holidays, we should show holiday advertisements to those 
who search for swimsuits and cameras

IV-1: 14
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The Naïve Algorithm
The Apriori Algorithm

Improving Apriori: Eclat
The FP-Growth Algorithm

Chapter IV.2: Algorithms

IV-1: 15
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The Naïve Algorithm
Try every possible itemset and check if it is frequent!

How to try the itemsets? 
 breadth-first or depth-first in subset lattice

How to compute the support?
 check for every transaction is the itemset included

Time complexity 
 computing the support of an itemset takes 𝑂𝑂(|𝐼𝐼| × |𝑫𝑫|), and there are 

2 𝐼𝐼 possible itemsets, so worst-case complexity is 𝑂𝑂(|𝐼𝐼| × |𝐷𝐷| × 2 𝐼𝐼 )
 I/O complexity is 𝑂𝑂(2 𝐼𝐼 ) database accesses

IV-1: 16



IRDM ‘15/16

The Apriori Algorithm
The downward closure of support:
 if 𝑋𝑋 and 𝑌𝑌 are itemsets s.t. 𝑋𝑋 ⊆ 𝑌𝑌 then 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑋𝑋 ≥ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑌𝑌)
 in other words, if 𝑋𝑋 is infrequent, so are all its supersets

The Apriori algorithm uses this to prune the search space
 Apriori never generates a candidate that has an infrequent subset

Worst-case time complexity is still 𝑂𝑂 ℐ × 𝑫𝑫 × 2 ℐ

 in practice, it can be much much less

(Agrawal & Srikant, 1994, 18k cites; Mannila, Toivonen & Verkamo, 1994, 1k cites; Agrawal, Mannila, Srikant, Toivonen & Verkamo, 1996, 3k cites)

IV-1: 17
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Apriori pruning
What happens when {e} and {ab} are infrequent?

IV-1: 18
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Improving I/O
The Naïve algorithm computes the frequency of 
every candidate itemset indendepently
 exponential number of database scans

It’s much smarter to loop over the transactions:
 collect all candidate 𝑘𝑘-itemsets
 iterate over every transaction

 for every 𝑘𝑘-subitemset of the transaction, if it is a candidate, 
increase the candidate’s support by 1

Now we need to sweep over the data only once per level (!)
 at most 𝑂𝑂( ℐ ) database scans

IV-1: 19
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Example of Apriori – blackboard

IV-1: 20

A B C D E

1 1 1 0 1 1

2 0 1 1 0 1

3 1 1 0 1 1

4 1 1 1 0 1

5 1 1 1 1 1

6 0 1 1 1 0

∑ 4 6 4 4 5
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Improving over Apriori: Eclat
In Apriori, the support computation requires 
creating all 𝑘𝑘-subitemsets of all transactions
 many of them might not be in the candidate set

Way to speed up things: index the database 
so that we compute the support directly
 a tidset of itemset 𝑋𝑋, 𝑡𝑡(𝑋𝑋), is the set of transaction IDs of 𝑫𝑫 that 

contain 𝑋𝑋, i.e. 𝑡𝑡 𝑋𝑋 = {𝑡𝑡𝑚𝑚𝑡𝑡: 𝑡𝑡𝑚𝑚𝑡𝑡,𝑌𝑌 ∈ 𝑫𝑫 with 𝑋𝑋 ⊆ Y}
 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑋𝑋 = |𝑡𝑡 𝑋𝑋 |
 𝑡𝑡 𝑋𝑋𝑌𝑌 = 𝑡𝑡 𝑋𝑋 ∩ 𝑡𝑡 𝑌𝑌

 𝑋𝑋𝑌𝑌 is shorthand notation for 𝑋𝑋 ∪ 𝑌𝑌

We can compute support by intersecting tidsets, 
and counting the cardinality of such an intersection.

(revised on November 9th , there was a wild \ that needed to be caught)
IV-1: 21
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The Eclat algorithm
The Eclat algorithm uses tidsets to compute support

A prefix equivalence class (PEC) is 
a set of all itemsets that share the same prefix
 we assume some (arbitrary) order on the items
 e.g. all itemsets that contain items 𝐴𝐴 and 𝐵𝐵

Eclat merges two itemsets from the same PEC and 
intersects their tidsets to compute support
 if the result is frequent, it is moved down to a PEC with 

prefix matching the first itemset

Eclat traverses the prefix tree in a DFS-like manner

(Zaki et al. 1997, >1k citations)
IV-1: 22
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Eclat in Action

(Figure 8.5 in Zaki & Meira)
IV-1: 23

2nd PEC with 𝐴𝐴 as prefix

Infrequent!

First PEC with ∅ as prefix

This PEC only after 
everything starting with 𝐴𝐴 is done
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dEclat: differences of tidsets
Long tidsets slow down Eclat

A diffset stores the differences of the tidsets
 the diffset of 𝐴𝐴𝐵𝐵𝐴𝐴, 𝑡𝑡(𝐴𝐴𝐵𝐵𝐴𝐴) is 𝑡𝑡 𝐴𝐴𝐵𝐵 ∖ 𝑡𝑡(𝐴𝐴𝐵𝐵𝐴𝐴)

 i.e. all tids that contain the prefix 𝐴𝐴𝐵𝐵 but not 𝐴𝐴𝐵𝐵𝐴𝐴

Updates: 𝑡𝑡 𝐴𝐴𝐵𝐵𝐴𝐴 = 𝑡𝑡 𝐴𝐴 ∖ 𝑡𝑡(𝐴𝐴𝐵𝐵)
Support: 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐴𝐴𝐵𝐵𝐴𝐴 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐴𝐴𝐵𝐵 − 𝑡𝑡 𝐴𝐴𝐵𝐵𝐴𝐴

We can replace tidsets with diffsets if they are shorter
 this replacement can happen at any move to a new PEC

(Gouda & Zaki, 2003, 500+ cites)
IV-1: 24
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The FP-Growth algorithm
The FP-Growth algorithm is the most widely-used 
algorithm for mining frequent itemsets
 it preprocesses the data to build an FP-tree data structure
 itemsets are then mined using this data structure

An FP-tree is a condensed representation of the data
 the smaller, the more efficient the mining

It looks very different but is intrinsically similar to Eclat.

(Han et al, 2000, 6000+ citations)
IV-1: 25
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Building an FP-tree
Initially the tree contains the empty set as a root

For each transaction, we will add a branch that 
contains one node for each item in the transaction
 if a prefix of the transaction is already in the tree, we increase the 

counts of these nodes, and add only the suffix (with count 1)
 every transaction is now in a path from the root to a leaf

 transactions that are proper subsets of others do not reach the leaf

Items in transactions are added in decreasing order of support
 goal: as small as tree as possible

IV-1: 26
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FP-tree example

Itemset ABDE
appears twice

(Figure 8.9 of Zaki & Meira)
IV-1: 27

Itemset BCE
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Mining frequent itemsets
To mine itemsets, we project the FP-tree onto a prefix
 initially these contain single items in increasing order of support
 the result is another FP-tree

If the projected tree is a path, we add all subsets of nodes 
together with the prefix as frequent itemsets
 the support is the smallest count
 if the projected tree is not a path, we call FP-growth recursively

IV-1: 28
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How to project?
To project tree 𝑇𝑇 to item 𝑚𝑚 we first find all occurrences of 𝑚𝑚 from 𝑇𝑇
 for each occurrence, find the path from root to node
 copy this path to the projected tree without the node corresponding to 𝑚𝑚
 increase the count of every node in the copied path by the count of the node 

corresponding to 𝑚𝑚

Item 𝑚𝑚 is added to the prefix

Remove nodes of elements with support ≤ minsup
 the support of an element is the sum of counts in its corresponding nodes 

If the resulting tree is a path, list the frequent itemsets
 else, add all itemsets with current prefix and any single item from the tree, and 

call FP-Growth recursively

IV-1: 29
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Example of projection

(from Fig 8.8 & 8.9 of Zaki & Meira) IV-1: 30

Add BCD
count = 1

Add BEACD
count = 1

Add BEAD
count = 2



IRDM ‘15/16

Example of mining frequent itemsets
The tree projected onto prefix 𝐷𝐷

Nodes with 𝐴𝐴 are infrequent
 can be removed

The result is a path, so the frequent itemsets
are all subsets of nodes with prefix 𝐷𝐷
 their support is the smallest count
 𝐷𝐷𝐵𝐵 4 ,𝐷𝐷𝐷𝐷 3 ,𝐷𝐷𝐴𝐴 3 ,𝐷𝐷𝐵𝐵𝐷𝐷 3 ,𝐷𝐷𝐵𝐵𝐴𝐴 3 ,𝐷𝐷𝐷𝐷𝐴𝐴(3) and 𝐷𝐷𝐵𝐵𝐷𝐷𝐴𝐴(3)

Similar process is done to other prefixes, 
possibly with recursive calls

(from Fig. 8.8 of Zaki & Meira)
IV-1: 31
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An oldie but a goodie
Apriori is much faster than the naïve algorithm. 
 it is not, however, the most efficient algorithm.

Eclat and FP-growth use tricks to speed-up counting.
 i.e. projection and smart data structures 
 these tricks work only if all data fits in memory. 

As Apriori limits the I/O operations to 𝑂𝑂(|ℐ|) it is the 
fastest of the three when data does not fit in memory.

IV-1: 32
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Conclusions

Transaction data
 co-occurrence data, any binary table or matrix can be considered.

Frequent itemsets
 those itemsets that occur more often in 𝑫𝑫 than 𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠 times 

Mining frequent itemsets
 exponential output space
 Apriori prunes infrequent candidates by monotonicity
 Eclat considers tidlists to reduce number of database passes
 FP-growth considers prefix trees

IV-1: 33
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Thank you!
Transaction data
 co-occurrence data, any binary table or matrix can be considered.

Frequent itemsets
 those itemsets that occur more often in 𝑫𝑫 than 𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠 times 

Mining frequent itemsets
 exponential output space
 Apriori prunes infrequent candidates by monotonicity
 Eclat considers tidlists to reduce number of database passes
 FP-growth considers prefix trees

IV-1: 34
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