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[RDM Chapter 7, overview

m Time Series
. Basic Ideas
. Prediction
. Motif Discovery
m Discrete Sequences
. BasicIdeas
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. Hidden Markov Models

You'll find this covered in
Aggarwal Ch. 3.4, 14, 15

IRDM “15/16




[RDM Chapter 7, today

a TIme Series

Basic Ideas } ‘

Prediction
Motif Discovery *

You'll find this covered in
Aggarwal Ch. 3.4, 14, 15

IRDM “15/16



Chapter 7.1

Basic Ideas
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lemperature Data

Time Temp (°C) Daily Temperature
June-15  28.2 40
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June-22 | 28.6
June-23 | 16.1
June-24  28.5
June-25 | 27.9
June-26 15.5
June-27 314
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lemperature Data
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lemperature Data

Time
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Applications

Stock analysis Weather Forecasting Health Monitoring
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Social Network Analysis
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Definition

A time series of length n consists of n tuples

(t1,X71), (t5,X5), ... (t,, X)) where for a tuple (¢;, X;), t; is the
time stamﬁ, and X; is the data at time t;, and we have a total
order on the time stamps t, <t, < - <t,

Length

= May either be finite or infinite

Time stamps
m Mmay be contiguous, in practice integers are easier

Data

s When talking about time series, usually numeric, continuous real-valued
m Mmay be univariate (one attribute) or multivariate (multiple attributes)



Probabilistic Model of Time Series

Consider data X; at time t; as a random variable
s the actual data we observe at ¢; is a realization of X;

Some probabilistic properties can be stable over time
m e.g.the mean y; of X; does not change (much)

= the covariance between pairs (X;, X;,p) is (almost) the same as (X1, X145), i.€.,
the autocovariance of X; does not change (much)

A time series is stationary if the process behind it does not change

m U =y, =uforallt,s, and

m Cxx(t,s) = Cyx(s —t) = Cxx (1) where T = |s — t| is the amount of time
by which the signal is shifted

Stationary time series are easy to model and predict
m Mmost real-world time series, however, are anything but stationary

(recall, if X; has mean u; = E[X;], Cxx(t,s) = cov(Xs, Xg) = E[XXs] — uelts)
IRDM ‘15/16



Stationarity of Time Series
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Formulation

Classically, we assume a time series X is composed of

X; = seasonality; + trend; + noise;

where noise; Is stationary.

To make X stationary, we simply have to
remove seasonality and trend.



Seasonality

Seasonality is essentially periodicity
= seasonality is a periodic function of time with period d

seasonality; = seasonality;_,4

How to find the seasonality function?

. by fitting a sine or cosine function
difficult — the signal may also be sine’ish

. by differencing
X; = seasonality; + trend; + noise;
X;_g = seasonality;_4 + trend;_; + noise;_4
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Seasonality

Seasonality is essentially periodicity
= seasonality is a periodic function of time with period d

seasonality; = seasonality;_,4

How to find the seasonality function?

. by fitting a sine or cosine function
difficult — the signal may also be sine’ish

. by differencing
X; = semsenatity; + trend; + noise;
Xi_q = seasenality; ; + trend;_; + noise;_g4

Xi =X, —Xi_q
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= X; — X;_4 Where d = 12
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Example: Removing Seasonality

Monthly Temperature

40

35

This is the time series we obtained by
removing seasonality
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Trena

Trend is a polynomial function of time (assumption)

How to find the trend function?

. by fitting functions
difficult to do, up to what order, when to stop?

. by differencing

usually 2 times is enough

IRDM ‘15/16



Example: Removing Trena

Monthly Temperature
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This is the time series we obtained by
removing seasonality
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Example: Removing Trena
Xi =Xi — Xi4

Monthly Temperature
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Example: Removing Trena

40

Xi =Xi — Xi—

Monthly Temperature
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The left-over fluctuations are either
noise or non-trivial patterns
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Pre-processing

We can infer missing values by interpolation

Xk=Xi+(’f_ f)x(xj—xi)

] L
where t; <t <t;
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Pre-processing

We can infer missing values by interpolation

B ty — 1
Xk_Xi+ — X(X]—Xl)
j i
where t; <t <t;
Time Temp (°C) Temperature on June-22:
June-19 334 ty, — t,
June-20 | 29.4 Xy =Xp + <t — ) X (X5 — X3)
5 — L2
June-22 4—
=294+ (— ) x (16.1 — 294
June-23 | 16.1 i (5—2) (16 )

= 20.5



Smoothing

We can remove noise by smoothing

Standard options include averaging
X, =avg(Xi_y, .., Xi)
where window length w is a user-specified parameter

We can more weight to recent values by exponential smoothing

l
X =1—-a)- X)+ azxj -(1—a)t/
j=1
where the user chooses decay factor a

(updated on Nov 26t : we now average explicitly over past values)
IRDM ‘15/16



Chapter 7.2:

Forecasting

Aggarwal Ch. 14.3



Principle of Forecasting

If we wish to make predictions, then clearly we must
assume that something is stable over time.

IRDM “15/16 VII-1: 27



Autoregressive (AR) model

Future values depend on past values + random noise
m assumption: the time series depends on autocorrelation

Which past values?
a the w immediately previous values

What relation between past and future?
s linear combination

What kind of noise?
s Gaussian

IRDM “15/16



AR, tormally

Future value is
a linear combination of past values + white noise

w
Xt:zai°Xt_i+C+Et
=1 ~—

\ J . . .
Y noise with shifted mean

Linear combination of past values

where €,~N (0, 02)
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Least-square regression

Et Xt_(al ‘Xt_l‘l'az 'Xt_2+"’+aW‘Xt_W+C)
— v .

actual value predicted value

the prediction error is simply the Gaussian noise in the AR model, the smaller we can get this value, the better!

Given data D of N training instances, we want to find
a, ..., a,, and c that minimise the mean squared error

IRDM “15/16



Solving AR

. 1
Find ay, ..., a,, and ¢ that minimize — ’t" i €L

There are different solving strategies available

m ordinary least squares, assumes €; and X; are uncorrelated

m generalized least squares, assumes correlation exists but is known

m iteratively reweighted least squares, assumes correlation is unknown

Many standard tools available to do AR
s MATLAB: ar function
s R:arima function



Example: AR

ﬂ
o b \A o L)
VAV AN \\ AAVARVATAYANAVAY A
‘\U NANAARRRARANAERY \“v AR

8 02§ 8028 8028800880588 3800586586 =>8=8¢

Monthly temperature measured above the ground
in a province of Vietnam from 1971 to 2001
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0.4

- Original Data: MISE vs. w

02 AN

0.1

These plots show how the
MSE behaves wrt to w.
l.e., they to choose w.

Season Removed: MSE vs. w

02—
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Moving Average (MA) model

Future values depend on deterministic factor + noise
m assumption: the time series depends on history of shocks

What deterministic factor?
a the mean of the time series

Noise over what past values?
s the current value and g immediately previous values

What kind of noise?
s Gaussian



MA, tformally

The MA(q) is defined as

q
X :ﬂ+6t+2bi'6t—i
T =
=
-~

/ )

Mmean

past noise

current noise
where €;~N (0, 57)

Recall, for the AR(w) model we had

Xt=C+Et+Zai-Xt_i
=1
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Solving MA

Find those by, ..., b, that minimize the error

Unlike for AR, this problem is not linear
= to identify noise terms, we need to know by, ..., b,
= to identify by, ..., by, we need to know the noise terms

s typically we use an iterative non-linear fitting approach,
instead of linear least-squares



The ARMA model

ARMA combines the AR model with the MA model

Future values depend on past values + history of noise

m the time series depends on
both autocorrelation and history of shocks

The ARMA model has two parameters, w and ¢
s window length w for autocorrelation
s history length g for noise

What kind of noise?
s Gaussian

IRDM “15/16



ARMA, tformally

ARMA combines the AR model with the MA model

Autoregressive model, AR(w):
Xe =|c+e +2iLa; Xpy

Moving Average model, MA(q)
Xt = U+ € + Z?=1 b - €r—i

Autoregressive Moving Averaqe model ARMA(w, q)

Xt:C‘l‘Et‘l‘Eai’Xt_i +2bl Et i

i=1

IRDM “15/16



Solving ARMA

Find those a; and b; and c¢ that minimize the error

We need non-linear least-square regression
m many standard tools to do this
s MATLAB and R implement ARMA as ‘arma’ resp. ‘arima’

How to set w and q?
= as small as possible, so that the model still fits the data well

m aka, good luck

IRDM ‘15/16



Chapter 7.3
Motif Discovery

Aggarwal Ch. 14.4, 3.4
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Motifs

A motif is a shape that frequently repeats in a time series

s shape can also be called ‘pattern’

Many variations of
motif discovery exist

contiguous versus
non-continguous shapes

low versus

high granularities

single time series versus
databases of time series

VALUE

| REPEATED MOTIFS

I I I
10 20 30
TIME INDEX

1
50

60



What is a motif?

When does a motif belong to a time series?
s there are two main methods for deciding

. distance-based support
A segment X[i, j] of a sequence X is said to support a
motif Y when the distance d(X[i,j],Y) between the
segment and the motif is below some threshold e.

. discrete-matching based support
first we discretise time series X into a discrete sequence s.
A motif is now a (frequent) subsequence of s.



Distance-based moaotits, formally

A motif, a sequence § = §3, ..., S,, of real values, is said to
approximately match a contiguous subsequence of
length w in time series X, if the distance between

(S, ...,S,,) and (X, ..., X;+,—1) IS at most €.

O commonly, Euclidean dlstance or Dynamic Time Warping

The frequency of a motif is its number of occurrences

s the number of matches of a motif S = S5, ..., S,, to the time series
Xi, ..., X, at threshold € is equal to the number of windows of
length w in X for which the distance is at most €



Top-k motifs

Nobody wants all motifs
s lots of many e-similar matches for even a single true occurrence

= instead, we aim for the top-k best motifs

As with frequent itemset mining, redundancy is an issue

m Wwe need to keep the top-k diverse
s distances between any pair of motifs must be at least 2 - €



FINDBESTMOTIF(X, w, €)

begin
fori =1ton—w+ 1 do begin
Candidate = (X;, ..., Xj4w—1)
forj=1ton— w+1dobeg|n
CompareTo = (X, ..., Xjyw-1)
d = distance(Candidate, CompareTo)
if d < € and (non-trivial-match)
then increment support count of Candidate
endfor
if Candidate has the highest count found so far
then update BestCandidate
endfor
return BestCandidate

end

(trivially expanded to top-k)
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Computational Complexity

Finding the best motif takes 0(n?) distance computations

Practical complexity largely depends on distance function

s Euclidean distance is fast
s Dynamic Time Warping is often better, but much slower

Lower bounds are our friend

m if the lower bound on the distance between a motif and a windows
is greater than €, the window will never support the motif

m piecewise-aggregate approximations (PAA) allow fast computation
of lower bounds by considering simplified (compressed) time series



Conclusions

Prediction over time is one of the most important and
most used data analysis problems — predictive analytics

There exist two main types of sequential data
m continuous real-valued time series and discrete event sequences
m for both specialised algorithms exist

In practice, despite many assumptions ARMA is powerful
m often used in industry, learn how to use it, learn when to use it

Patterns in time series are called motifs
s by choosing a distance function can be mined directly from time series



Tthant you!

Prediction over time is one of the most important and
most used data analysis problems — predictive analytics

There exist two main types of sequential data
m continuous real-valued time series and discrete event sequences
m for both specialised algorithms exist

In practice, despite many assumptions ARMA is powerful
m often used in industry, learn how to use it, learn when to use it

Patterns in time series are called motifs
s by choosing a distance function can be mined directly from time series
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