Chapter 7-1: Sequential Data Jilles Vreeken

Revision 1, November $26^{\text {th }}$
Definition of smoothing clarified

リIリI

IRDM Chapter 7, overview

- Time Series

Basic Ideas
Prediction
Motif Discovery
■ Discrete Sequences

Basic Ideas
 Pattern Discovery

Hidden Markov Models
You'll find this covered in
Aggarwal Ch. 3.4, 14, 15

IRDM Chapter 7, today

- Time Series

Basic Ideas
Prediction
Motif Discovery
■ Discrete Sequences
Basic Ideas
Pattern Discovery
6. Hidden Markov Models

You'll find this covered in
Aggarwal Ch. 3.4, 14, 15

Chapter 7.1: Basic Ideas

Aggarwal Ch. 14.1-14.2

Temperature Data

Temp $\left({ }^{\circ} \mathrm{C}\right)$
28.2
25.4
30.5
15.7
33.4
29.4
28.6
16.1
28.5
27.9
15.5
31.4

Temperature Data

Time	Temp $\left({ }^{\circ} \mathrm{C}\right)$
June-15	28.2
June-16	25.4
June-17	30.5
June-18	15.7
June-19	33.4
June-20	29.4
June-22	28.6
June-23	16.1
June-24	28.5
June-25	27.9
June-26	15.5
June-27	31.4
${ }^{\prime} 15 / 16$	

Temperature Data

Time	Temp $\left({ }^{\circ} \mathrm{C}\right)$
June-15	28.2
June-16	25.4
June-17	30.5
June-18	15.7
June-19	33.4
June-20	29.4
June-22	28.6
June-23	16.1
June-24	28.5
June-25	27.9
June-26	15.5
June-27	31.4
${ }^{\prime} 15 / 16$	

Temperature Data

Time	Temp $\left({ }^{\circ} \mathrm{C}\right)$
June-15	28.2
June-16	25.4
June-17	30.5
Sept-18	15.7
June-19	33.4
June-20	29.4
June-22	28.6
Sept-23	16.1
Sept-24	28.5
June-25	27.9
Sept-26	15.5
June-27	31.4
${ }^{15} / 16$	

Applications

Weather Forecasting

Health Monitoring

Definition

A time series of length n consists of n tuples
$\left(t_{1}, X_{1}\right),\left(t_{2}, X_{2}\right), \ldots\left(t_{n}, X_{n}\right)$ where for a tuple $\left(t_{i}, X_{i}\right), t_{i}$ is the time stamp, and X_{i} is the data at time t_{i}, and we have a total order on the time stamps $t_{1}<t_{2}<\cdots<t_{n}$

Length

- may either be finite or infinite

Time stamps

- may be contiguous, in practice integers are easier

Data

- when talking about time series, usually numeric, continuous real-valued
- may be univariate (one attribute) or multivariate (multiple attributes)

Probabilistic Model of Time Series

Consider data X_{i} at time t_{i} as a random variable

- the actual data we observe at t_{i} is a realization of X_{i}

Some probabilistic properties can be stable over time

- e.g. the mean μ_{i} of X_{i} does not change (much)
- the covariance between pairs $\left(X_{i}, X_{i+h}\right)$ is (almost) the same as $\left(X_{1}, X_{1+h}\right)$, i.e., the autocovariance of X_{i} does not change (much)

A time series is stationary if the process behind it does not change

- $\mu_{t}=\mu_{s}=\mu$ for all t, s, and
- $C_{X X}(t, s)=C_{X X}(s-t)=C_{X X}(\tau)$ where $\tau=|s-t|$ is the amount of time by which the signal is shifted

Stationary time series are easy to model and predict

- most real-world time series, however, are anything but stationary

Stationarity of Time Series

Monthly Temperature

Seasonality \& trend

Monthly Temperature

Formulation

Classically, we assume a time series X is composed of

$$
X_{i}=\text { seasonality }_{i}+\text { trend }_{i}+\text { noise }_{i}
$$

where noise $_{i}$ is stationary.

To make X stationary, we simply have to remove seasonality and trend.

Seasonality

Seasonality is essentially periodicity

- seasonality is a periodic function of time with period d

$$
\text { seasonality }_{i}=\text { seasonality }_{i-d}
$$

How to find the seasonality function?

by fitting a sine or cosine function difficult - the signal may also be sine'ish
2. by differencing

$$
\begin{aligned}
X_{i} & =\text { seasonality }_{i}+\text { trend }_{i}+\text { noise }_{i} \\
X_{i-d} & =\text { seasonality }_{i-d}+\text { trend }_{i-d}+\text { nois }_{i-d}
\end{aligned}
$$

Seasonality

Seasonality is essentially periodicity

- seasonality is a periodic function of time with period d

$$
\text { seasonality }_{i}=\text { seasonality }_{i-d}
$$

How to find the seasonality function?

by fitting a sine or cosine function difficult - the signal may also be sine'ish
2. by differencing

$$
\begin{aligned}
X_{i} & =\text { trend }_{i}+\text { noise }_{i} \\
X_{i-d} & =\text { trend }_{i-d}+\text { noise }_{i-d}
\end{aligned}
$$

$$
X_{i}^{\prime}=X_{i}-X_{i-d}
$$

$$
X_{i}^{\prime}=X_{i}-X_{i-d} \text { where } d=12
$$

Monthly Temperature

Example: Removing Seasonality

Monthly Temperature

Trend

Trend is a polynomial function of time (assumption)

How to find the trend function?
by fitting functions

- difficult to do, up to what order, when to stop?

2. by differencing

$$
\begin{gathered}
X_{i}^{\prime}=X_{i}-X_{i-1} \\
X_{i}^{\prime \prime}=X_{i}^{\prime}-X_{i-1}^{\prime}
\end{gathered}
$$

- usually 2 times is enough

Example: Removing Trend

Monthly Temperature

Example: Removing Trend

$$
X_{i}^{\prime}=X_{i}-X_{i-1}
$$

Monthly Temperature

Example: Removing Trend

$$
X_{i}^{\prime}=X_{i}-X_{i-1}
$$

Monthly Temperature

Pre-processing

We can infer missing values by interpolation

$$
X_{k}=X_{i}+\left(\frac{t_{k}-t_{i}}{t_{j}-t_{i}}\right) \times\left(X_{j}-X_{i}\right)
$$

where $t_{i}<t_{k}<t_{j}$

Pre-processing

We can infer missing values by interpolation

$$
X_{k}=X_{i}+\left(\frac{t_{k}-t_{i}}{t_{j}-t_{i}}\right) \times\left(X_{j}-X_{i}\right)
$$

where $t_{i}<t_{k}<t_{j}$

	Time	Temp $\left({ }^{\circ} \mathrm{C}\right)$
1	June-19	33.4
2	June-20	29.4
4	June-22	
5	June-23	16.1

Temperature on June-22:

$$
\begin{aligned}
X_{4} & =X_{2}+\left(\frac{t_{4}-t_{2}}{t_{5}-t_{2}}\right) \times\left(X_{5}-X_{2}\right) \\
& =29.4+\left(\frac{4-2}{5-2}\right) \times(16.1-29.4) \\
& =20.5
\end{aligned}
$$

Smoothing

We can remove noise by smoothing
Standard options include averaging

$$
X_{i}^{\prime}=\operatorname{avg}\left(X_{i-w}, \ldots, X_{i}\right)
$$

where window length w is a user-specified parameter

We can more weight to recent values by exponential smoothing

$$
X_{i}^{\prime}=(1-\alpha)^{i} \cdot X_{0}^{\prime}+\alpha \sum_{j=1}^{i} X_{j} \cdot(1-\alpha)^{i-j}
$$

where the user chooses decay factor α

Chapter 7.2: Forecasting

Aggarwal Ch. 14.3

Principle of Forecasting

If we wish to make predictions, then clearly we must assume that something is stable over time.

Autoregressive (AR) model

Future values depend on past values + random noise

- assumption: the time series depends on autocorrelation

Which past values?

- the w immediately previous values

What relation between past and future?

- linear combination

What kind of noise?

- Gaussian

AR, formally

Future value is
a linear combination of past values + white noise

$$
X_{t}=\underbrace{\sum_{i=1}^{w} a_{i} \cdot X_{t-i}}+\underbrace{c+\epsilon_{t}}_{\text {noise with shifted mean }}
$$

Linear combination of past values
where $\epsilon_{t} \sim \mathcal{N}\left(0, \sigma^{2}\right)$

Least-square regression

$$
\epsilon_{t}=\underbrace{X_{t}}_{\text {actual value }}-(\underbrace{a_{1} \cdot X_{t-1}+a_{2} \cdot X_{t-2}+\cdots+a_{w} \cdot X_{t-w}+c}_{\text {predicted value }})
$$

Given data \boldsymbol{D} of N training instances, we want to find a_{1}, \ldots, a_{w} and c that minimise the mean squared error

$$
\frac{1}{N-w} \sum_{t=w+1}^{N} \epsilon_{t}^{2}
$$

Solving AR

Find a_{1}, \ldots, a_{w} and c that minimize $\frac{1}{N-w} \sum_{t=w+1}^{N} \epsilon_{t}^{2}$
There are different solving strategies available

- ordinary least squares, assumes ϵ_{t} and X_{t} are uncorrelated
- generalized least squares, assumes correlation exists but is known
- iteratively reweighted least squares, assumes correlation is unknown

Many standard tools available to do AR

- MATLAB: ar function
- R: arima function

Example: AR

Monthly temperature measured above the ground in a province of Vietnam from 1971 to 2001

0.4
Season Removed: MSE vs. w
These plots show how the MSE behaves wrt to w.
l.e., they to choose w.

Moving Average (MA) model

Future values depend on deterministic factor + noise

- assumption: the time series depends on history of shocks

What deterministic factor?

- the mean of the time series

Noise over what past values?

- the current value and q immediately previous values

What kind of noise?

- Gaussian

MA, formally

The $M A(q)$ is defined as

current noise
where $\epsilon_{i} \sim \mathcal{N}\left(0, \sigma_{i}^{2}\right)$

Recall, for the $A R(w)$ model we had

$$
X_{t}=c+\epsilon_{t}+\sum_{i=1}^{w} a_{i} \cdot X_{t-i}
$$

Solving MA

Find those b_{1}, \ldots, b_{q} that minimize the error

Unlike for AR, this problem is not linear

- to identify noise terms, we need to know b_{1}, \ldots, b_{q}
- to identify b_{1}, \ldots, b_{q}, we need to know the noise terms
- typically we use an iterative non-linear fitting approach, instead of linear least-squares

The ARMA model

ARMA combines the AR model with the MA model
Future values depend on past values + history of noise

- the time series depends on both autocorrelation and history of shocks

The ARMA model has two parameters, w and q

- window length w for autocorrelation
- history length q for noise

What kind of noise?

- Gaussian

ARMA, formally

ARMA combines the AR model with the MA model
Autoregressive model, $A R(w)$:

$$
X_{t}=c+\epsilon_{t}+\sum_{i=1}^{w} a_{i} \cdot X_{t-i}
$$

Moving Average model, MA(q)

$$
X_{t}=\mu+\epsilon_{t}+\sum_{i=1}^{q} b_{i} \cdot \epsilon_{t-i}
$$

Autoregressive Moving Average model, $\operatorname{ARMA}(w, q)$

$$
X_{t}=c+\epsilon_{t}+\sum_{i=1}^{w} a_{i} \cdot X_{t-i}+\sum_{i=1}^{q} b_{i} \cdot \epsilon_{t-i}
$$

Solving ARMA

Find those a_{i} and b_{i} and c that minimize the error

We need non-linear least-square regression

- many standard tools to do this
- MATLAB and R implement ARMA as 'arma' resp. 'arima'

How to set w and q ?

- as small as possible, so that the model still fits the data well
- aka, good luck

Chapter 7.3: Motif Discovery

Aggarwal Ch. 14.4, 3.4

Motifs

A motif is a shape that frequently repeats in a time series

- shape can also be called 'pattern'

Many variations of motif discovery exist

- contiguous versus non-continguous shapes
- low versus
high granularities
- single time series versus databases of time series

What is a motif?

When does a motif belong to a time series?

- there are two main methods for deciding

1. distance-based support

A segment $X[i, j]$ of a sequence X is said to support a motif Y when the distance $d(X[i, j], Y)$ between the segment and the motif is below some threshold ϵ.
2. discrete-matching based support first we discretise time series X into a discrete sequence s. A motif is now a (frequent) subsequence of s.

Distance-based motifs, formally

A motif, a sequence $S=S_{1}, \ldots, S_{w}$ of real values, is said to approximately match a contiguous subsequence of length w in time series X, if the distance between (S_{1}, \ldots, S_{w}) and (X_{i}, \ldots, X_{i+w-1}) is at most ϵ.

- commonly, Euclidean distance or Dynamic Time Warping

The frequency of a motif is its number of occurrences

- the number of matches of a motif $S=S_{1}, \ldots, S_{w}$ to the time series X_{1}, \ldots, X_{n} at threshold ϵ is equal to the number of windows of length w in X for which the distance is at most ϵ

Top-k motifs

Nobody wants all motifs

- lots of many ϵ-similar matches for even a single true occurrence
- instead, we aim for the top- k best motifs

As with frequent itemset mining, redundancy is an issue

- we need to keep the top-k diverse
- distances between any pair of motifs must be at least $2 \cdot \epsilon$

FindBestMotif (X, w, ϵ)

begin
for $i=1$ to $n-w+1$ do begin
Candidate $=\left(X_{i}, \ldots, X_{i+w-1}\right)$
for $j=1$ to $n-w+1$ do begin
CompareTo $=\left(X_{j}, \ldots, X_{j+w-1}\right)$
$d=$ distance(Candidate, CompareTo)
if $d<\epsilon$ and (non-trivial-match)
then increment support count of Candidate
endfor
if Candidate has the highest count found so far
then update BestCandidate
endfor
return BestCandidate
end

Computational Complexity

Finding the best motif takes $O\left(n^{2}\right)$ distance computations

Practical complexity largely depends on distance function

- Euclidean distance is fast
- Dynamic Time Warping is often better, but much slower

Lower bounds are our friend

- if the lower bound on the distance between a motif and a windows is greater than ϵ, the window will never support the motif
- piecewise-aggregate approximations (PAA) allow fast computation of lower bounds by considering simplified (compressed) time series

Conclusions

Prediction over time is one of the most important and most used data analysis problems - predictive analytics

There exist two main types of sequential data

- continuous real-valued time series and discrete event sequences
- for both specialised algorithms exist

In practice, despite many assumptions ARMA is powerful

- often used in industry, learn how to use it, learn when to use it

Patterns in time series are called motifs

- by choosing a distance function can be mined directly from time series

Prediction over time is one of the most important and most used data analysis problems - predictive analytics

There exist two main types of sequential data

- continuous real-valued time series and discrete event sequences
- for both specialised algorithms exist

In practice, despite many assumptions ARMA is powerful

- often used in industry, learn how to use it, learn when to use it

Patterns in time series are called motifs

- by choosing a distance function can be mined directly from time series

