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Question of the week

How can we discover
groups of objects
that are highly similar
to each other?

10 Nov 2015 V-1:2



Clustering, where?

Biology

m creation of phylogenies (relations between organisms)

s inferring population structures from clusterings of DNA data
= analysis of genes and cellular processes (co-clustering)

Business
m grouping of consumers into market segments

Computer science
m pre-processing to reduce computation (representative-based methods)
m automatic discovery of similar items



Motivational Example

Females, cluster | Males, cluster |

TCI-HAL TCIHHAL
TCI-HAZ TCI-RD4 TCI-HAZ TCI-RD4

TCI-RD1 TCI-HA4

TCI-NS1 TCI-# TCI-N51

TCI-NS2 TCI-NS4 TCI-NS2 TCI-NS4
TCI-NS3 TCI-NS3
Females, cluster IV Males, cluster IV
TCIHAL TCI-HAL

(Wessmann, ‘Mixture Model Clustering in the analysis of complex diseases’, 2012)
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Even more motivation

Colaur af
cluster index

(Heikinheimo et al., ‘Clustering of European Mammals’, 2007)
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[RDM Chapter 5, overview

. Basic idea

. Representative-based clustering
. Probabilistic clustering

+  Hierarchical clustering

s Density-based clustering

«  Clustering high-dimensional data
, Validation

You'll find this covered in
Aggarwal Ch. 6, 7
Zaki & Meira, Ch. 13—15
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[RDM Chapter 5, today

Basic idea

Representative-based clustering
Probabillistic clustering
Hierarchical clustering
Density-based clustering
Clustering high-dimensional data
Validation

You'll find this covered in
Aggarwal Ch. 6, 7
Zaki & Meira, Ch. 13—15
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Chapter 5.1: Basics
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low inter-cluster similarity

high intra-cluster similarity

an outlier?
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The clustering problem

Given a set U of objects and a distance d: U* - R* between
objects, group the objects of U into clusters such that

the distance between points in the same cluster is low and
the distance between the points in different clusters is large

= small and large are not well defined

m a clustering of U can be
exclusive (each point belongs to exactly one cluster)
probabilistic (each point has a probability of belonging to a cluster)
fuzzy (each point can belong to multiple clusters)

s the number of clusters can be pre-defined, or not
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On distances

A function d: U? - R* is a metric if:

m dlu,v) =0ifandonlyifu=v self-similarity
s d(u,v) =d(w,u) forallu,v e U symmetry
s dlu,v) <d@u,w)+dw,v) forallu,v,w e U triangle-inequality

A metric is a distance; if d: U? - [0, a] for some positive a
then a — d(u, v) is a similarity score

Common metrics include

1
s Ly (T lu; —vi|P)P for d-dimensional space
L, = Hamming = city-block; L, = Euclidean distance
m Correlation distance: 1 — ¢
m Jaccard distance: 1 — |[AN B|/|A U B|



More distantly

For all-numerical data, the sum of squared errors (SSE)
is the most common distance measure: Y&, |u; — v;?

For all-binary data, either Hamming or Jaccard is typically used

For categorical data, we either

s first convert the data to binary by adding one binary variable per category
label and then use Hamming distance; or

= count the agreements and disagreements of category labels with Jaccard

For mixed data, some combination must be used.



The distance matrix
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/ 0 di, dis dl,n\

di, 0 dyz -+ dyy
diz3 dpz3 O dsn

\dl,n dz,n d3,n Tt 0 /

A distance (or dissimilarity) matrix is
s n-by-n for n objects

= non-negative (d; ; = 0)

s symmetric (d; ; = d; ;)

m Zero on diagonal (d;; = 0)



Chapter 5.2:

Representative-based Clustering
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Partitions and Prototypes

Exclusive representative-based clustering

s the set of objects U is partitioned into k clusters Cy, C5, ..., C,
U;Ci=Uand ;N C; =@ fori +#j

m every cluster is represented by a prototype (aka centroid or mean) y;

s clustering quality is based on sum of squared errors between objects in a
cluster and the cluster prototype

ZZMWMZZZWMJ

= 1 x;€C; = 1 xj€C;l=




Partitions and Prototypes

Exclusive representative-based clustering
s the set of objects U is partitioned into k clusters Cy, C5, ..., C,
« UGG=Uand (NG =@ fori+#j
m every cluster is represented by a prototype (aka centroid or mean) y;

= clustering quality is ba gi7/= = =11 objects in the cluster objects in a
cluster and the clusteroreces e

over all clusters over all dimensions
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The Naive algorithm

The naive algorithm goes like this

m One by one generate all possible clusterings
m compute the squared error

m select the best

Sadly, this is infeasible

m there are too many possible clusterings to try
k™ different clusterings to k clusters (some possibly empty)

the number of ways to cluster n points in k non-empty clusters is the
Stirling number of the second kind S(n, k),

S(n, k) = k,z< 0 () k=



A
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n iterative k-means algorithm

select k random cluster centroids
assign each point to its closest centroid
compute the error

do

for each cluster C;

. 1
compute new centroid as u; = lc—ilejECi X;

for each element x; € U
assign x; to its closest cluster centroid

while error decreases
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Some observations

Always converges, eventually

m On each step the error decreases

= only finite number of possible clusterings
m convergence to local optimum

At some point a cluster can become empty
s all points are closer to some other centroid

m some options include
split the biggest cluster
take the furthest point as a singleton cluster

Outliers can yield bad clusterings



Computational complexity

How long does iterative k-means take?
s computing the centroid takes 0(nd) time
averages over total of n points in d-dimensional space

m computing the cluster assignment takes O (nkd) time

for each n points we have to compute the distances to
all k clusters in d-dimensional space

s if the algorithm takes t iterations, the total running
time is O (tnkd)

s how many iterations will we need?



How many iterations?

In practice the algorithm usually doesn’'t need many
s some hundred iterations is usually enough

Worst-case upper bound is 0(n%*)

Worst-case lower bound is superpolynomial: 22(v7)

The discrepancy between practice and worst-case analysis can
be (somewhat) explained with some smoothed analysis
s If the data is sampled from independent d-dimensional normal

distributions with same variance, iterative k-means will terminate in
0(n*) time with high probability



On the importance of starting well
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On the importance of starting well
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On the importance of starting well

Iteration 2

The k-means algorithm converges to a local

| optimum, which can be arbitrarily bad
i ' compared to the global optimum
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The k-means++ algorithm

The Key Idea: Careful initial seeding
s choose first centroid u.a.r. from data points
s let D(x) be the shortest distance from x to any already-selected centroid

D(x' 2

m choose next centroid to be x’ with probability STIEE
xeX

points that are further away are more probable to be selected

m repeat until k centroids have been selected and
continue as normal iterative k-means algorithm

The k-means++ algorithm achieves 0 (log k) approximation
ratio on expectation
s E[cost] = 8(Ink + 2)OPT

The k-means++ algorithm converges fast in practice



Limitations of k-means clusterings

The clusters have to be of roughly equal size
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Limitations of k-means clusterings

The clusters have to be of roughly equal size
The clusters have to be of roughly equal density
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Limitations of k-means clusterings

The clusters have to be of roughly equal size

The clusters have to be of roughly equal density

The clusters have to be of roughly spherical shape
B
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Chapter 5.3
Probabilistic Model-based
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The EM clustering algorithm

Probabillistic clustering
m i.e. not exclusive
m every object has a certain probability (affinity) to every cluster

Representative, in a way
m each cluster is represented by some parameters, 0
s the parameter may include (or specify) a cluster centroid

Requires us to assume a distribution of a cluster
m for now, each cluster is independent Gaussian

We use the expectation-maximization (EM) approach
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The basics

We aim at finding model 0, i.e. parameters u; and X; for each d-
dimensional Gaussian cluster, plus k mixture parameters P(C;)
s pdf of an object x in cluster C; is

i NTY=1(ne 1y
fi(x)=f(x|p,%;) = (Zn)—%lzil—% w5 {_ (x — u;) 221 (x Ih)}

s total pdf of x is a mixture model of the k cluster Gaussians
K k
) =) fOPE) = ) @] mZ)P(C)
i i
s the log-likelihood of the data D given parameters O then is

n k
log(P(D 1©) = » log(y f(x; | m1,%:) P(C)
=1 i



The general EM clustering algorithm

Initialisation
= initialise parameters ©® randomly

Expectation (E) step
= compute the posterior probability P(C; | x;) per Bayes' theorem
P(x; | C; )P(C)
P(Ci|x)= k( ALYiAC
Zap(xj | Ca )P(Ca)

Maximisation (M) step
m re-estimate O given P(C; | x;)

Repeate E and M steps until convergence
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EM with 1d Gaussians

. 1 — i2
Pdfis:  f(x|u,of?)= J2ma; P {_ (xz(f?) }

l

Initialisation step
m Mmeanu |s sampled u.a.r. from possible values, 6% = 1, and
P(C;) = (every cluster is equiprobable)

Expectation step

Wij =P(Cl|x]) —

Maximisation_step

(x| wi,a? )P(C)
YRF(x | ua 02 )P(Cy)

2
_ Xj wijx; 2 _ 2j wijxj—mi)
Hi = Y 0; =
j Wij

p(C) = 2

D ype
Zj Wij n

Weighted mean Weighted variance Fraction of weight in cluster i



Exal\/lp|€ A Initialisation

wy = 6.63 s = T.57

-1 o 1 2 3 4 5 G i g o 10 11
{a) Instiahization: ¢ =10

. [teration 1 by = T.4
0.5

C.4

0.3
0.2

0.1

(b) lteration: =1

A [teration 2 pz = 7.56

1.8
1.3 1
1.2
0.9 -
0.6 -
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EM In d dimensions

If we generalise to d-dimensional Gaussians, we need to model the
iInteractions between all dimensions — we need the covariance matrix.

In practice we need to estimate only the upper triangular matrix,

. . - dld+1 1
which means estimating { > ) parameters. That's a lot of parameters.
m hence, in practice often dimensions are assumed to be independent, yielding d parameters

The expectation step is asin 1-D
The mean and prior P(C;) are estimated as in 1-D
The variance of cluster C; in dimension a is

(o1 )2 Xy wii (x4 — Ilia)z
aa - Z}l Wij




Example — initialisation

£(x)
A
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Fxample — iteration 1
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Example — iteration 36

fl

x)

A

2
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k-means as EM

[terative k-means can be seen as a special case of EM,
..e. with a different cluster density function

s P(x; | C;) = 1iff centroid i is the closest to point x;

The posterior probability is then
s P(C;|x;)=1iff point x; belongs to cluster i

The parameters are the centroids and P(C;)
s the co-variance matrix can be ignored



Chapter 5.4
Validation
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How to select k

Both k-means and EM require user to define k before

the algorithm is run
s Wwhat if we don’t know the number of clusters beforehand?

The larger the value of k,

m the smaller the error

s the more complex the model

s the higher the risk for over-fitting



Cross-validation

As with regression:

hold out some random points (test set)

run clustering on the remaining points (training set)
compute the error with test set included

re-iterate with different values of k and select the one with least
overall error

Normally N-fold cross validation
m typically N = 10
m datais divided in N even sized sets

m cross-validation is run N times, each time keeping one set as the
test set and rest N- 1 sets together as the training set



AIC and BIC

Let Pg(D | C) be the maximized likelihood of clustering C
(obtained e.g. via EM algorithm)

Let [(C) be the number of parameters in ® we need for C

s for Gaussian with independent dimensions, q(C) = k X (d + 2)

k clusters, and per cluster 1 mixture parameter P(C;), d variances, and
1 mean (although d-dimensional, it only counts as one parameter)

Main idea: we pay for every parameter in the model

m in Akaike's Information Criterion (AIC) we select the k that minimizes
AIC = —logPg(D | C) + I(C)

= in Bayesian Information Crlterlon (BIC) we select the k that minimizes
BIC = —logPg (D | C) +—logn



Today's Conclusions

Clustering is one of the most important and most
used data analysis methods

There exist many different types of clustering

= SO far we've seen representative and probabilistic clustering
s every type of clustering has its strengths and weaknesses

Choosing the number of clusters is often difficult

m cross-validation is a standard method
s AIC and BIC are principled general ways for model selection



Tthant you!

Clustering is one of the most important and most
used data analysis methods

There exist many different types of clustering

= SO far we've seen representative and probabilistic clustering
s every type of clustering has its strengths and weaknesses

Choosing the number of clusters is often difficult

m cross-validation is a standard method
s AIC and BIC are principled general ways for model selection
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