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IRDM Chapter 7, overview 

 Time Series 
1. Basic Ideas 
2. Prediction 
3. Motif Discovery 

 Discrete Sequences 
4. Basic Ideas 
5. Pattern Discovery 
6. Hidden Markov Models 

 
You’ll find this covered in  
Aggarwal Ch. 3.4, 14, 15 
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IRDM Chapter 7, today 

 Time Series 
1. Basic Ideas 
2. Prediction 
3. Motif Discovery 

 Discrete Sequences 
4. Basic Ideas 
5. Pattern Discovery 
6. Hidden Markov Models 

 
You’ll find this covered in  
Aggarwal Ch. 3.4, 14, 15 
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Chapter 7.1:  
Basic Ideas 

Aggarwal Ch. 14.1-14.2 
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Temperature Data 
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Temperature Data 
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Temperature Data 
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Temperature Data 
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Applications 
 

VII-1: 9 

Stock analysis Weather Forecasting Health Monitoring 

Social Network Analysis 
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Definition 
A time series of length 𝑛 consists of 𝑛 tuples 
𝑡1,𝑋1 , 𝑡2,𝑋2 , … (𝑡𝑛,𝑋𝑛) where for a tuple (𝑡𝑖 ,𝑋𝑖), 𝑡𝑖 is the 

time stamp, and 𝑋𝑖 is the data at time 𝑡𝑖 , and we have a total 
order on the time stamps 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑛  

 
Length 
 may either be finite or infinite 
 
Time stamps 
 may be contiguous, in practice integers are easier 
 
Data 
 when talking about time series, usually numeric, continuous real-valued 
 may be univariate (one attribute) or multivariate (multiple attributes) 

VII-1: 10 



IRDM ‘15/16 

Probabilistic Model of Time Series 
Consider data 𝑋𝑖 at time 𝑡𝑖 as a random variable 
 the actual data we observe at 𝑡𝑖 is a realization of 𝑋𝑖 

 
Some probabilistic properties can be stable over time 
 e.g. the mean 𝜇𝑖 of 𝑋𝑖 does not change (much) 
 the covariance between pairs (𝑋𝑖 ,𝑋𝑖+ℎ) is (almost) the same as (𝑋1,𝑋1+ℎ), i.e., 

the autocovariance of 𝑋𝑖 does not change (much) 
 

A time series is stationary if the process behind it does not change 
 𝜇𝑡 = 𝜇𝑠 = 𝜇 for all 𝑡, 𝑠, and 
 𝐶𝑋𝑋 𝑡, 𝑠 = 𝐶𝑋𝑋 𝑠 − 𝑡 = 𝐶𝑋𝑋(𝜏) where 𝜏 = |𝑠 − 𝑡| is the amount of time 

by which the signal is shifted 
 
Stationary time series are easy to model and predict 
 most real-world time series, however, are anything but stationary 
 
 (recall, if 𝑋𝑖 has mean 𝜇𝑖 = 𝐸[𝑋𝑖], 𝐶𝑋𝑋 𝑡, 𝑠 = 𝑐𝑐𝑐 𝑋𝑡,𝑋𝑠 = 𝐸 𝑋𝑡𝑋𝑠 − 𝜇𝑡𝜇𝑠) 
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Stationarity of Time Series 
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Seasonality & trend 

VII-1: 13 
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Formulation 

Classically, we assume a time series 𝑋 is composed of 
 

𝑋𝑖 = 𝑠𝑠𝑠𝑠𝑐𝑛𝑠𝑠𝑠𝑡𝑦𝑖 +  𝑡𝑡𝑠𝑛𝑑𝑖 + 𝑛𝑐𝑠𝑠𝑠𝑖 
 

where 𝑛𝑐𝑠𝑠𝑠𝑖  is stationary. 
 
To make 𝑋 stationary, we simply have to  
remove seasonality and trend. 
 

VII-1: 14 
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Seasonality 

Seasonality is essentially periodicity 
 seasonality is a periodic function of time with period 𝑑 

 

𝑠𝑠𝑠𝑠𝑐𝑛𝑠𝑠𝑠𝑡𝑦𝑖 = 𝑠𝑠𝑠𝑠𝑐𝑛𝑠𝑠𝑠𝑡𝑦𝑖−𝑑 
 

How to find the seasonality function? 
1. by fitting a sine or cosine function 

  difficult – the signal may also be sine’ish 
 

2. by differencing 
     𝑋𝑖  = 𝑠𝑠𝑠𝑠𝑐𝑛𝑠𝑠𝑠𝑡𝑦𝑖 + 𝑡𝑡𝑠𝑛𝑑𝑖 + 𝑛𝑐𝑠𝑠𝑠𝑖  
𝑋𝑖−𝑑 = 𝑠𝑠𝑠𝑠𝑐𝑛𝑠𝑠𝑠𝑡𝑦𝑖−𝑑 + 𝑡𝑡𝑠𝑛𝑑𝑖−𝑑 + 𝑛𝑐𝑠𝑠𝑠𝑖−𝑑 
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Seasonality 

Seasonality is essentially periodicity 
 seasonality is a periodic function of time with period 𝑑 

 

𝑠𝑠𝑠𝑠𝑐𝑛𝑠𝑠𝑠𝑡𝑦𝑖 = 𝑠𝑠𝑠𝑠𝑐𝑛𝑠𝑠𝑠𝑡𝑦𝑖−𝑑 
 

How to find the seasonality function? 
1. by fitting a sine or cosine function 

  difficult – the signal may also be sine’ish 
 

2. by differencing 
     𝑋𝑖  = 𝑠𝑠𝑠𝑠𝑐𝑛𝑠𝑠𝑠𝑡𝑦𝑖 + 𝑡𝑡𝑠𝑛𝑑𝑖 + 𝑛𝑐𝑠𝑠𝑠𝑖  
𝑋𝑖−𝑑 = 𝑠𝑠𝑠𝑠𝑐𝑛𝑠𝑠𝑠𝑡𝑦𝑖−𝑑 + 𝑡𝑡𝑠𝑛𝑑𝑖−𝑑 + 𝑛𝑐𝑠𝑠𝑠𝑖−𝑑 

 
𝑋𝑖′ = 𝑋𝑖 − 𝑋𝑖−𝑑 
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𝑋𝑖′ = 𝑋𝑖 − 𝑋𝑖−𝑑 where d = 12 
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Example: Removing Seasonality 
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Trend 

Trend is a polynomial function of time (assumption) 
 
 

How to find the trend function? 
 

1. by fitting functions 
 difficult to do, up to what order, when to stop? 
 

2. by differencing 
𝑋𝑖′ = 𝑋𝑖 − 𝑋𝑖−1 
𝑋𝑖′′ = 𝑋𝑖′ − 𝑋𝑖−1′  

 usually 2 times is enough 
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Example: Removing Trend 
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𝑋𝑖′ = 𝑋𝑖 − 𝑋𝑖−1 
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Example: Removing Trend 
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noise or non-trivial patterns 

𝑋𝑖′ = 𝑋𝑖 − 𝑋𝑖−1 
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Pre-processing 

We can infer missing values by interpolation 
 

𝑋𝑘 = 𝑋𝑖 +
𝑡𝑘 − 𝑡𝑖
𝑡𝑗 − 𝑡𝑖

× (𝑋𝑗 − 𝑋𝑖) 

where 𝑡𝑖 < 𝑡𝑘 < 𝑡𝑗 
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Pre-processing 

We can infer missing values by interpolation 
 

𝑋𝑘 = 𝑋𝑖 +
𝑡𝑘 − 𝑡𝑖
𝑡𝑗 − 𝑡𝑖

× (𝑋𝑗 − 𝑋𝑖) 

where 𝑡𝑖 < 𝑡𝑘 < 𝑡𝑗 
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Time Temp (°C) 

1 June-19 33.4 

2 June-20 29.4 

4 June-22 

5 June-23 16.1 

Temperature on June-22: 
 

𝑋4 = 𝑋2 +
𝑡4 − 𝑡2
𝑡5 − 𝑡2

× 𝑋5 − 𝑋2  

  = 29.4 + 4−2
5−2

× 16.1 − 29.4  

  = 20.5 
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Smoothing 

We can remove noise by smoothing 
 

Standard options include averaging 
 

𝑋𝑖′ = 𝑠𝑐𝑎(𝑋𝑖−𝑤 , … ,𝑋𝑖) 
where window length 𝑤 is a user-specified parameter 
 
We can more weight to recent values by exponential smoothing 

𝑋𝑖′ = 1 − 𝛼 𝑖 ⋅ 𝑋0′ + 𝛼�𝑋𝑗 ⋅ 1 − 𝛼 𝑖−𝑗
𝑖

𝑗=1

 

where the user chooses decay factor 𝛼 
 
 
 
 

(updated on Nov 26th : we now average explicitly over past values) 
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Chapter 7.2:  
Forecasting 

Aggarwal Ch. 14.3 
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Principle of Forecasting 

If we wish to make predictions, then clearly we must 
assume that something is stable over time. 
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Autoregressive (AR) model  

Future values depend on past values + random noise 
 assumption: the time series depends on autocorrelation 

 
Which past values? 
 the 𝑤 immediately previous values 

 
What relation between past and future? 
 linear combination 

 
What kind of noise? 
 Gaussian 

VII-1: 28 
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AR, formally 

Future value is  
a linear combination of past values + white noise 
 

𝑋𝑡 = �𝑠𝑖 ⋅ 𝑋𝑡−𝑖

𝑤

𝑖=1

+ 𝑐 + 𝜖𝑡 

 
 
 
where 𝜖𝑡~𝒩(0,𝜎2) 
 

VII-1: 29 

Linear combination of past values 

noise with shifted mean 
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Least-square regression 

𝜖𝑡 = 𝑋𝑡 − (𝑠1 ⋅ 𝑋𝑡−1 + 𝑠2 ⋅ 𝑋𝑡−2 + ⋯+ 𝑠𝑤 ⋅ 𝑋𝑡−𝑤 + 𝑐) 
 
 
 
 

Given data 𝑫 of 𝑁 training instances, we want to find 
𝑠1, … ,𝑠𝑤 and 𝑐 that minimise the mean squared error 

 
1

𝑁 − 𝑤
� 𝜖𝑡2
𝑁

𝑡=𝑤+1
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predicted value actual value 

the prediction error is simply the Gaussian noise in the AR model, the smaller we can get this value, the better! 
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Solving AR 

Find 𝑠1, … ,𝑠𝑤 and 𝑐 that minimize 1
𝑁−𝑤

∑ 𝜖𝑡2𝑁
𝑡=𝑤+1   

 
There are different solving strategies available 
 ordinary least squares, assumes 𝜖𝑡 and 𝑋𝑡 are uncorrelated 
 generalized least squares, assumes correlation exists but is known 
 iteratively reweighted least squares, assumes correlation is unknown 

 
Many standard tools available to do AR 
 MATLAB: ar function 
 R: arima function 
 

 
VII-1: 31 
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Example: AR 

Monthly temperature measured above the ground  
in a province of Vietnam from 1971 to 2001 
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34 

These plots show how the  
MSE behaves wrt to 𝑤. 
I.e., they to choose 𝑤. 



Moving Average (MA) model 

Future values depend on deterministic factor + noise 
 assumption: the time series depends on history of shocks 

 
What deterministic factor? 
 the mean of the time series 
 
Noise over what past values? 
 the current value and 𝑞 immediately previous values 

 
What kind of noise? 
 Gaussian 
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The 𝑀𝑀 𝑞  is defined as 

𝑋𝑡 = 𝜇 + 𝜖𝑡 + �𝑏𝑖 ⋅ 𝜖𝑡−𝑖

𝑞

𝑖=1

 

 
 
 

 
where 𝜖𝑖~𝒩(0,𝜎𝑖2) 
 
 
Recall, for the 𝑀𝐴(𝑤) model we had 

𝑋𝑡 = 𝑐 + 𝜖𝑡 + �𝑠𝑖 ⋅ 𝑋𝑡−𝑖

𝑤

𝑖=1

 

 

MA, formally 

VII-1: 36 
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Solving MA 

Find those 𝑏1, … , 𝑏𝑞 that minimize the error 
 
Unlike for AR, this problem is not linear 
 to identify noise terms, we need to know 𝑏1, … , 𝑏𝑞 
 to identify 𝑏1, … , 𝑏𝑞, we need to know the noise terms 
 typically we use an iterative non-linear fitting approach,  

instead of linear least-squares 
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The ARMA model 

ARMA combines the AR model with the MA model 
 

Future values depend on past values  + history of noise 
 the time series depends on  

both autocorrelation and history of shocks 
 

The ARMA model has two parameters, 𝑤 and 𝑞 
 window length w for autocorrelation 
 history length 𝑞 for noise 
 
What kind of noise? 
 Gaussian 
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ARMA, formally 

ARMA combines the AR model with the MA model 
 

Autoregressive model, 𝑀𝐴(𝑤): 
𝑋𝑡 = 𝑐 + 𝜖𝑡 + ∑ 𝑠𝑖 ⋅ 𝑋𝑡−𝑖𝑤

𝑖=1   

 
Moving Average model, 𝑀𝑀(𝑞) 

𝑋𝑡 = 𝜇 + 𝜖𝑡 + ∑ 𝑏𝑖 ⋅ 𝜖𝑡−𝑖
𝑞
𝑖=1   

 

Autoregressive Moving Average model, 𝑀𝐴𝑀𝑀(𝑤, 𝑞) 

𝑋𝑡 = 𝑐 + 𝜖𝑡 + �𝑠𝑖 ⋅ 𝑋𝑡−𝑖

𝑤

𝑖=1

 +�𝑏𝑖 ⋅ 𝜖𝑡−𝑖

𝑞

𝑖=1
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Solving ARMA 

Find those 𝑠𝑖 and 𝑏𝑖  and 𝑐 that minimize the error 
 
We need non-linear least-square regression 
 many standard tools to do this 
 MATLAB and R implement ARMA as ‘arma’ resp. ‘arima’ 

 
How to set 𝑤 and 𝑞? 
 as small as possible, so that the model still fits the data well 
 aka, good luck 
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Chapter 7.3:  
Motif Discovery 

Aggarwal Ch. 14.4, 3.4 
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Motifs 

A motif is a shape that frequently repeats in a time series 
 shape can also be called ‘pattern’ 

 
Many variations of  
motif discovery exist 
 contiguous versus  

non-continguous shapes 
 low versus  

high granularities 
 single time series versus  

databases of time series 
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What is a motif? 

When does a motif belong to a time series? 
 there are two main methods for deciding 

 
1. distance-based support 

A segment 𝑋[𝑠, 𝑗] of a sequence 𝑋 is said to support a 
motif 𝑌 when the distance 𝑑(𝑋[𝑠, 𝑗],𝑌) between the 
segment and the motif is below some threshold 𝜖. 
 

2. discrete-matching based support 
first we discretise time series 𝑋 into a discrete sequence 𝑠.  
A motif is now a (frequent) subsequence of 𝑠. 
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Distance-based motifs, formally 

A motif, a sequence 𝑆 = 𝑆1, … , 𝑆𝑤 of real values, is said to 
approximately match a contiguous subsequence of 
length 𝑤 in time series 𝑋, if the distance between 
(𝑆1, … , 𝑆𝑤) and 𝑋𝑖 , … ,𝑋𝑖+𝑤−1  is at most 𝜖. 
 commonly, Euclidean distance or Dynamic Time Warping 

 
The frequency of a motif is its number of occurrences 
 the number of matches of a motif 𝑆 = 𝑆1, … , 𝑆𝑤 to the time series 
𝑋1, … ,𝑋𝑛 at threshold 𝜖 is equal to the number of windows of 
length 𝑤 in 𝑋 for which the distance is at most 𝜖 
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Top-𝑘 motifs 

Nobody wants all motifs 
 lots of many 𝜖-similar matches for even a single true occurrence 
 instead, we aim for the top-𝑘 best motifs 

 
As with frequent itemset mining, redundancy is an issue 
 we need to keep the top-k diverse 
 distances between any pair of motifs must be at least 2 ⋅ 𝜖 
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FINDBESTMOTIF(𝑋,𝑤, 𝜖) 
begin 
  for 𝑠 = 1 to 𝑛 − 𝑤 + 1 do begin 
    𝐶𝑠𝑛𝑑𝑠𝑑𝑠𝑡𝑠 = (𝑋𝑖 , … ,𝑋𝑖+𝑤−1) 
    for 𝑗 = 1 to 𝑛 − 𝑤 + 1 do begin 
      𝐶𝑐𝐶𝐶𝑠𝑡𝑠𝐶𝑐 = (𝑋𝑗 , … ,𝑋𝑗+𝑤−1) 
      𝑑 = 𝑑𝑠𝑠𝑡𝑠𝑛𝑐𝑠(𝐶𝑠𝑛𝑑𝑠𝑑𝑠𝑡𝑠,𝐶𝑐𝐶𝐶𝑠𝑡𝑠𝐶𝑐) 
      if 𝑑 < 𝜖 and (non-trivial-match) 
        then increment support count of 𝐶𝑠𝑛𝑑𝑠𝑑𝑠𝑡𝑠 
    endfor 
    if 𝐶𝑠𝑛𝑑𝑠𝑑𝑠𝑡𝑠 has the highest count found so far  
      then update 𝐵𝑠𝑠𝑡𝐶𝑠𝑛𝑑𝑠𝑑𝑠𝑡𝑠 
  endfor 
  return 𝐵𝑠𝑠𝑡𝐶𝑠𝑛𝑑𝑠𝑑𝑠𝑡𝑠 
end 

(trivially expanded to top-𝑘) 
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Computational Complexity 

Finding the best motif takes 𝑂(𝑛2) distance computations 
 

Practical complexity largely depends on distance function 
 Euclidean distance is fast 
 Dynamic Time Warping is often better, but much slower 

 
Lower bounds are our friend 
 if the lower bound on the distance between a motif and a windows 

is greater than 𝜖, the window will never support the motif 
 piecewise-aggregate approximations (PAA) allow fast computation 

of lower bounds by considering simplified (compressed) time series 
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Conclusions 

Prediction over time is one of the most important and 
most used data analysis problems – predictive analytics 
 

There exist two main types of sequential data 
 continuous real-valued time series and discrete event sequences 
 for both specialised algorithms exist 
 

In practice, despite many assumptions ARMA is powerful 
 often used in industry, learn how to use it, learn when to use it 

 

Patterns in time series are called motifs 
 by choosing a distance function can be mined directly from time series 
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Thank you! 
Prediction over time is one of the most important and 
most used data analysis problems – predictive analytics 
 

There exist two main types of sequential data 
 continuous real-valued time series and discrete event sequences 
 for both specialised algorithms exist 
 

In practice, despite many assumptions ARMA is powerful 
 often used in industry, learn how to use it, learn when to use it 

 

Patterns in time series are called motifs 
 by choosing a distance function can be mined directly from time series 
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