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IRDM Chapter 9, overview 

1. Basics & Motivation 
2. Extreme Value Analysis 
3. Probabilistic Methods 
4. Cluster-based Methods 
5. Distance-based Methods 

 
 

You’ll find this covered in:  
Aggarwal, Ch. 8, 9 
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December 14th – 18th  
Tutorials on Graph Mining 

 
January 4th – 8th 

No Tutorials 
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December 10th 2015 
The Second Midterm Test 

When:   from 14:15 to 15:25 
 

 Where:  Günter-Hotz-Hörsaal (E2 2) 
 

 Material:  Patterns, Clusters, and Classification 
 

  You are allowed to bring one (1) sheet of A4 paper with  
handwritten or printed notes on both sides .  

 

No other material (notes, books, course materials) or  
devices (calculator, notebook, cell phone, spoon, etc) allowed. 

 

Bring an ID; either your UdS card, or passport. 
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Chapter 9.1:  
The Basics & Motivation 

Aggarwal Ch. 8.1 
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Outliers 

An outlier is a data point very different from most  
of the remaining data.  
 the standard definition is by Hawkins 

 
“An outlier is an observation which deviates so much  
from the other observations as to arouse suspicion  

it was generated by a different mechanism” 
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Example Outliers 
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Outliers 

An outlier is a data point very different from most  
of the remaining data.  
 the standard definition is by Hawkins 

 
“An outlier is an observation which deviates so much  
from the other observations as to arouse suspicion  

it was generated by a different mechanism” 
 

Outliers are also known as 
 anomalies, abnormalities, discordants, deviants 
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Why bother? 

Outlier analysis is a key area of data mining 
 

Unlike pattern mining, clustering, and classification,  
it aims to describe what is not normal 
 
Applications are many 
 data cleaning 
 fraud detection 
 intrusion detection 
 rare disease detection 
 predictive maintenance 
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Not noise 

Outliers are not noise 
 noise is uninteresting, outliers are 
 noise is random, outliers aren’t 

 
Outliers are generated by a different process 
 e.g. Lionel Messi, or credit card fraudsters, or rare disease patients 
 we have too little data to infer that process exactly 
 detected outliers help us to better understand the data 
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Outliers everywhere 

Many many different outlier detection methods exist 
 many different methods needed  

 e.g. continuous vs. discrete data 
 e.g. tables, sequences, graphs 

 
The key problem, and why outlier analysis is interesting: 
beforehand, we do not know what we are looking for 
 what is weird? 
 what is normal? 
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Three Types of Outliers 

Global outliers 
 object that deviate from the rest of the data set 
 main issue: find a good measure of deviation 

 

Local outliers  
 object that deviates from a selected context 

e.g. differs strongly from its neighboring objects 
 main issue: how to define the local context? 

 

Collective outliers 
 a subset of objects that collectively deviate  

from the data or context, e.g. intrusion detection 
 main issue: combinatorial number of sets of objects 
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Ranking versus Thresholding 

Most outlier analysis methods give a real-valued score 
 
How to decide whether a point is worth looking at? 
 we set a threshold, or look at the top-𝑘 
 no best answer, depends on situation 

 
How to evaluate? 
 very, very difficult 
 is there a ‘true’ outlier ranking? 
 how bad is it to miss one, or to report two too many? 
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Supervised Outlier Detection 

Given sufficient data, we can construct a classifier 
 and then simply use it to predict how outlying an object is 
 typically does not fly in practice 

 
Problem 1: Insufficient training data 
 outliers are rare 
 we can boost (resample) a training set from a small set of known outliers 
 we can train on artificial samples 

 

Problem 2: Recall 
 recall is more important than accuracy 

 we want to catch them all 
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Chapter 9.2:  
Extreme Value Analysis 

Aggarwal Ch. 8.2 
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Extreme Values 
The traditional statistical approach to identifying  
outliers is extreme value analysis 
 
Those points 𝑥 ∈ 𝑫 that are in the statistical tails  
of the probability distribution 𝑝 of 𝑫 are outliers. 
 only identifies very specific outliers 
 
For example, for {1,3,3,3,50,97,97,97,100} 
 extreme values are 1 and 100, although 50 is the most isolated 

 
Tails are naturally defined for univariate distributions 
 defining the multivariate tail area of a distribution is more tricky 
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Problems with multivariate tails 
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Univariate Extreme Value Analysis 

Strong relation to statistical tail confidence tests 
 
Assume a distribution, and consider the probability  
density function 𝑓𝑋(𝑥) for attribute 𝑋 
 the lower tail are then those values 𝑥 < 𝑙 for which for all 𝑓𝑋 𝑥 < 𝜖 
 the upper tail are then those values 𝑥 > 𝑢 for which for all 𝑓𝑋 𝑥 < 𝜖 
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Not a density threshold. 

 
 
 
 
 
 
 
 
Not all distributions have two tails 
 exponential distributions, for example 
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Univariate 
For example, for a Gaussian 

𝑓𝑋 𝑥 =
1

𝜎 ⋅ 2 ⋅ 𝜋
⋅ 𝑒−

𝑥−𝜇 2

2⋅𝜎2  

 with sufficient data we can estimate 𝜎 and 𝜇 with high accuracy 
 
We can then compute 𝑧-scores, 𝑧𝑖 = (𝑥𝑖 − 𝜇)/𝜎 
 large positive values correspond to upper tail, large negative to lower tail 

 
We can write the pdf in terms of 𝑧-scores as 

𝑓𝑋 𝑧𝑖 =
1

𝜎 ⋅ 2 ⋅ 𝜋
⋅ 𝑒−

𝑥𝑖
2

2  

 the cumulative normal distribution then tells the area of the tail larger than 𝑧𝑖 
 as rule of thumb, 𝑧-scores with absolute values larger than 3 are extreme 
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Depth-based methods 

The main idea is that the convex-hull of a set of data 
points represents the pareto-optimal extremes of the set 
 find the convex hull, and assign 𝑘 to all 𝑥 ∈ ℎ𝑢𝑙𝑙 𝑫  
 remove ℎ𝑢𝑙𝑙 𝑫  from 𝑫, increase 𝑘 and repeat until 𝑫 is empty 
 
The depth 𝑘 identifies how extreme a point is 
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Example, depth 
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Depth-based methods 

The main idea is that the convex-hull of a set of data 
points represents the pareto-optimal extremes of the set 
 find set 𝑆 of corners of convex hull of 𝑫 
 assign depth 𝑘 to all 𝑥 ∈ 𝑆, and repeat until 𝑫 is empty 
 
The depth of a point identifies how extreme it is 
 
Very sensitive to dimensionality 
 recall, how are typically distributed over the hull of a hypersphere 
 computational complexity  
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Multivariate Extreme Value Analysis 

We can also define tails for multivariate distributions 
 areas of extreme values with probability density less than some threshold 

 

More complicated than univariate 
 and, only works for unimodal distributions with single peak 
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Multivariate Extreme Value Analysis 

For a multivariate Gaussian, we have its density as 
𝑓 𝑥 =

1

Σ ⋅ 2 ⋅ 𝜋
𝑑
2
⋅ 𝑒−

1
2⋅ 𝑥−𝜇 Σ−1 x−𝜇 𝑇

 

 where Σ is the 𝑑-by-𝑑 covariance matrix, and |Σ| is its determinant 
 
The exponent resembles Mahalanobis distance… 
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Mahalonobis distance 

Mahalanobis distance  
is defined as 
     𝑀 𝑥, 𝜇, Σ = 𝑥 − 𝜇 Σ−1 x − 𝜇 𝑇 
 Σ is a 𝑑-by-𝑑 covariance  

matrix, and 𝜇 a mean-vector 
 

Essentially Euclidean distance,  
after applying PCA, and after  
dividing by standard deviation 
 very useful in practice 
 e.g. for example on the left, 

𝑀 𝑏, 𝜇, Σ > 𝑀(𝑎, 𝜇, Σ) 
 
 

(Mahalanobis, 1936) 
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Multivariate Extreme Value Analysis 

For a multivariate Gaussian, we have its density as 
𝑓 𝑥 =

1

Σ ⋅ 2 ⋅ 𝜋
𝑑
2
⋅ 𝑒−

1
2⋅ 𝑥−𝜇 Σ−1 x−𝜇 𝑇

 

 where Σ is the 𝑑-by-𝑑 covariance matrix, and |Σ| is its determinant 
 
The exponent is half squared Mahalanobis distance 

𝑓 𝑥 =
1

Σ ⋅ 2 ⋅ 𝜋
𝑑
2
⋅ 𝑒−

1
2⋅𝑀 𝑥,𝜇,Σ 2

 

 
 for the probability density to fall below a threshold, the  

Mahalonobis distance needs to be larger than a threshold. 
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Probably extreme 

Mahalanobis distance to the mean is an extremity score 
 larger values imply more extreme behavior 

 

The probability of being extreme may be more insightful 
 how to model?  

 

Mahalanobis considers axes-rotated and scaled data 
 each component along the principal components can be modeled as an 

independent standard Gaussian, which means we can model by 𝒳2 
 points for which the Mahalanobis distance is larger  

than the cumulative probability are potential outliers 
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Extreme downsides 

Extreme value analysis is a rather basic technique.  
 only works when data has only a single-peaked distribution 
 requires assuming a distribution (e.g. Gaussian) 

 
Depth-based methods are very brittle in practice 
 do not scale well with dimensionality 
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Chapter 9.3:  
Probabilistic Methods 

Aggarwal Ch. 8.3 
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Mixtures 

Mahalanobis distance works well if there is a single peak  
 what if there are multiple? 

 
We can generalise to multiple distributions using mixture 
modelling 
 to this end, we’ll re-employ EM clustering. 
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Fit and Unfit 

We assume the data was generated by a mixture of  
𝑘 distributions 𝒢1 …𝒢𝑘 and the generation process was 
1. select a mixture component 𝑗 with prior probability 𝑎𝑖 where 𝑖 ∈ {1 … 𝑘}.  
2. generate a data point from 𝒢𝑗 

 
The probability of point 𝑥 generated by model ℳ is 

𝑓 𝑥 ℳ = �𝑎𝑖 ⋅ 𝑓𝑖(𝑥)
𝑘

𝑖

 

 outliers will naturally have low fit probabilities 
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Unfit Outliers 
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Fit and Unfit 

The probability of point 𝑥 generated by model ℳ is 

𝑓 𝑥 ℳ = �𝑎𝑖 ⋅ 𝑓𝑖(𝑥)
𝑘

𝑖

 

 outliers will naturally have low fit probabilities 
 
To find the parameters for ℳ, we need to optimise 

𝑓𝑑𝑑𝑑𝑑 𝑫 ℳ = � log𝑓(𝑥 ∣ ℳ)
𝑥∈𝑫

 

such that the log likelihood of the data is maximized.  
 this we do using EM (see lecture V-1) 
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Ups and Downs 

Mixture modelling works very well  
 when we know the family of distributions of the components 
 when we have sufficient data to estimate their parameters 
 and allows to include background knowledge, e.g. correlations 

 
In practice, however… 
 we do not know the number of components 
 we do not know the distributions 
 we do not have have sufficient data 

 
Due to overfitting we are likely to miss outliers 
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Chapter 9.4:  
Cluster-based Methods 

Aggarwal Ch. 8.4 
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Clusters and Outliers 
In both the probabilistic and cluster based approaches we 
define outliers as points that deviate from the norm 
 
In the probabilistic approach the norm is a distribution. 
 points with a low fit are outliers 
 
In the cluster-based approach the norm is a clustering. 
 points far away from these clusters are outliers 
 
A simplistic approach is to say that every point that  
does not belong to a cluster is an outlier. 
 many clustering algorithms claim to find outliers as a side-product 
 data points on the boundaries of clusters, however, are not real outliers 
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Clusters or Freaks 
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Simple approach 

The simple cluster-based approach to outlier detection 
1. cluster your data 
2. distance to closest centroid is outlier score for point 𝑥 

 
Raw distances can be deceiving 
 what if clusters are of different density? 
 what if clusters are of different shape? 

 

We need a score that takes the context into account 
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Local Mahalanobis 

Mahalanobis distance does consider shape and density 
 it is a global score, for single peaked unimodal distributions 

 
We can, however, define a local Mahalanobis score 
 compute mean vector 𝜇𝑟 and covariance matrix Σ𝑟 per cluster 𝐶𝑟 ∈ 𝒞 
 𝑖, 𝑗 ∈ Σ𝑟 is the covariance of dimensions 𝑖 and 𝑗 in cluster 𝐶𝑟 

 

𝑀 𝑥, 𝜇𝑟 ,Σ𝑟 = 𝑥 − 𝜇𝑟 Σ𝑟−1 𝑥 − 𝜇𝑟 𝑇 

 
 we can directly use it as an outlier score, higher is weirder 
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Cluster𝑓… 

Cluster-based anomaly detection makes intuitive sense 
 it works decent in practice, even when not tailored for outliers 
 can detect small clusters of outliers 
 
Noise is a big problem 
 clustering techniques do not distinguish between  

ambient noise and isolated points 
 neither appear in a cluster, so both are outliers 
 neither global nor local distances to centroids help 
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Chapter 9.5:  
Distance-based  Methods 

Aggarwal Ch. 8.5 
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Distance-based outliers 

We can identify outliers instance-based, as opposed to 
model based, by using a distance measure. 
 

“The distance-based outlier score of an object 𝑥 is  
its distance to its 𝑘th nearest neighbor.” 

 
In practice 
 you choose a (meaningful) distance measure 𝑑 
 you choose a (low) number of neighbors 𝑘 

 object 𝑥 is not part of its own 𝑘-nearest neighbors 
 this avoids scores of 0 when 𝑘 = 1 
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Computing 𝑉𝑘 

Distance-based methods  
 finer granularity than clustering or model-based methods 
 
Let 𝑉𝑘(𝑥) be the distance of 𝑥 to its 𝑘𝑑𝑡 nearest neighbor 
 𝑉𝑘 𝑥 = 𝑑 𝑥,𝑦 𝑦 is the 𝑘𝑑𝑡 𝑛𝑒𝑎𝑛𝑒𝑛𝑛 𝑛𝑒𝑖𝑛ℎ𝑏𝑛𝑛 𝑛𝑓 𝑥  

 
Naively computing 𝑉𝑘(𝑥) takes 𝑂(𝑛) 
 for all data points 𝑥 ∈ 𝑫 cost is 𝑂(𝑛2), which is infeasible for large 𝑫 
 
We can speed up by indexing  
 but, for high-dimensional data effectiveness degrades 
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Bounding through Sampling 
First, we choose a sample 𝑆 of 𝑛 < 𝑛 ≪ 𝑛 objects from 𝑫  
 we compute all pairwise distances between 𝑆 and 𝑫 

 this costs 𝑂 𝑛 ⋅ 𝑛 ≪ 𝑂(𝑛2)  
 

We have the exact score 𝑉𝑘 for all objects 𝑆 
 
We have a lower bound 𝐿𝑟 of the 𝑛𝑑𝑡 score of 𝑫 
 the 𝑛𝑑𝑡 score of 𝑆, in pseudo-math:  𝐿𝑟 = sort 𝑑 𝑥,𝑦 𝑥,𝑦 ∈ 𝑆 𝑟 
 any object with a lower score will not be in top-𝑛 for 𝑫 
 
We have an upper bound 𝑈𝑘 for scores of objects in 𝑫 − 𝑆 
 the 𝑘-nearest neighbor distance of object 𝑥 ∈ 𝑫 − 𝑆 to objects in 𝑆 
 or, in pseudo-math:   𝑈𝑘 𝑥 = sort 𝑑 𝑥,𝑦 𝑦 ∈ 𝑆 𝑘 
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Top-𝑛 distance-based outliers 

Usually, we only want the top-𝑛 most outlying objects 
 these we can compute much more efficiently, using two tricks 
 
Trick 1: compute lower and upper bounds by sampling 
 compute full score for a set of 𝑛 > 𝑛 objects 
 gives lower bound on score for 𝑛𝑑𝑡 object 
 gives upper bound for score for all objects not in sample 

 
Trick 2: early termination 
 compute full score only for candidates that can beat the 𝑛𝑑𝑡 score 
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Applying the bounds 

No 𝑥 ∈ 𝑫 with upper bound 𝑈𝑘 𝑥 < 𝐿𝑟 will be in top-𝑛  
 we do not have to compute its distances to 𝑫 − 𝑆 
 only have to compute for 𝑅 = 𝑥 ∈ 𝑫 − 𝑆 𝑈𝑘 𝑥 > 𝐿𝑟 ⊆ 𝑫 − 𝑆 

 
Top-𝑛 ranked outliers in 𝑅 ∪ 𝑆 are returned as final output 
 
In practice, as 𝑅 ∪ 𝑆 ≪ |𝐷|, this saves a lot of computation 
 especially if 𝑫 is clustered 
 especially if we chose 𝑆 wisely/luckily 

 at least one point per cluster, and 𝑛 points in sparse regions 
 
How would you choose 𝑆? 
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Early Termination 

We can do better, however. 
 
While computing the scores for 𝑥 ∈ 𝑅, every time we 
discover an object with 𝑉𝑘 𝑥 > 𝐿𝑟 we should update 𝐿𝑟 
 meaning, pruning further candidates from 𝑅 

 

For every 𝑥 ∈ 𝑅 we start with upper bound 𝑈𝑘 𝑥   
 initially based on the distances to 𝑆, but while computing the 

distances to 𝑫− 𝑆, we should update it  
 once 𝑈𝑘 𝑥  drops below 𝐿𝑟 we should terminate 
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Algorithm 
Algorithm TOP𝑛-𝑘NN-OUTLIERS(data 𝑫, distance 𝑑, sample size 𝑛) 
  𝑆 ← 𝑛𝑎𝑠𝑝𝑙𝑒(𝑫, 𝑛) 
  compute distances between 𝑆 and 𝑫 
  𝑅 ← 𝑥 ∈ 𝑫 − 𝑆 𝑈𝑘 𝑥 > 𝐿𝑟  
  for each 𝑥 ∈ 𝑅 do 
    for each 𝑦 ∈ 𝑫 − 𝑆 do 
      update current 𝑘-nearest neighbor distance estimate 𝑉𝑘(𝑥)  
       by computing distance of 𝑦 to 𝑥 
      if 𝑉𝑘 𝑥 ≤ 𝐿 then break 
    if 𝑉𝑘 𝑥 > 𝐿 then 
      include 𝑥 in current 𝑛 best outliers 
      update 𝐿 to the new 𝑛𝑑𝑡 best outlier score 
  return top-𝑛 outliers from 𝑆 ∪ 𝑅 
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Locally Outlying Factors 

Raw distance measures don’t always identify outliers well 
 they do not measure the intrinsic distances 
 e.g. Euclidean distance, but Mahalanobis neither  

 

The Locally Outlying Factors algorithm (LOF) is  
one of the earliest proposals to alleviate this 
 also one of the most used* local outlier detection techniques 

 

* or at least, most often compared against and beaten by more modern methods 
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Impact of Locality 
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LOF Begins 

In LOF we consider our data locally. That is, for a point 𝑥 
we primarily work with its 𝑘-nearest neighborhood.  
 
Let 𝐿𝑘 𝑥  be the set of objects that are at most as far as 
the 𝑘𝑑𝑡 nearest neighbor of 𝑥 
 

𝐿𝑘 𝑥 = 𝑦 ∈ 𝑫 𝑑 𝑥,𝑦 ≤ 𝑉𝑘 𝑋  
 
Usually 𝐿𝑘 𝑥  will contain 𝑘 points, sometimes more. 
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LOF, Origins 
When a point 𝑦 is in a dense area of the data, 𝑉𝑘(𝑦) will be low 
(i.e. when there are many points close to it.) 
 
When two points 𝑥 and 𝑦 are in each others 𝑘-nearest neighbors, 

𝑑 𝑥,𝑦 ≤ min 𝑉𝑘 𝑥 ,𝑉𝑘 𝑦  
 
We can measure how outlying an object 𝑥 is with regard to object 𝑦 
by considering the reachability distance between 𝑥 and 𝑦. 
 

𝑅𝑘 𝑥,𝑦 = max 𝑑 𝑥,𝑦 ,𝑉𝑘 𝑦  
 
when 𝑥 is not in the 𝑘-nearest neighborhood of 𝑦, it is 𝑑(𝑥,𝑦)  
when 𝑥 is in the in the 𝑘-nearest neighborhood of 𝑦, it is 𝑉𝑘(𝑦)  
and 𝑘 is essentially a data-driven smoothing parameter 
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The Rise of LOF 

We compute the average reachability distances between 
object 𝑥 and the objects in its 𝑘-nearest neighborhood 
 

𝐴𝑅𝑘 𝑥 = mean𝑦∈𝐿𝑘 𝑥 𝑅𝑘(𝑥,𝑦) 
 
which will be maximal when the nearest neighbors of 𝑥 
are at the edge of a dense cluster 
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The LOF Awakens 
Now, finally, given a database 𝑫, distance measure 𝑑, and a number 
of neighbors 𝑘, we define the local outlying factor of a point 𝑥 as 
 

𝐿𝑂𝐹𝑘 𝑥 = 𝑠𝑒𝑎𝑛𝑦∈𝐿𝑘 𝑥
𝐴𝑅𝑘 𝑥
𝐴𝑅𝑘 𝑦

 

 
For objects inside a cluster, it will take a value close to 1, regardless 
of how dense the cluster is.  
 
For outliers, 𝐿𝑂𝐹𝑘(𝑥) ≫ 1, as because 𝑥 is not in the nearest 
neighborhoods of its own nearest neighbors the denominator  
will be much smaller than the numerator 
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The LOF strikes back 

LOF works well in practice 
 even with raw (Euclidean) distance measures 
 regardless of number and density of clusters 

 
Why? 
 because of the relative normalisation in the denominator 
 it considers local information and can adapt to local density 

 
LOF is not perfect 
 𝑂(𝑛2) for high dimensional data, 𝑂(𝑛 log𝑛) when we can index 
 many variants exist for different cluster shapes 
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Impact of Locality 
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The return of the LOF 

Euclidean distance-based has a bias to spherical clusters 
 single-link clustering does not have this disadvantage 
 

We can fix this by defining 𝐿𝑘(𝑥) using Single-Link 
 start with 𝐿1 𝑥 = {𝑥} 
 and then iteratively add that 𝑦 that is closest to any point in 𝐿𝑘 
 𝐿𝑘+1 𝑥 = 𝐿𝑘 𝑥 ∪ { min

𝑦∈𝑫,𝑦∉𝐿𝑘 𝑥
𝑑 𝑦, 𝑧 𝑧 ∈ 𝐿𝑘 }  

 
We can also again employ local Mahalanobis distance 
 simply compute 𝑀(⋅) over 𝐿𝑘(𝑥), i.e. 𝐿𝑀𝑘 𝑥 = 𝑀(𝑥, 𝜇𝑘 , Σ𝑘) 
 tells how extreme a point 𝑥 is with regard to its local neighborhood 
 no need to normalise, as 𝑀 does that behind the scenes! 
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Impact of Locality 
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Conclusions 

Outliers are generated by a different process 
 not noise, but ‘nuggets of knowledge’, identifying exceptions in your data 

 

Discovering outliers is non-trivial 
 reduces to the core question of data mining: what is normal? 

 

We have seen four different classic approaches 
 extreme value analysis, probabilistic, cluster, and distance-based methods 

 

Discovering outliers in complex data is very challenging 
 what does outlying mean in high-dimensional data? 
 what does outlying mean in a graph? 
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