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IRDM Chapter 7, overview 

 Time Series 
1. Basic Ideas 
2. Prediction 
3. Motif Discovery 

 Discrete Sequences 
4. Basic Ideas 
5. Pattern Discovery 
6. Hidden Markov Models 

 
You’ll find this covered in  
Aggarwal Ch. 3.4, 14, 15 
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IRDM Chapter 7, today 

 Time Series 
1. Basic Ideas 
2. Prediction 
3. Motif Discovery 

 Discrete Sequences 
4. Basic Ideas 
5. Pattern Discovery 
6. Hidden Markov Models 

 
You’ll find this covered in  
Aggarwal Ch. 3.4, 14, 15 
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Chapter 7.1:  
Basic Ideas 

Aggarwal Ch. 14.1-14.2 
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Temperature Data 
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Temperature Data 
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Temperature Data 
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Temperature Data 
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Applications 
 

VII-1: 9 

Stock analysis Weather Forecasting Health Monitoring 

Social Network Analysis 
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Definition 
A time series of length 𝑛 consists of 𝑛 tuples 
𝑡1,𝑋1 , 𝑡2,𝑋2 , … (𝑡𝑛,𝑋𝑛) where for a tuple (𝑡𝑖 ,𝑋𝑖), 𝑡𝑖 is the 

time stamp, and 𝑋𝑖 is the data at time 𝑡𝑖 , and we have a total 
order on the time stamps 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑛  

 
Length 
 may either be finite or infinite 
 
Time stamps 
 may be contiguous, in practice integers are easier 
 
Data 
 when talking about time series, usually numeric, continuous real-valued 
 may be univariate (one attribute) or multivariate (multiple attributes) 
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Probabilistic Model of Time Series 
Consider data 𝑋𝑖 at time 𝑡𝑖 as a random variable 
 the actual data we observe at 𝑡𝑖 is a realization of 𝑋𝑖 

 
Some probabilistic properties can be stable over time 
 e.g. the mean 𝜇𝑖 of 𝑋𝑖 does not change (much) 
 the covariance between pairs (𝑋𝑖 ,𝑋𝑖+ℎ) is (almost) the same as (𝑋1,𝑋1+ℎ), i.e., 

the autocovariance of 𝑋𝑖 does not change (much) 
 

A time series is stationary if the process behind it does not change 
 𝜇𝑡 = 𝜇𝑠 = 𝜇 for all 𝑡, 𝑠, and 
 𝐶𝑋𝑋 𝑡, 𝑠 = 𝐶𝑋𝑋 𝑠 − 𝑡 = 𝐶𝑋𝑋(𝜏) where 𝜏 = |𝑠 − 𝑡| is the amount of time 

by which the signal is shifted 
 
Stationary time series are easy to model and predict 
 most real-world time series, however, are anything but stationary 
 
 (recall, if 𝑋𝑖 has mean 𝜇𝑖 = 𝐸[𝑋𝑖], 𝐶𝑋𝑋 𝑡, 𝑠 = 𝑐𝑐𝑐 𝑋𝑡,𝑋𝑠 = 𝐸 𝑋𝑡𝑋𝑠 − 𝜇𝑡𝜇𝑠) 
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Stationarity of Time Series 
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Seasonality & trend 

VII-1: 13 
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Formulation 

Classically, we assume a time series 𝑋 is composed of 
 

𝑋𝑖 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑦𝑖 +  𝑡𝑡𝑡𝑡𝑑𝑖 + 𝑛𝑛𝑛𝑛𝑒𝑖 
 

where 𝑛𝑛𝑛𝑛𝑒𝑖  is stationary. 
 
To make 𝑋 stationary, we simply have to  
remove seasonality and trend. 
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Seasonality 

Seasonality is essentially periodicity 
 seasonality is a periodic function of time with period 𝑑 

 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑦𝑖 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑦𝑖−𝑑 
 

How to find the seasonality function? 
1. by fitting a sine or cosine function 

  difficult – the signal may also be sine’ish 
 

2. by differencing 
     𝑋𝑖  = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑦𝑖 + 𝑡𝑡𝑡𝑡𝑑𝑖 + 𝑛𝑛𝑛𝑛𝑒𝑖  
𝑋𝑖−𝑑 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑦𝑖−𝑑 + 𝑡𝑡𝑡𝑡𝑑𝑖−𝑑 + 𝑛𝑛𝑛𝑛𝑒𝑖−𝑑 
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Seasonality 

Seasonality is essentially periodicity 
 seasonality is a periodic function of time with period 𝑑 

 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑦𝑖 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑦𝑖−𝑑 
 

How to find the seasonality function? 
1. by fitting a sine or cosine function 

  difficult – the signal may also be sine’ish 
 

2. by differencing 
     𝑋𝑖  = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑦𝑖 + 𝑡𝑡𝑡𝑡𝑑𝑖 + 𝑛𝑛𝑛𝑛𝑒𝑖  
𝑋𝑖−𝑑 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑦𝑖−𝑑 + 𝑡𝑡𝑡𝑡𝑑𝑖−𝑑 + 𝑛𝑛𝑛𝑛𝑒𝑖−𝑑 

 
𝑋𝑖′ = 𝑋𝑖 − 𝑋𝑖−𝑑 
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𝑋𝑖′ = 𝑋𝑖 − 𝑋𝑖−𝑑 where d = 12 
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Example: Removing Seasonality 
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Trend 

Trend is a polynomial function of time (assumption) 
 
 

How to find the trend function? 
 

1. by fitting functions 
 difficult to do, up to what order, when to stop? 
 

2. by differencing 
𝑋𝑖′ = 𝑋𝑖 − 𝑋𝑖−1 
𝑋𝑖′′ = 𝑋𝑖′ − 𝑋𝑖−1′  

 usually 2 times is enough 
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Example: Removing Trend 
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This is the time series we obtained by 
removing seasonality and trend 

𝑋𝑖′ = 𝑋𝑖 − 𝑋𝑖−1 
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Example: Removing Trend 
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The left-over fluctuations are either 
noise or non-trivial patterns 

𝑋𝑖′ = 𝑋𝑖 − 𝑋𝑖−1 
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Pre-processing 

We can infer missing values by interpolation 
 

𝑋𝑘 = 𝑋𝑖 +
𝑡𝑘 − 𝑡𝑖
𝑡𝑗 − 𝑡𝑖

× (𝑋𝑗 − 𝑋𝑖) 

where 𝑡𝑖 < 𝑡𝑘 < 𝑡𝑗 
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Pre-processing 

We can infer missing values by interpolation 
 

𝑋𝑘 = 𝑋𝑖 +
𝑡𝑘 − 𝑡𝑖
𝑡𝑗 − 𝑡𝑖

× (𝑋𝑗 − 𝑋𝑖) 

where 𝑡𝑖 < 𝑡𝑘 < 𝑡𝑗 
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Time Temp (°C) 

1 June-19 33.4 

2 June-20 29.4 

4 June-22 

5 June-23 16.1 

Temperature on June-22: 
 

𝑋4 = 𝑋2 +
𝑡4 − 𝑡2
𝑡5 − 𝑡2

× 𝑋5 − 𝑋2  

  = 29.4 + 4−2
5−2

× 16.1 − 29.4  

  = 20.5 
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Smoothing 

We can remove noise by smoothing 
 

Standard options include averaging 
 

𝑋𝑖′ = 𝑎𝑎𝑎(𝑋𝑖−𝑤 , … ,𝑋𝑖) 
where window length 𝑤 is a user-specified parameter 
 
We can more weight to recent values by exponential smoothing 

𝑋𝑖′ = 1 − 𝛼 𝑖 ⋅ 𝑋0′ + 𝛼�𝑋𝑗 ⋅ 1 − 𝛼 𝑖−𝑗
𝑖

𝑗=1

 

where the user chooses decay factor 𝛼 
 
 
 
 

(updated on Nov 26th : we now average explicitly over past values) 
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Chapter 7.2:  
Forecasting 

Aggarwal Ch. 14.3 
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Principle of Forecasting 

If we wish to make predictions, then clearly we must 
assume that something is stable over time. 

 
 

VII-1: 27 



IRDM ‘15/16 

Autoregressive (AR) model  

Future values depend on past values + random noise 
 assumption: the time series depends on autocorrelation 

 
Which past values? 
 the 𝑤 immediately previous values 

 
What relation between past and future? 
 linear combination 

 
What kind of noise? 
 Gaussian 

VII-1: 28 
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AR, formally 

Future value is  
a linear combination of past values + white noise 
 

𝑋𝑡 = �𝑎𝑖 ⋅ 𝑋𝑡−𝑖

𝑤

𝑖=1

+ 𝑐 + 𝜖𝑡 

 
 
 
where 𝜖𝑡~𝒩(0,𝜎2) 
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Linear combination of past values 

noise with shifted mean 
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Least-square regression 

𝜖𝑡 = 𝑋𝑡 − (𝑎1 ⋅ 𝑋𝑡−1 + 𝑎2 ⋅ 𝑋𝑡−2 + ⋯+ 𝑎𝑤 ⋅ 𝑋𝑡−𝑤 + 𝑐) 
 
 
 
 

Given data 𝑫 of 𝑁 training instances, we want to find 
𝑎1, … ,𝑎𝑤 and 𝑐 that minimise the mean squared error 

 
1

𝑁 − 𝑤
� 𝜖𝑡2
𝑁

𝑡=𝑤+1
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predicted value actual value 

the prediction error is simply the Gaussian noise in the AR model, the smaller we can get this value, the better! 
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Solving AR 

Find 𝑎1, … ,𝑎𝑤 and 𝑐 that minimize 1
𝑁−𝑤

∑ 𝜖𝑡2𝑁
𝑡=𝑤+1   

 
There are different solving strategies available 
 ordinary least squares, assumes 𝜖𝑡 and 𝑋𝑡 are uncorrelated 
 generalized least squares, assumes correlation exists but is known 
 iteratively reweighted least squares, assumes correlation is unknown 

 
Many standard tools available to do AR 
 MATLAB: ar function 
 R: arima function 
 

 
VII-1: 31 
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Example: AR 

Monthly temperature measured above the ground  
in a province of Vietnam from 1971 to 2001 
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34 

These plots show how the  
MSE behaves wrt to 𝑤. 
I.e., they to choose 𝑤. 



Moving Average (MA) model 

Future values depend on deterministic factor + noise 
 assumption: the time series depends on history of shocks 

 
What deterministic factor? 
 the mean of the time series 
 
Noise over what past values? 
 the current value and 𝑞 immediately previous values 

 
What kind of noise? 
 Gaussian 
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The 𝑀𝑀 𝑞  is defined as 

𝑋𝑡 = 𝜇 + 𝜖𝑡 + �𝑏𝑖 ⋅ 𝜖𝑡−𝑖

𝑞

𝑖=1

 

 
 
 

 
where 𝜖𝑖~𝒩(0,𝜎𝑖2) 
 
 
Recall, for the 𝐴𝐴(𝑤) model we had 

𝑋𝑡 = 𝑐 + 𝜖𝑡 + �𝑎𝑖 ⋅ 𝑋𝑡−𝑖

𝑤

𝑖=1

 

 

MA, formally 

VII-1: 36 

past noise 
mean 

current noise 
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Solving MA 

Find those 𝑏1, … , 𝑏𝑞 that minimize the error 
 
Unlike for AR, this problem is not linear 
 to identify noise terms, we need to know 𝑏1, … , 𝑏𝑞 
 to identify 𝑏1, … , 𝑏𝑞, we need to know the noise terms 
 typically we use an iterative non-linear fitting approach,  

instead of linear least-squares 
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The ARMA model 

ARMA combines the AR model with the MA model 
 

Future values depend on past values  + history of noise 
 the time series depends on  

both autocorrelation and history of shocks 
 

The ARMA model has two parameters, 𝑤 and 𝑞 
 window length w for autocorrelation 
 history length 𝑞 for noise 
 
What kind of noise? 
 Gaussian 
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ARMA, formally 

ARMA combines the AR model with the MA model 
 

Autoregressive model, 𝐴𝐴(𝑤): 
𝑋𝑡 = 𝑐 + 𝜖𝑡 + ∑ 𝑎𝑖 ⋅ 𝑋𝑡−𝑖𝑤

𝑖=1   

 
Moving Average model, 𝑀𝑀(𝑞) 

𝑋𝑡 = 𝜇 + 𝜖𝑡 + ∑ 𝑏𝑖 ⋅ 𝜖𝑡−𝑖
𝑞
𝑖=1   

 

Autoregressive Moving Average model, 𝐴𝐴𝐴𝐴(𝑤, 𝑞) 

𝑋𝑡 = 𝑐 + 𝜖𝑡 + �𝑎𝑖 ⋅ 𝑋𝑡−𝑖

𝑤

𝑖=1

 +�𝑏𝑖 ⋅ 𝜖𝑡−𝑖

𝑞

𝑖=1
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Solving ARMA 

Find those 𝑎𝑖 and 𝑏𝑖  and 𝑐 that minimize the error 
 
We need non-linear least-square regression 
 many standard tools to do this 
 MATLAB and R implement ARMA as ‘arma’ resp. ‘arima’ 

 
How to set 𝑤 and 𝑞? 
 as small as possible, so that the model still fits the data well 
 aka, good luck 

VII-1: 40 



IRDM ‘15/16 

Chapter 7.3:  
Motif Discovery 

Aggarwal Ch. 14.4, 3.4 
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Motifs 

A motif is a shape that frequently repeats in a time series 
 shape can also be called ‘pattern’ 

 
Many variations of  
motif discovery exist 
 contiguous versus  

non-continguous shapes 
 low versus  

high granularities 
 single time series versus  

databases of time series 
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What is a motif? 

When does a motif belong to a time series? 
 there are two main methods for deciding 

 
1. distance-based support 

A segment 𝑋[𝑖, 𝑗] of a sequence 𝑋 is said to support a 
motif 𝑌 when the distance 𝑑(𝑋[𝑖, 𝑗],𝑌) between the 
segment and the motif is below some threshold 𝜖. 
 

2. discrete-matching based support 
first we discretise time series 𝑋 into a discrete sequence 𝑠.  
A motif is now a (frequent) subsequence of 𝑠. 
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Distance-based motifs, formally 

A motif, a sequence 𝑆 = 𝑆1, … , 𝑆𝑤 of real values, is said to 
approximately match a contiguous subsequence of 
length 𝑤 in time series 𝑋, if the distance between 
(𝑆1, … , 𝑆𝑤) and 𝑋𝑖 , … ,𝑋𝑖+𝑤−1  is at most 𝜖. 
 commonly, Euclidean distance or Dynamic Time Warping 

 
The frequency of a motif is its number of occurrences 
 the number of matches of a motif 𝑆 = 𝑆1, … , 𝑆𝑤 to the time series 
𝑋1, … ,𝑋𝑛 at threshold 𝜖 is equal to the number of windows of 
length 𝑤 in 𝑋 for which the distance is at most 𝜖 
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Top-𝑘 motifs 

Nobody wants all motifs 
 lots of many 𝜖-similar matches for even a single true occurrence 
 instead, we aim for the top-𝑘 best motifs 

 
As with frequent itemset mining, redundancy is an issue 
 we need to keep the top-k diverse 
 distances between any pair of motifs must be at least 2 ⋅ 𝜖 
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FINDBESTMOTIF(𝑋,𝑤, 𝜖) 
begin 
  for 𝑖 = 1 to 𝑛 − 𝑤 + 1 do begin 
    𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = (𝑋𝑖 , … ,𝑋𝑖+𝑤−1) 
    for 𝑗 = 1 to 𝑛 − 𝑤 + 1 do begin 
      𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = (𝑋𝑗 , … ,𝑋𝑗+𝑤−1) 
      𝑑 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) 
      if 𝑑 < 𝜖 and (non-trivial-match) 
        then increment support count of 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 
    endfor 
    if 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 has the highest count found so far  
      then update 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 
  endfor 
  return 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 
end 

(trivially expanded to top-𝑘) 
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Computational Complexity 

Finding the best motif takes 𝑂(𝑛2) distance computations 
 

Practical complexity largely depends on distance function 
 Euclidean distance is fast 
 Dynamic Time Warping is often better, but much slower 

 
Lower bounds are our friend 
 if the lower bound on the distance between a motif and a windows 

is greater than 𝜖, the window will never support the motif 
 piecewise-aggregate approximations (PAA) allow fast computation 

of lower bounds by considering simplified (compressed) time series 
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Conclusions 

Prediction over time is one of the most important and 
most used data analysis problems – predictive analytics 
 

There exist two main types of sequential data 
 continuous real-valued time series and discrete event sequences 
 for both specialised algorithms exist 
 

In practice, despite many assumptions ARMA is powerful 
 often used in industry, learn how to use it, learn when to use it 

 

Patterns in time series are called motifs 
 by choosing a distance function can be mined directly from time series 
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Thank you! 
Prediction over time is one of the most important and 
most used data analysis problems – predictive analytics 
 

There exist two main types of sequential data 
 continuous real-valued time series and discrete event sequences 
 for both specialised algorithms exist 
 

In practice, despite many assumptions ARMA is powerful 
 often used in industry, learn how to use it, learn when to use it 

 

Patterns in time series are called motifs 
 by choosing a distance function can be mined directly from time series 
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