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Question of the week 

How can we discover 
groups of objects 

that are highly similar 
to each other? 
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Clustering, where? 

Biology 
 creation of phylogenies (relations between organisms) 
 inferring population structures from clusterings of DNA data 
 analysis of genes and cellular processes (co-clustering) 
 

Business 
 grouping of consumers into market segments 

 

Computer science 
 pre-processing to reduce computation (representative-based methods) 
 automatic discovery of similar items 
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Motivational Example 

(Wessmann, ‘Mixture Model Clustering in the analysis of complex diseases’, 2012) 
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Even more motivation 

(Heikinheimo et al., ‘Clustering of European Mammals’, 2007) 
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IRDM Chapter 5, overview 
1. Basic idea 
2. Representative-based clustering 
3. Probabilistic clustering 
4. Hierarchical clustering 
5. Density-based clustering 
6. Clustering high-dimensional data 
7. Validation 

 
 

You’ll find this covered in  
Aggarwal Ch. 6, 7 
Zaki & Meira, Ch. 13—15 
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IRDM Chapter 5, today 
1. Basic idea 
2. Representative-based clustering 
3. Probabilistic clustering 
4. Hierarchical clustering 
5. Density-based clustering 
6. Clustering high-dimensional data 
7. Validation 

 
 

You’ll find this covered in  
Aggarwal Ch. 6, 7 
Zaki & Meira, Ch. 13—15  
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Chapter 5.1: Basics 
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Example 
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low inter-cluster similarity 

high intra-cluster similarity 

an outlier? 
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The clustering problem 

Given a set 𝑈 of objects and a distance 𝑑:𝑈2 → 𝑅+ between 
objects, group the objects of 𝑈 into clusters such that  
the distance between points in the same cluster is low and 
the distance between the points in different clusters is large 

 
 small and large are not well defined 
 a clustering of 𝑈 can be  

 exclusive (each point belongs to exactly one cluster) 
 probabilistic (each point has a probability of belonging to a cluster) 
 fuzzy (each point can belong to multiple clusters) 

 the number of clusters can be pre-defined, or not  
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On distances 
A function 𝑑:𝑈2 → 𝑅+ is a metric if: 
 𝑑 𝑢, 𝑣 = 0 if and only if 𝑢 = 𝑣 
 𝑑 𝑢, 𝑣 = 𝑑(𝑣,𝑢) for all 𝑢, 𝑣 ∈ 𝑈 
 𝑑 𝑢, 𝑣 ≤ 𝑑 𝑢,𝑤 + 𝑑(𝑤, 𝑣) for all 𝑢, 𝑣,𝑤 ∈ 𝑈 

 
A metric is a distance; if 𝑑:𝑈2 → [0,𝛼] for some positive 𝛼 
then 𝑎 − 𝑑(𝑢, 𝑣) is a similarity score 
 
Common metrics include 
 𝐿𝑝: ∑ 𝑢𝑖 − 𝑣𝑖 𝑝𝑑

𝑖=1

1
𝑝  for 𝑑-dimensional space 

 𝐿1 = Hamming = city-block; 𝐿2 = Euclidean distance 
 Correlation distance: 1 − 𝜙 
 Jaccard distance: 1 − |𝐴 ∩ 𝐵|/|𝐴 ∪ 𝐵| 
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More distantly 

For all-numerical data, the sum of squared errors (SSE)  
is the most common distance measure: ∑ 𝑢𝑖 − 𝑣𝑖 2𝑑

𝑖=1  
 

For all-binary data, either Hamming or Jaccard is typically used 
 

For categorical data, we either 
 first convert the data to binary by adding one binary variable per category 

label and then use Hamming distance; or 
 count the agreements and disagreements of category labels with Jaccard 

 

For mixed data, some combination must be used. 
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The distance matrix 

0 𝑑1,2 𝑑1,3
𝑑1,2 0 𝑑2,3
𝑑1,3 𝑑2,3 0

⋯
𝑑1,𝑛
𝑑2,𝑛
𝑑3,𝑛

⋮ ⋱ ⋮
𝑑1,𝑛 𝑑2,𝑛 𝑑3,𝑛 ⋯ 0

 

 
 
A distance (or dissimilarity) matrix is 
 𝑛-by-𝑛 for 𝑛 objects 
 non-negative (𝑑𝑖,𝑗 ≥ 0) 
 symmetric (𝑑𝑖,𝑗 = 𝑑𝑗,𝑖) 
 Zero on diagonal (𝑑𝑖,𝑖 = 0)  
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Chapter 5.2:  
Representative-based Clustering 

Aggarwal Ch. 6.3 
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Partitions and Prototypes 

Exclusive representative-based clustering 
 the set of objects 𝑈 is partitioned  into 𝑘 clusters 𝐶1,𝐶2, … ,𝐶𝑘 

 ⋃ 𝐶𝑖𝑖 = 𝑈 and 𝐶𝑖 ∩ 𝐶𝑗 = ∅ for 𝑖 ≠ 𝑗 
 every cluster is represented by a prototype (aka centroid or mean) 𝜇𝑖 
 clustering quality is based on sum of squared errors between objects in a 

cluster and the cluster prototype 
 

� � 𝑥𝑗 − 𝜇𝑖 2
2

𝑥𝑗∈𝐶𝑖

𝑘

𝑖=1

= � � � 𝑥𝑗𝑗 − 𝜇𝑖𝑗
2

𝑑

𝑗=1𝑥𝑗∈𝐶𝑖

𝑘

𝑖=1
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Partitions and Prototypes 

Exclusive representative-based clustering 
 the set of objects 𝑈 is partitioned  into 𝑘 clusters 𝐶1,𝐶2, … ,𝐶𝑘 

 ⋃ 𝐶𝑖𝑖 = 𝑈 and 𝐶𝑖 ∩ 𝐶𝑗 = ∅ for 𝑖 ≠ 𝑗 
 every cluster is represented by a prototype (aka centroid or mean) 𝜇𝑖 
 clustering quality is based on sum of squared errors between objects in a 

cluster and the cluster prototype 
 

� � 𝑥𝑗 − 𝜇𝑖 2
2

𝑥𝑗∈𝐶𝑖

𝑘

𝑖=1

= � � � 𝑥𝑗𝑗 − 𝜇𝑖𝑗
2

𝑑

𝑗=1𝑥𝑗∈𝐶𝑖

𝑘

𝑖=1
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The Naïve algorithm 

The naïve algorithm goes like this 
 one by one generate all possible clusterings 
 compute the squared error 
 select the best 

 
Sadly, this is infeasible 
 there are too many possible clusterings to try 

 𝑘𝑛 different clusterings to 𝑘 clusters (some possibly empty) 
 the number of ways to cluster 𝑛 points in 𝑘 non-empty clusters is the 

Stirling number of the second kind, 𝑆(𝑛, 𝑘), 

𝑆 𝑛, 𝑘 = 𝑛
𝑘 =

1
𝑘!� −1 𝑗 𝑘

𝑗 𝑘 − 𝑗 𝑛
𝑘

𝑗=0
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An iterative 𝑘-means algorithm 

1. select 𝑘 random cluster centroids 
2. assign each point to its closest centroid 
3. compute the error 
4. do 

1. for each cluster 𝐶𝑖 
1. compute new centroid as 𝜇𝑖 = 1

𝐶𝑖
∑ 𝑥𝑗𝑥𝑗∈𝐶𝑖  

2. for each element 𝑥𝑗 ∈ 𝑈 
1. assign 𝑥𝑗 to its closest cluster centroid 

5. while error decreases 
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k-means Example 
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Some observations 

Always converges, eventually 
 on each step the error decreases 
 only finite number of possible clusterings 
 convergence to local optimum 

 
At some point a cluster can become empty 
 all points are closer to some other centroid 
 some options include 

 split the biggest cluster 
 take the furthest point as a singleton cluster 

 
Outliers can yield bad clusterings 
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Computational complexity 

How long does iterative 𝑘-means take? 
 computing the centroid takes 𝑂 𝑛𝑑  time 

 averages over total of 𝑛 points in 𝑑-dimensional space 
 computing the cluster assignment takes 𝑂(𝑛𝑘𝑑) time 

 for each 𝑛 points we have to compute the distances to  
all 𝑘 clusters in 𝑑-dimensional space 

 if the algorithm takes 𝑡 iterations, the total running  
time is 𝑂(𝑡𝑛𝑘𝑑) 

 how many iterations will we need? 
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How many iterations? 
In practice the algorithm usually doesn’t need many 
 some hundred iterations is usually enough 

 
Worst-case upper bound is 𝑂(𝑛𝑑𝑘) 
 
Worst-case lower bound is superpolynomial: 2Ω 𝑛  
 
The discrepancy between practice and worst-case analysis can 
be (somewhat) explained with some smoothed analysis 
 if the data is sampled from independent 𝑑-dimensional normal 

distributions with same variance, iterative 𝑘-means will terminate in 
𝑂(𝑛𝑘) time with high probability 

(Arthur & Vassilvitskii, 2006) 
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On the importance of starting well 
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On the importance of starting well 
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On the importance of starting well 
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The 𝑘-means algorithm converges to a local 
optimum, which can be arbitrarily bad 

compared to the global optimum  
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The 𝑘-means++ algorithm 
The Key Idea: Careful initial seeding  
 choose first centroid u.a.r. from data points 
 let 𝐷(𝑥) be the shortest distance from 𝑥 to any already-selected centroid 

 choose next centroid to be 𝑥𝑥 with probability 𝐷 𝑥′ 2

∑ 𝐷 𝑥 2
𝑥∈𝑋

 
 points that are further away are more probable to be selected 

 repeat until 𝑘 centroids have been selected and  
continue as normal iterative 𝑘-means algorithm 

 
The 𝑘-means++ algorithm achieves 𝑂(log 𝑘) approximation  
ratio on expectation 
 𝐸[𝑐𝑐𝑐𝑡]  =  8(ln 𝑘 +  2)OPT 
 
The 𝑘-means++ algorithm converges fast in practice 

(Arthur & Vassilvitskii ’07) 
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Limitations of 𝑘-means clusterings 

The clusters have to be of roughly equal size 
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Limitations of 𝑘-means clusterings 

The clusters have to be of roughly equal size 
The clusters have to be of roughly equal density 
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Limitations of 𝑘-means clusterings 

The clusters have to be of roughly equal size 
The clusters have to be of roughly equal density 
The clusters have to be of roughly spherical shape 
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Chapter 5.3:  
Probabilistic Model-based 

Aggarwal Ch. 6.5 
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The EM clustering algorithm 
Probabilistic clustering 
 i.e. not exclusive 
 every object has a certain probability (affinity) to every cluster 

 
Representative, in a way 
 each cluster is represented by some parameters, Θ 
 the parameter may include (or specify) a cluster centroid 

 
Requires us to assume a distribution of a cluster 
 for now, each cluster is independent Gaussian 

 
We use the expectation-maximization (EM) approach 
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The basics 

We aim at finding model Θ, i.e. parameters 𝝁𝑖 and 𝚺𝑖 for each 𝑑-
dimensional Gaussian cluster, plus 𝑘 mixture parameters 𝑃(𝐶𝑖) 
 pdf of an object 𝒙 in cluster 𝐶𝑖 is 

𝑓𝑖 𝒙 = 𝑓 𝒙 𝝁𝑖 ,𝚺𝑖 = 2𝜋 −𝑑2 𝚺𝑖
−12 exp −

𝒙 − 𝝁𝑖 𝑇𝚺i−1 𝒙 − 𝝁𝑖
2

 

 total pdf of 𝑥 is a mixture model of the 𝑘 cluster Gaussians 

𝑓 𝒙 = �𝑓𝑖 𝒙 𝑃 𝐶𝑖 = �𝑓(𝒙 ∣ 𝝁𝑖 ,𝚺𝑖

𝑘

𝑖

𝑘

𝑖

)𝑃(𝐶𝑖) 

 the log-likelihood of the data D given parameters Θ then is 

log (𝑃 𝑫 Θ = � log (�𝑓 𝒙𝑗 𝝁𝑖 ,𝚺𝑖

𝑘

𝑖

𝑛

𝑗=1

𝑃(𝐶𝑖) 
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The general EM clustering algorithm 
Initialisation 
 initialise parameters Θ randomly 
 
Expectation (𝐸) step 
 compute the posterior probability 𝑃(𝐶𝑖 ∣ 𝒙𝑗) per Bayes’ theorem 

𝑃 𝐶𝑖 𝒙𝑗 =
𝑃 𝒙𝑗 𝐶𝑖 𝑃 𝐶𝑖

∑ 𝑃 𝒙𝑗 𝐶𝑎 𝑃 𝐶𝑎𝑘
𝑎

 

 
Maximisation (𝑀) step 
 re-estimate Θ given 𝑃(𝐶𝑖 ∣ 𝒙𝑗) 

 
Repeate 𝐸 and 𝑀 steps until convergence 
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EM with 1d Gaussians 

Pdf is:  𝑓 𝑥 𝜇𝑖 ,𝜎𝑖2 = 1
2𝜋𝜎𝑖

exp − 𝑥−𝜇𝑖 2

2𝜎𝑖
2  

 
Initialisation step 
 mean 𝜇 is sampled u.a.r. from possible values, 𝜎2 = 1, and  

𝑃 𝐶𝑖 = 1
𝑘
 (every cluster is equiprobable) 

 
Expectation step 

𝑤𝑖𝑗 = 𝑃 𝐶𝑖 𝑥𝑗 =
𝑓 𝑥𝑗 𝜇𝑖 ,𝜎𝑖2 𝑃 𝐶𝑖

∑ 𝑓 𝑥𝑗 𝜇𝑎,𝜎𝑎2 𝑃 𝐶𝑎𝑘
𝑎

 

Maximisation step 

𝜇𝑖 =
∑ 𝑤𝑖𝑗𝑥𝑗𝑛
𝑗
∑ 𝑤𝑖𝑗
𝑛
𝑗

 𝜎𝑖2 =
∑ 𝑤𝑖𝑗 𝑥𝑗−𝜇𝑖

2𝑛
𝑗

∑ 𝑤𝑖𝑗
𝑛
𝑗

 𝑃 𝐶𝑖 =
∑ 𝑤𝑖𝑗
𝑛
𝑗

𝑛
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ExaMple 
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Initialisation 

Iteration 1 

Iteration 2 
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EM in 𝑑 dimensions 
If we generalise to 𝑑-dimensional Gaussians, we need to model the 
interactions between all dimensions – we need the covariance matrix.  
 
In practice we need to estimate only the upper triangular matrix,  
which means estimating 𝑑 𝑑+1

2
 parameters. That’s a lot of parameters.  

 hence, in practice often dimensions are assumed to be independent, yielding 𝑑 parameters 
 
The expectation step is as in 1-D 
 
The mean and prior 𝑃(𝐶𝑖) are estimated as in 1-D 
 
The variance of cluster 𝐶𝑖 in dimension 𝑎 is 

𝜎𝑎𝑎𝑖
2 =

∑ 𝑤𝑖𝑗 𝒙𝑗𝑎 − 𝝁𝑖𝑎
2𝑛

𝑗

∑ 𝑤𝑖𝑗𝑛
𝑗

 

V-1: 36 



IRDM ‘15/16 

Example – initialisation 
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Example – iteration 1 
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Example – iteration 36 
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𝑘-means as EM 

Iterative 𝑘-means can be seen as a special case of EM, 
i.e. with a different cluster density function 
 𝑃 𝑥𝑗 𝐶𝑖 = 1 iff centroid 𝑖 is the closest to point 𝑥𝑗 

 
The posterior probability is then 
 𝑃 𝐶𝑖 𝑥𝑗 = 1 iff point 𝑥𝑗 belongs to cluster 𝑖 

 
The parameters are the centroids and 𝑃(𝐶𝑖) 
 the co-variance matrix can be ignored 
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Chapter 5.4:  
Validation 

Aggarwal Ch. 6.9 
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How to select 𝑘 

Both 𝑘-means and EM require user to define 𝑘 before 
the algorithm is run 
 what if we don’t know the number of clusters beforehand? 

 
The larger the value of 𝑘,  
 the smaller the error 
 the more complex the model 
 the higher the risk for over-fitting 
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Cross-validation 

As with regression: 
 hold out some random points (test set) 
 run clustering on the remaining points (training set) 
 compute the error with test set included 
 re-iterate with different values of 𝑘 and select the one with least 

overall error 
 
Normally 𝑁-fold cross validation 
 typically 𝑁 = 10 
 data is divided in 𝑁 even sized sets 
 cross-validation is run 𝑁 times, each time keeping one set as the 

test set and rest 𝑁– 1 sets together as the training set 
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AIC and BIC 
Let 𝑃Θ (𝐷 ∣ 𝐶) be the maximized likelihood of clustering 𝐶 
(obtained e.g. via EM algorithm) 
 
Let 𝑙(𝐶) be the number of parameters in Θ we need for C 
 for Gaussian with independent dimensions, 𝑞 𝐶 =  𝑘 × 𝑑 + 2  

 𝑘 clusters, and per cluster 1 mixture parameter 𝑃(𝐶𝑖), 𝑑 variances, and  
1 mean (although 𝑑-dimensional, it only counts as one parameter) 
 

Main idea: we pay for every parameter in the model 
 in Akaike’s Information Criterion (AIC) we select the 𝑘 that minimizes 
𝐴𝐴𝐶 = − log𝑃Θ(𝐷 ∣ 𝐶) + 𝑙(𝐶)  

 in Bayesian Information Criterion (BIC) we select the 𝑘 that minimizes 
𝐵𝐴𝐶 = − log𝑃Θ (𝐷 ∣ 𝐶) + 𝑗(𝐶)

2
log𝑛 

 

(Akaike, 1974; Schwarz, 1978) 
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Today’s Conclusions 

Clustering is one of the most important and most  
used data analysis methods 
 

There exist many different types of clustering 
 so far we’ve seen representative and probabilistic clustering 
 every type of clustering has its strengths and weaknesses 

 

Choosing the number of clusters is often difficult 
 cross-validation is a standard method 
 AIC and BIC are principled general ways for model selection 
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Thank you! 
Clustering is one of the most important and most  
used data analysis methods 
 

There exist many different types of clustering 
 so far we’ve seen representative and probabilistic clustering 
 every type of clustering has its strengths and weaknesses 

 

Choosing the number of clusters is often difficult 
 cross-validation is a standard method 
 AIC and BIC are principled general ways for model selection 
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