Chapter 7-1: Sequential Data Jilles Vreeken

Revision 1, November 26th Definition of smoothing clarified

IRDM '15/16

CLUSTER OF EXCELLENCE

24 Nov 2015

IRDM Chapter 7, overview

Time Series

- 1 Basic Ideas
- 2. Prediction
- a. Motif Discovery
- Discrete Sequences
 - 4. Basic Ideas
 - 5. Pattern Discovery
 - 6. Hidden Markov Models

You'll find this covered in Aggarwal Ch. 3.4, 14, 15

<u>}</u>	\mathbf{i}

IRDM Chapter 7, today

Time Series

- 1 Basic Ideas
- 2. Prediction
- 3. Motif Discovery
- Discrete Sequences
 - 4. Basic Ideas
 - 5. Pattern Discovery
 - 6. Hidden Markov Models

You'll find this covered in Aggarwal Ch. 3.4, 14, 15

Chapter 7.1: Basic Ideas

Aggarwal Ch. 14.1-14.2

Temp (°C)	
28.2	
25.4	
30.5	
15.7	
33.4	
29.4	
28.6	
16.1	
28.5	
27.9	
15.5	
31.4	

Time	Temp (°C)	
June-15	28.2	
June-16	25.4	
June-17	30.5	
June-18	15.7	
June-19	33.4	
June-20	29.4	
June-22	28.6	
June-23	16.1	
June-24	28.5	
June-25	27.9	
June-26	15.5	
June-27	31.4	

Daily Temperature

Time	Temp (°C)	
June-15	28.2	
June-16	25.4	
June-17	30.5	
June-18	15.7	
June-19	33.4	
June-20	29.4	
June-22	28.6	
June-23	16.1	
June-24	28.5	
June-25	27.9	
June-26	15.5	
June-27	31.4	
	-	

IRDM '15/16

Time	Temp (°C)	
June-15	28.2	
June-16	25.4	
June-17	30.5	
Sept-18	15.7	
June-19	33.4	
June-20	29.4	
June-22	28.6	
Sept-23	16.1	
Sept-24	28.5	
June-25	27.9	
Sept-26	15.5	
June-27	31.4	

Applications

Stock analysis

Weather Forecasting

Health Monitoring

Definition

A time series of length *n* consists of *n* tuples $(t_1, X_1), (t_2, X_2), ..., (t_n, X_n)$ where for a tuple $(t_i, X_i), t_i$ is the time stamp, and X_i is the data at time t_i , and we have a total order on the time stamps $t_1 < t_2 < \cdots < t_n$

Length

may either be finite or infinite

Time stamps

may be contiguous, in practice integers are easier

Data

- when talking about time series, usually numeric, continuous real-valued
- may be univariate (one attribute) or multivariate (multiple attributes)

Probabilistic Model of Time Series

Consider data X_i at time t_i as a random variable

• the actual data we observe at t_i is a **realization** of X_i

Some probabilistic properties can be **stable** over time

- e.g. the mean μ_i of X_i does not change (much)
- the covariance between pairs (X_i, X_{i+h}) is (almost) the same as (X_1, X_{1+h}) , i.e., the **autocovariance** of X_i does not change (much)

A time series is **stationary** if the process behind it **does not change**

- $\mu_t = \mu_s = \mu$ for all *t*, *s*, and
- $C_{XX}(t,s) = C_{XX}(s-t) = C_{XX}(\tau)$ where $\tau = |s-t|$ is the amount of time by which the signal is shifted

Stationary time series are easy to model and predict

most real-world time series, however, are anything but stationary

Stationarity of Time Series

Seasonality & trend

Formulation

Classically, we assume a time series X is composed of $X_i = seasonality_i + trend_i + noise_i$

where $noise_i$ is stationary.

To make *X* stationary, we simply have to remove seasonality and trend.

Seasonality

Seasonality is essentially **periodicity**

seasonality is a **periodic function** of time with period *d*

 $seasonality_i = seasonality_{i-d}$

How to find the **seasonality function**?

- by fitting a sine or cosine function
 difficult the signal may also be sine'ish
- 2. by differencing

 $X_{i} = seasonality_{i} + trend_{i} + noise_{i}$ $X_{i-d} = seasonality_{i-d} + trend_{i-d} + noise_{i-d}$

Seasonality

Seasonality is essentially **periodicity**

seasonality is a **periodic function** of time with period *d*

 $seasonality_i = seasonality_{i-d}$

How to find the **seasonality function**?

- by fitting a sine or cosine function
 difficult the signal may also be sine'ish
- 2. by differencing

 $X_{i} = seasonality_{i} + trend_{i} + noise_{i}$ $X_{i-d} = seasonality_{i-d} + trend_{i-d} + noise_{i-d}$

$$X_i' = X_i - X_{i-d}$$

$$X'_i = X_i - X_{i-d}$$
 where $d = 12$

Example: Removing Seasonality

Trend

Trend is a **polynomial function** of time (assumption)

How to find the trend function?

1. by fitting functions

- difficult to do, up to what order, when to stop?
- 2. by differencing

$$X'_i = X_i - X_{i-1}$$

 $X''_i = X'_i - X'_{i-1}$

usually 2 times is enough

Example: Removing Trend

Example: Removing Trend $X'_i = X_i - X_{i-1}$

Example: Removing Trend $X'_i = X_i - X_{i-1}$

Pre-processing

We can infer missing values by interpolation

$$X_k = X_i + \left(\frac{t_k - t_i}{t_j - t_i}\right) \times (X_j - X_i)$$

where $t_i < t_k < t_j$

Pre-processing

We can infer missing values by interpolation

$$X_k = X_i + \left(\frac{t_k - t_i}{t_j - t_i}\right) \times (X_j - X_i)$$

where $t_i < t_k < t_j$

	Time	Temp (°C)
1	June-19	33.4
2	June-20	29.4
4	June-22	
5	June-23	16.1

Temperature on June-22:

$$X_4 = X_2 + \left(\frac{t_4 - t_2}{t_5 - t_2}\right) \times (X_5 - X_2)$$

= 29.4 + $\left(\frac{4 - 2}{5 - 2}\right) \times (16.1 - 29.4)$
= 20.5

We can remove noise by **smoothing**

Standard options include averaging

$$X'_i = avg(X_{i-w}, \dots, X_i)$$

where **window length** *w* is a user-specified parameter

We can more weight to recent values by **exponential smoothing** $X'_{i} = (1 - \alpha)^{i} \cdot X'_{0} + \alpha \sum_{j=1}^{i} X_{j} \cdot (1 - \alpha)^{i-j}$

where the user chooses decay factor α

Chapter 7.2: Forecasting

Aggarwal Ch. 14.3

Principle of Forecasting

If we wish to make predictions, then clearly we must **assume** that something is **stable** over time.

Autoregressive (AR) model

Future values depend on **past values** + random noise

assumption: the time series depends on autocorrelation

Which past values?

the w immediately previous values

What relation between past and future?

linear combination

What kind of noise?

Gaussian

AR, formally

Future value is a linear combination of **past values** + white noise

Linear combination of past values

where $\epsilon_t \sim \mathcal{N}(0, \sigma^2)$

Least-square regression

$$\epsilon_t = X_t - (a_1 \cdot X_{t-1} + a_2 \cdot X_{t-2} + \dots + a_w \cdot X_{t-w} + c)$$

actual value predicted value

the prediction error is simply the Gaussian noise in the AR model, the smaller we can get this value, the better!

Given data **D** of N training instances, we want to find a_1, \ldots, a_w and c that minimise the mean squared error

$$\frac{1}{N-w}\sum_{t=w+1}^{N}\epsilon_t^2$$

Solving AR

Find $a_1, ..., a_w$ and c that minimize $\frac{1}{N-w} \sum_{t=w+1}^N \epsilon_t^2$

There are different solving strategies available

- ordinary least squares, assumes ϵ_t and X_t are uncorrelated
- generalized least squares, assumes correlation exists but is known
- iteratively reweighted least squares, assumes correlation is unknown

Many standard tools available to do AR

- MATLAB: ar function
- R: arima function

Example: AR

Monthly temperature measured above the ground in a province of Vietnam from 1971 to 2001

Moving Average (MA) model

Future values depend on deterministic factor + noise

assumption: the time series depends on history of shocks

What deterministic factor?

the mean of the time series

Noise over what past values?

the current value and q immediately previous values

What kind of noise?

Gaussian

MA, formally

The MA(q) is defined as

where $\epsilon_i \sim \mathcal{N}(0, \sigma_i^2)$

Recall, for the AR(w) model we had $X_t = c + \epsilon_t + \sum_{i=1}^n a_i \cdot X_{t-i}$

Solving MA

Find those b_1, \ldots, b_q that **minimize** the error

Unlike for AR, this problem is not linear

- to identify noise terms, we need to know b_1, \dots, b_q
- to identify b_1, \ldots, b_q , we need to know the noise terms
- typically we use an iterative non-linear fitting approach, instead of linear least-squares

The ARMA model

ARMA combines the AR model with the MA model

Future values depend on **past values** + **history of noise**

the time series depends on both autocorrelation and history of shocks

The ARMA model has two parameters, w and q

- window length w for autocorrelation
- history length q for noise

What kind of noise?

Gaussian

ARMA, formally

ARMA combines the AR model with the MA model

Autoregressive model, AR(w):

$$X_t = c + \epsilon_t + \sum_{i=1}^w a_i \cdot X_{t-i}$$

Moving Average mode I, MA(q)

$$X_t = \mu + \epsilon_t + \sum_{i=1}^q b_i \cdot \epsilon_{t-i}$$

Autoregressive Moving Average model, ARMA(w,q) $X_t = c + \epsilon_t + \sum_{i=1}^{w} a_i \cdot X_{t-i} + \sum_{i=1}^{q} b_i \cdot \epsilon_{t-i}$

Solving ARMA

Find those a_i and b_i and c that **minimize** the error

We need non-linear least-square regression

- many standard tools to do this
- MATLAB and R implement ARMA as 'arma' resp. 'arima'

How to set *w* and *q*?

- as small as possible, so that the model still fits the data well
- aka, good luck

Chapter 7.3: Motif Discovery

Aggarwal Ch. 14.4, 3.4

Motifs

A motif is a shape that frequently repeats in a time series

shape can also be called 'pattern'

Many variations of **motif discovery** exist

- contiguous versus non-continguous shapes
- low versus high granularities
- single time series versus databases of time series

What is a motif?

When does a motif belong to a time series?

there are two main methods for deciding

1. distance-based support

A segment X[i, j] of a sequence X is said to support a motif Y when the distance d(X[i, j], Y) between the segment and the motif is below some threshold ϵ .

discrete-matching based support
 first we discretise time series X into a discrete sequence s.
 A motif is now a (frequent) subsequence of s.

Distance-based motifs, formally

A motif, a sequence $S = S_1, ..., S_w$ of real values, is said to **approximately match** a contiguous subsequence of length w in time series X, if the distance between $(S_1, ..., S_w)$ and $(X_i, ..., X_{i+w-1})$ is at most ϵ .

commonly, Euclidean distance or Dynamic Time Warping

The frequency of a motif is its number of occurrences

• the number of matches of a motif $S = S_1, ..., S_w$ to the time series $X_1, ..., X_n$ at threshold ϵ is equal to the number of windows of length w in X for which the distance is at most ϵ

Top-k motifs

Nobody wants all motifs

- lots of many ϵ -similar matches for even a single true occurrence
- instead, we aim for the top-k best motifs

As with frequent itemset mining, redundancy is an issue

- we need to keep the top-k diverse
- distances between any pair of motifs must be at least $2 \cdot \epsilon$

FINDBESTMOTIF(X, w, ϵ)

begin

for i = 1 to n - w + 1 do begin Candidate = (X_i, \dots, X_{i+w-1}) for j = 1 to n - w + 1 do begin $CompareTo = (X_i, \dots, X_{i+w-1})$ d = distance(Candidate, CompareTo)if $d < \epsilon$ and (non-trivial-match) then increment support count of *Candidate* endfor if *Candidate* has the highest count found so far then update *BestCandidate* endfor

return *BestCandidate* end

Computational Complexity

Finding the best motif takes $O(n^2)$ distance computations

Practical complexity largely depends on distance function

- Euclidean distance is fast
- Dynamic Time Warping is often better, but much slower

Lower bounds are our friend

- if the lower bound on the distance between a motif and a windows is greater than ϵ , the window will never support the motif
- piecewise-aggregate approximations (PAA) allow fast computation of lower bounds by considering simplified (compressed) time series

Conclusions

Prediction over time is one of the most important and most used data analysis problems – **predictive analytics**

There exist two main types of sequential data

- continuous real-valued time series and discrete event sequences
- for both specialised algorithms exist

In practice, despite many assumptions **ARMA** is powerful

often used in industry, learn how to use it, learn when to use it

Patterns in time series are called **motifs**

by choosing a distance function can be mined directly from time series

Thank you!

Prediction over time is one of the most important and most used data analysis problems – **predictive analytics**

There exist two main types of sequential data

- continuous real-valued time series and discrete event sequences
- for both specialised algorithms exist

In practice, despite many assumptions **ARMA** is powerful

often used in industry, learn how to use it, learn when to use it

Patterns in time series are called **motifs**

by choosing a distance function can be mined directly from time series