
Chapter 11: Text Indexing and Matching

The best place to hide a dead body is

page 2 of Google search results. -- anonymous

An engineer is someone who can do for a dime

what any fool can do for a dollar. -- anonymous

There is nothing that cannot be found through

some search engine. -- Eric Schmidt

There were 5 Exabytes of information created between the

dawn of civilization through 2003, but that much information

is now created every 2 days. -- Eric Schmidt

IRDM WS 2015 11-1

Outline

mostly following Büttcher/Clarke/Cormack Chapters 2,3,4,6

(alternatively: Manning/Raghavan/Schütze Chapters 3,4,5,6)

11.1 Search Engine Architecture

11.2 Dictionary and Inverted Lists

11.3 Index Compression

11.4 Similarity Search

11.2 mostly BCC Ch.4, 11.3 mostly BCC Ch.6, 11.4 mostly MRS Ch.3

IRDM WS 2015 11-2

11.1 Search Engine Architecture

......

.....

......

.....

crawl
extract
& clean

index search rank present

strategies for
crawl schedule and
priority queue for
crawl frontier

handle
dynamic pages,
detect duplicates,
detect spam

build and analyze
Web graph,
index all tokens
or word stems

server farm with 100 000‘s of computers,
distributed/replicated data in high-performance file system,
massive parallelism for query processing

fast top-k queries,
query logging,
auto-completion

scoring function
over many data
and context criteria

GUI, user guidance,
personalization

IRDM WS 2015 11-3

Content Gathering and Indexing

Documents

Internet crisis:
users still love

search engines

and have trust

in the Internet

Internet

crisis

users

...

Extraction
of relevant
words

Internet

crisis

user

...

Linguistic
methods:
stemming

Internet

Web

crisis

user

love

search

engine

trust

faith
...

Statistically
weighted
features
(terms)

Index

(B+-tree)

crisis love ...
URLs

Indexing

Thesaurus
(Ontology)

Synonyms,
Sub-/Super-
Concepts

......

.....

......

.....

Crawling

Bag-of-Words representations

IRDM WS 2015 11-4

Crawling

Focused Crawling: interleave with classifier

Deep Web Crawling: generate form-filling queries

• Crawl frontier: maintain priority queue

• Crawl strategy: breadth-first for broad coverage,

depth-first for site capturing,

clever prioritization

• Link extraction: handle dynamic pages (Javascript …)

• Traverse Web: fetch page by http,

parse retrieved html content for href links

IRDM WS 2015 11-5

Deep Web Crawling

Source: http://deepwebtechblog.com/wringing-science-from-google/

Deep Web (aka. Hidden Web):

DB/CMS content items without URLs

 generate (valid) values for query form fields

in order to bring items to surface

IRDM WS 2015 11-6

Focused Crawling
WWW

......

.....

......

.....

Crawler

Classifier Link Analysis

automatially populate
ad-hoc topic directory

Root

Semistrutured
Data

Database
Technology

Web
Retrieval

Data
Mining

XML

seeds

training

critical issues:

• classifier accuracy

• feature selection

• quality of training data

IRDM WS 2015 11-7

Focused Crawling

Root

Semistrutured
Data

Database
Technology

Web
Retrieval

Data
Mining

Social
Graphs

WWW
......
.....
......
.....

Crawler

Classifier Link Analysis

seeds

training

topic-specific
archetypes

high
confidence

high
authority

re-training

interleave crawler
and classifier
with periodic re-training

IRDM WS 2015 11-8

Ranking by
descending
relevance

Vector Space Model for Content Relevance Ranking

Search engine

Query
(set of weighted
features)

||]1,0[F
id Documents are feature vectors

(bags of words)

||]1,0[Fq









||

1

2
||

1

2

||

1
:),(

F

j

j

F

j

ij

F

j

jij

i

qd

qd

qdsim

Similarity metric:

Features are terms (words and other tokens)

or term-zone pairs (term in title/heading/caption/…)

can be stemmed/lemmatized (e.g. to unify singular and plural)

can also be multi-word phrases (e.g. bigrams)

e.g. weights by

tf*idf model

IRDM WS 2015 11-9

Vector Space Model: tf*idf Scores

tf (di, tj) = term frequency of term tj in doc di

df (tj) = document frequency of tj = #docs with tj

idf (tj) = N / df(tj) with corpus size (total #docs) N

dl (di) = doc length of di (avgdl: avg. doc length over all N docs)

tf*idf score for single-term query (index weight):

cosine similarity for ranking
(cosine of angle between q and d vectors
when vectors are L2-normalized):

)t(df

N1
ln))))t,d(tfln(1ln(1(d

j
jiij


 for tf(di,tj)>0, 0 else

 


idqj ijjijj ji dqdq)d,q(sim where jqdi if qj0dij0

plus optional length normalization dampening &

normalization

sparse scalar productIRDM WS 2015 11-10

(Many) tf*idf Variants: Pivoted tf*idf Scores
tf (di, tj) = term frequency of term tj in doc di

df (tj) = document frequency of tj = #docs with tj

idf (tj) = N / df(tj) with corpus size (total #docs) N

dl (di) = doc length of di (avgdl: avg. doc length over all N docs)

tf*idf score for single-term query (index weight):

pivoted tf*idf score:

)t(df

N1
ln))))t,d(tfln(1ln(1(d

j
jiij


 for tf(di,tj)>0, 0 else

)t(df

N1
ln

avgdl

)d(dl
s)s1(

)))t,d(tfln(1ln(1
d

ji

ji

ij







 avoids undue favoring

of long docs

also uses scalar product

for score aggregation

tf*idf scoring often works very well,

but it has many ad-hoc tuning issues

 Chapter 13:

more principled ranking models
IRDM WS 2015 11-11

11.2 Indexing with Inverted Lists

crisis

B+ tree or hashmap

17: 0.3
44: 0.4

..
.

Internet... trust...

52: 0.1
53: 0.8
55: 0.6

12: 0.5
14: 0.4

..
.

28: 0.1
44: 0.2
51: 0.6
52: 0.3

17: 0.1
28: 0.7

..
.

17: 0.3
17: 0.144: 0.4

44: 0.2

11: 0.6
index lists
with postings
(DocId, score)
sorted by DocId

Google etc.:
> 10 Mio. terms
> 100 Bio. docs
> 50 TB index

q: Internet
crisis
trust

Vector space model suggests term-document matrix,
but data is sparse and queries are even very sparse
 use inverted index lists with terms as keys for B+ tree or hashmap

terms can be full words, word stems, word pairs, substrings, N-grams, etc.
(whatever „dictionary terms“ we prefer for the application)

• index-list entries in DocId order for fast Boolean operations

• many techniques for excellent compression of index lists

• additional position index needed for phrases, proximity, etc.
(or other precomputed data structures)

IRDM WS 2015 11-12

Dictionary

• Dictionary maintains information about terms:

– mapping terms to unique term identifiers (e.g. crisis → 3141359)

– location of corresponding posting list on disk or in memory

– statistics such as document frequency and collection frequency

• Operations supported by the dictionary:

– Lookups by term

– range searches for prefix and suffix queries (e.g. net*, *net)

– substring matching for wildcard queries (e.g. cris*s)

– Lookups by term identifier

• Typical implementations:

– B+ trees, hash tables, tries (digital trees), suffix arrays

IRDM WS 2015 11-13

B+ Tree

Aachen Berlin Erfurt Essen Köln MainzBonn Merzig

Jena

B+-Tree

Paris
Saar-

brücken Trier Ulm

Frank-

furt
Jena

Bonn Essen Merzig

• Paginated hollow multiway search tree with high fanout ( low depth)

• Node contents: (child pointer, key) pairs as routers in inner nodes

key with id list or record data in leaf nodes

• Perfectly balanced: all leaves have identical distance to root

• Search and update efficiency: O(logk n/C) page accesses (disk I/Os)

with n keys, page storage capacity C, and fanout k

IRDM WS 2015 11-14

Prefix B+ Tree for Keys of Type String

Keys in inner nodes are mere Routers for search space partitioning.

Rather than xi = max{s: s is a key in subtree ti} a shorter router

yi with si  yi < xi+1 for all si in ti and all si+1 in ti+1

is sufficient, for example, yi = shortest string with the above property.

 even higher fanout, possibly lower depth of the tree

Aachen Berlin Erfurt Essen Köln MainzBonn Merzig

K

Prefix-
B+-tree

Paris
Saar-

brücken Trier Ulm

Frank-

furt
Jena

C Et N

IRDM WS 2015 11-15

Posting Lists and Payload
• Inverted index keeps a posting list for each term

with the following payload for each posting:

– document identifier (e.g. d123, d234, …)

– term frequency (e.g. tf(crisis, d123) = 2, tf(crisis, d234) = 4)

– score impact (e.g. tf(crisis, d123) * idf(crisis) = 3.75)

– offsets: positions at which the term occurs in document

• Posting lists can be sorted by doc id or sorted by score impact

• Posting lists are compressed for space and time efficiency

crisis d123, 2, [4, 14] d234, 4, [47] d266, 3, [1, 9, 20]

payload: tf, offsets

posting

posting list for

IRDM WS 2015 11-16

Query Processing on Inverted Lists

Merge Algorithm:

• merge lists for t1 t2 … tz

• compute score for each document

• keep top-k results with highest scores

(in priority queue or after sort by score)

crisis

B+ tree or hashmap

17: 0.3
44: 0.4

..
.

Internet... trust...

52: 0.1
53: 0.8
55: 0.6

12: 0.5
14: 0.4

..
.

28: 0.1
44: 0.2
51: 0.6
52: 0.3

17: 0.1
28: 0.7

..
.

17: 0.3
17: 0.144: 0.4

44: 0.2

11: 0.6
index lists with

(DocId,
score)

sorted by DocId

Given: query q = t1 t2 ... tz with z (conjunctive) keywords
similarity scoring function score(q,d) for docs dD, e.g.:
with precomputed scores (index weights) si(d) for which qi≠0

Find: top k results w.r.t. score(q,d) =aggr{si(d)}(e.g.: iq si(d))

Google:
> 10 mio. terms
> 100 bio. docs
> 50 TB index

q d

q: crisis
Internet
trust

IRDM WS 2015 11-17

Index List Processing by Merge Join
Keep L(i) in ascending order of doc ids

Compress L(i) by actually storing the gaps between successive doc ids

(or using some more sophisticated prefix-free code)

QP may start with those L(i) lists that are short and have high idf

Candidate results need to be looked up in other lists L(j)

To avoid having to uncompress the entire list L(j),

L(j) is encoded into groups of entries

with a skip pointer at the start of each group

 sqrt(n) evenly spaced skip pointers for list of length n

Li

Lj

2 4 9 16 59 66 128 135 291 311 315 591 672 899

1 2 3 5 8 17 21 35 39 46 52 66 75 88

…

…

IRDM WS 2015 11-18

Different Query Types

conjunctive queries:

all words in q = q1 … qk required

disjunctive („andish“) queries:

subset of q words qualifies,

more of q yields higher score

mixed-mode queries and negations:

q = q1 q2 q3 +q4 +q5 –q6

phrase queries and proximity queries:

q = “q1 q2 q3“ q4 q5 …

fuzzy queries: similarity search

e.g. with tolerance to spelling variants

Keyword queries:

all by list processing

on inverted indexes

see 11.4

incl. variant:
• scan & merge
only subset of qi lists

• lookup long
or negated qi lists

IRDM WS 2015 11-19

Forward Index

Forward index maintains information about documents

• compact representation of content:

sequence of term identifiers and document length

Forward index can be used for various tasks incl.:

• result-snippet generation (i.e., show context of query terms)

• computation of proximity scores for advanced ranking

(e.g. width of smallest window that contains all query terms)

d123: the giants played a fantastic season. it is not clear …

d123 dl:428 content:< 1, 222, 127, 3, 897, 233, 0, 12, 6, 7, … >

IRDM WS 2015 11-20

Index Construction and Updates

Index construction:

• extract (docId, termId, score) triples from docs

• can be partitioned & parallelized

• scores need idf (estimates)

• sort triples by termId (primary) and docId (secondary)

• disk-based merge sort (build runs, write to temp, merge runs)

• can be partitioned & parallelized

• load index from sorted file(s), using large batches for disk I/O

Index updating:

• collect batches of updates in separate files

• sort these files and merge them with index lists

IRDM WS 2015 11-21

Disk-Based Merge-Sort

1) Form runs of records, i.e., sorted subsets of the input data:

• load M consecutive blocks into memory

• sort them (using Quicksort or Heapsort)

• write them to temporary disk space

repeat these steps for all blocks of data

2) Merge runs (into longer runs):

• load M blocks from M different runs into memory

• merge the records from these blocks in sort order

• write output blocks to temporary disk space

and load more blocks from runs as needed

3) Iterate merge phase

until only one output run remains

IRDM WS 2015 11-22

Map-Reduce Parallelism for Web-Scale Data

Map Reduce

M1

Mn

R1

Rm

Shuffle
1

m

1

m

1

1

m

m

d1:

the quick

brown fox

jumps

over the

lazy dog

d2:

the quick

brown

dog jumps

over the

lazy fox

(the, d1) (quick, d1)
(brown, d1) …

(the, d2) (quick, d2)
(brown, d2) …

fox : <d1, d2>
quick : <d1, d2> …

brown : <d1, d2>
dog : <d1, d2> …

out1:

fox : 2

quick : 2

…

out2:

brown : 2

dog : 2

…

Automated Scalable 2-Phase Parallelism (bulk synchronous)

• map function: (hash-) partition inputs onto m compute nodes

local computation, emit (key,value) tuples

• implicit shuffle: re-group (key,value) data

• reduce function: aggregate (key,value) sets

Example: counting items

(words, phrases, URLs, IP addresses, IP paths, etc.)

in Web corpus or traffic/usage log

[J. Dean et al. 2004, Hadoop, etc.]

Map-Reduce Parallelism

Programming paradigm and infrastructure

for scalable, highly parallel data analytics

• can run on 1000‘s of computers

• with built-in load balancing & fault-tolerance

(automatic scheduling & restart of worker processes)

easy programming with key-value pairs:

Map function: KV  (L W)*

(k1, v1) | (l1,w1), (l2,w2), …

Reduce function: L W*  W*

l1, (x1, x2, …) | y1, y2, …

Examples:

• index building: K=docIds, V= contents, L=termIds, W=docIds

• click log analysis: K=logs, V=clicks, L=URLs, W=counts

• web graph reversal: K=docIds, V=(s,t) outlinks, L=t, W=(t,s) inlinks

IRDM WS 2015 11-24

Map-Reduce Parallelism for Index Building

Extractor

Extractor

Map

a..c

u..z

...

a..c

u..z
...

...

a..c

u..z

...
a..c

u..z

...

sort

sort

sort

sort

Inverter

Inverter

Reduceinput
files

output
filesIntermediate files

IRDM WS 2015 11-25

Distributed Indexing: Term Partitioning

…
entire index lists are
hashed onto nodes by TermId

queries are routed
to nodes with
relevant terms

 low resource consumption,
susceptible to imbalance
(because of data or load skew),
index maintenance non-trivial

a b c d

a c b d

IRDM WS 2015 11-26

…
index-list entries are
hashed onto nodes by DocId

each complete query
is run on each node;
results are merged

 perfect load balance,
embarrasingly scalable,
easy maintenance

Distributed Indexing: Doc Partitioning

a b c d

a b c d a b c d

Index Sharding

IRDM WS 2015 11-27

Dynamic Indexing

News, tweets, social media

require the index to be always fresh

• New postings are incrementally inserted into inverted lists

• avoid insertion in middle of long list:

partition long lists, insert in / append to partition,

merge partitions lazily

• Index updates in parallel to queries

• Light-weight locking needed to ensure consistent reads

(and consistency of index with parallel updates)

More detail see e.g. Google Percolator (Peng/Dabek: OSDI 2010)

IRDM WS 2015 11-28

Index Caching

Index Server

…

queries

Inverted-List
Caches

queries

Index Server

Query ProcessorQuery Processor

Query-Result
Caches

a b: a c d: e f: g h:

IRDM WS 2015 11-29

Caching Strategies
What is cached?

• index lists for individual terms

• entire query results

• postings for multi-term intersections

Where is an item cached?

• in RAM of responsible server-farm node

• in front-end accelerators or proxy servers

• as replicas in RAM of all (or many) servers

When are cached items dropped?

• estimate for each item: temperature = access-rate / size

• when space is needed, drop item with lowest temperature
Landlord algorithm [Cao/Irani 1997, Young 1998], generalizes LRU-k [O‘Neil 1993]

• prefetch item if its predicted temperature is higher than

the temperature of the corresponding replacement victims

IRDM WS 2015 11-30

11.3 Index Compression

Heap‘s law (empirically observed and postulated):

size of the vocabulary (distinct terms) in a corpus

 n]corpusintermsdistinct[E 

with total number of term occurrences n, and constants ,  ( < 1),

classically 20, 0.5

Zipf‘s law (empirically observed and postulated):

relative frequencies of terms in the corpus











k

1
~]x.freq.relhastermpopularmostk[P th

with parameter , classically set to 1

The two laws strongly suggest opportunities for compression

IRDM WS 2015 11-31

Compression: Why?

• reduced space consumption on disk or in memory

(and SSD and L3/L2 CPU caches)

• more cache hits, since more postings fit in cache

• 10x to 20x faster query processing, since

decompressing may often be done as fast as sequential scan

IRDM WS 2015 11-32

Basics from Information Theory

For two prob. distributions f(x) and g(x) the
relative entropy (Kullback-Leibler divergence) of f to g is

2
x

f (x)
D(f g) : f (x)log

g(x)


Let f(x) be the probability (or relative frequency) of the x-th symbol

in some text d. The entropy of the text

(or the underlying prob. distribution f) is:

H(d) is a lower bound for the bits per symbol needed with optimal coding.


x)x(f

log)x(f)d(H
1

2

D is the average number of additional bits for coding
events of f when using optimal code for g

Cross entropy of f(x) to g(x):


x

)x(glog)x(f)gf(D)f(H:)g,f(H

relative entropy measures
(dis-)similarity of probability
or frequency distributions

Jensen-Shannon divergence of f(x) and g(x):
1

2
𝐷(𝑓| 𝑔 +

1

2
𝐷(𝑔||𝑓)

IRDM WS 2015 11-33

Compression
• Text is sequence of symbols (with specific frequencies)
• Symbols can be

• letters or other characters from some alphabet 
• strings of fixed length (e.g. trigrams)
• or words, bits, syllables, phrases, etc.

Limits of compression:

Let pi be the probability (or relative frequency)

of the i-th symbol in text d

Then the (empirical) entropy of the text:

is a lower bound for the average number of bits per symbol

in any compression (e.g. Huffman codes)


i i

i
p

pdH
1

log)(2

Note:
compression schemes such as Ziv-Lempel (used in zip)
are better because they consider context beyond single symbols;
with appropriately generalized notions of entropy
the lower-bound theorem does still hold
IRDM WS 2015 11-34

Basic Compression: Huffman Coding

Text in alphabet  = {A, B, C, D}
P[A] = 1/2, P[B] = 1/4, P[C] = 1/8, P[D] = 1/8

H() = 1/2*1 +1/4*2 + 1/8*3 + 1/8*3 = 7/4

Optimal (prefix-free) code from Huffman tree:
A  0
B  10
C  110
D  111

A: 1/2 B: 1/4 C: 1/8 D: 1/8

0 1

1

1

0

0

Avg. code length: 0.5*1 + 0.25*2 +2* 0.125*3 = 1.75 bits

IRDM WS 2015 11-35

Basic Compression: Huffman Coding

Text in alphabet  = {A, B, C, D}
P[A] = 0.6, P[B] = 0.3, P[C] = 0.05, P[D] = 0.05

H() = 0.6*log
10

6
+ 0.3*log

10

3
+ 0.05*log20 +0.05*log20  1.394

Optimal (prefix-free) code from Huffman tree:
A  0
B  10
C  110
D  111

A: 0.6 B: 0.3 C: 0.05 D: 0.05

0 1

1

1

0

0

Avg. code length: 0.6*1 + 0.3*2 + 0.05*3 +0.05*3 = 1.5 bits

IRDM WS 2015 11-36

Algorithm for Computing a Huffman Code

Theorem: The Huffman code constructed with this algorithm

is an optimal prefix-free code.

n := ||
priority queue Q :=  sorted in ascending order by p(s) for s
for i:=1 to n-1 do

z := MakeTreeNode()
z.left := ExtractMin(Q)
z.right := ExtractMin(Q)
p(z) := p(z.left) + p(z.right)
Insert (Q, z)

od
return ExtractMin(Q)

Remark:
Huffmann codes need to scan a text twice for compression
(or need other sources of text-independent symbol statistics)

IRDM WS 2015 11-37

Example: Huffman Coding

Example:

||=6, ={a,b,c,d,e,f},

P[A]=0.45, P[B]=0.13, P[C]=0.12, P[D]=0.16, P[E]=0.09, P[F]=0.05

A: 0.45

1.0

0.55

0.30.25

C: 0.12 B: 0.13 D: 0.160.14

F: 0.05 E: 0.09

0 1

0 1

0 1 0 1

0 1

A  0
B  101
C  100
D  111
E  1101
F  1100

IRDM WS 2015 11-38

Arithmetic Coding
Generalizes Huffman coding

Key idea: for alphabet  and probabilities P[s] of symbols s

• Map s to an interval of real numbers in [0,1]

using the cdf values of the symbols

and encode the interval boundaries

• Choose sums of negative powers of 2 as interval boundaries

Example: ={A,B,C,D} with P[A]=0.4, P[B]=0.3, P[C]=0.2, P[D]=0.1

 F(A)=0.4, F(B)=0.7, F(C)=0.9, F(D)=1.0

2-12-3 2-2

A
B C

D

Encode symbol (or symbol sequence) by a

binary interval contained in the symbol‘s interval
IRDM WS 2015 11-39

General Text Compression: Ziv-Lempel

LZ77 (Adaptive Dictionary) and further variants:

• scan text & identify in a lookahead window the longest string

that occurs repeatedly and is contained in a backward window

• replace this string by a „pointer“ to its previous occurrence.

encode text into list of triples <back, count, new> where

• back is the backward distance to a prior occurrence of the string

that starts at the current position,

• count is the length of this repeated string, and

• new is the next symbol that follows the repeated string.

triples themselves can be further encoded (with variable length)

better variants use explicit dictionary with statistical analysis

(need to scan text twice)

and/or clever permutation of input string  Burrows-Wheeler transform
IRDM WS 2015 11-40

Example: Ziv-Lempel Compression

great for text compression, but not easy to use with index lists

<0, 0, p> for character 1: p
<0, 0, e> for character 2: e
<0, 0, t> for character 3: t
<-2, 1, r> for characters 4-5: er
<0, 0, _> for character 6: _
<-6, 1, i> for characters 7-8: pi
<-8, 2, r> for characters 9-11: per
<-6, 3, c> for charaters 12-13: _pic
<0, 0, k> for character 16 k
<-7,1,d> for characters 17-18 ed

...

peter_piper_picked_a_peck_of_pickled_peppers

<back, count, new>

IRDM WS 2015 11-41

Index Compression

Posting lists with ordered doc ids have small gaps

 gap coding: represent list by first id and sequence of gaps

gaps in long lists are small, gaps in short lists long

variable bit length coding

good for doc ids and offets in payload

Other lists may have many identical or consecutive values

 run-length coding: represent list by first value and

frequency of repeated or consecutive values

IRDM WS 2015 11-42

Gap Compression: Gamma Coding

Encode gaps in inverted lists (successive doc ids), often small integers

Unary coding:

gap of size x encoded by:

x times 0 followed by one 1

(x+1 bits)

Binary coding:

gap of size x encoded by

binary representation of number x

(log2 x bits)

good for short gaps good for long gaps

Elias‘s  coding:

length:= floor(log2 x) in unary, followed by

offset := x  2**(floor(log2 x)) in binary

(1 + log2 x + log2 x bits)

 generalization: Golomb code (optimal for geometr. distr. of x)

 still need to pack variable-length codes into bytes or words

IRDM WS 2015 11-43

Example for Gamma Coding

Note 1: as there are no gaps of size x=0, one typically encodes x-1

x length (unary) offset (binary)

1 = 20 1 1

4 = 22 001 10

17 = 24+20 00001 10001

24=24+23 00001 11000

63=25+… 000001 111111

64=26 0000001 100000

x length (unary) offset (binary)

1 = 20 1 1

4 = 22 001 100

17 = 24+20 00001 10001

24=24+23 00001 11000

63=25+… 000001 111111

64=26 0000001 1000000

leading 1

can be omitted

Note 2: a variant called  coding uses  encoding for the length
IRDM WS 2015 11-44

Byte or Word Alignment and
Variable Byte Coding

Variable bit codes are typically aligned

to start on byte or word boundaries

 some bits per byte or word may be unused (extra 0‘s “padded“)

Variable byte coding uses only 7 bits per byte,

the first (i.e. most significant) bit is a continuation flag

 tells which consecutive bytes form one logical unit

1 0000000 1 0100101 0 1000000 0 0011000

Example: var-byte coding of gamma encoded numbers:

IRDM WS 2015 11-45

Golomb Coding / Rice Coding

Colomb coding generalizes Gamma coding:

for tunable parameter M (modulus), split x into

• quotient q = floor(x/M) – stored in unary code with q+1 bits

• remainder r = x mod M – stored in binary code with ceil(log2r) bits

Rice coding specializes Golomb coding to choice M = 2k

 processing of encoded numbers can exploit bit-level operations

let b=ceil(log2M)  remainder needs either b or b-1 bits

can be further optimized to use b-1 bits for the smaller numbers:

If r < 2b  M then r is stored with b-1 bits

If r  2b  M then r+2bM is stored with b bits

IRDM WS 2015 11-46

Example for Golomb Coding

Golomb encoding (M=10, b=4): simple variant

x q bits(q) r bits(r)

0 0 1 0 0000

33 3 0001 3 0011

57 5 000001 7 0111

99 9 0000000001 9 1001

Golomb encoding (M=10, b=4) with additional optimization

x q bits(q) r bits(r)

0 0 1 0 000

33 3 0001 3 011

57 5 000001 7 1101

99 9 0000000001 9 1111

IRDM WS 2015 11-47

Practical Index Compression:
Layout of Index Postings

word

word skip table block 1 block N
…

one block

(with n postings):

delta to last docId in block
…

#docs in block: n

n-1 docId deltas: Ricek encoded

n values tf: Gamma encoded

tf attributes: Huffman encoded

tf positions: Huffman encoded

payload
(of postings)

postings

header

layout
allows
incremental
decoding

[Jeff Dean (Google): WSDM‘09]

IRDM WS 2015 11-48

11.4 Similarity Search

Exact Matching:

• given a string s and a longer string d,

find (all) occurrences of s in d

string can be a word or a multi-word phrase

• algorithms include Knuth-Morris-Pratt, Boyer-Moore, …

 see Algorithms lecture

Fuzzy Matching:

• given a string s and a longer string d,

find (all) approximate occurrences of s in d

e.g. tolerating missing characters or words, typos, etc.

 this lecture

IRDM WS 2015 11-49

Similarity Search with Edit Distance

Idea:

tolerate mis-spellings and other variations of search terms

and score matches based on edit distance

Examples:

1) query: Microsoft

fuzzy match: Migrosaft

score ~ edit distance 2

2) query: Microsoft

fuzzy match: Microsiphon

score ~ edit distance 3+5

3) query: Microsoft Corporation, Redmond, WA

fuzzy match at token level: MS Corp., Readmond, USA

IRDM WS 2015 11-50

Similarity Measures on Strings (1)
Hamming distance of strings s1, s2 * with |s1|=|s2|:

number of different characters (cardinality of {i: s1i  s2i})

Levenshtein distance (edit distance) of strings s1, s2 *:

minimal number of editing operations on s1

(replacement, deletion, insertion of a character)

to change s1 into s2

For edit (i, j): Levenshtein distance of s1[1..i] and s2[1..j] it holds:

edit (0, 0) = 0, edit (i, 0) = i, edit (0, j) = j

edit (i, j) = min { edit (i-1, j) + 1,

edit (i, j-1) + 1,

edit (i-1, j-1) + diff (i, j) }

with diff (i, j) = 1 if s1i  s2j, 0 otherwise

 efficient computation by dynamic programming

IRDM WS 2015 11-51

g r e a t

g

r

e

a

t

0 1 2 3 4

1

2

3

4

Example for Levenshtein edit distance:

grate[1..i]  great[1..j]

0 1 2 3

1

2

3

1 1 2

2 2 1

2 3 2

edit (s[1..i], t[1..j]) = min {

edit (s[1..i-1], t[1..j]) + 1,

edit (s[1..i], t[1..j-1]) + 1,

edit (s[1..i-1], t[1..j-1]) + diff (s[i], t[j] }

Similarity Measures on Strings (2)

Damerau-Levenshtein distance of strings s1, s2 *:

minimal number of replacement, insertion, deletion, or

transposition operations (exchanging two adjacent characters)

for changing s1 into s2

For edit (i, j): Damerau-Levenshtein distance of s1[1..i] and s2[1..j] :

edit (0, 0) = 0, edit (i, 0) = i, edit (0, j) = j

edit (i, j) = min { edit (i-1, j) + 1,

edit (i, j-1) + 1,

edit (i-1, j-1) + diff (i, j),

edit (i-2, j-2) + diff(i-1, j) + diff(i, j-1) +1 }

with diff (i, j) = 1 if s1i  s2j, 0 otherwise

IRDM WS 2015 11-53

Similarity based on N-Grams

Determine for string s the set or bag of its N-Grams:

G(s) = {substrings of s with length N}

(often trigrams are used, i.e. N=3)

Distance of strings s1 and s2:

|G(s1)| + |G(s2)| - 2|G(s1)G(s2)|

Example:

G(rodney) = {rod, odn, dne, ney}

G(rhodnee) = {rho, hod, odn, dne, nee}

distance (rodney, rhodnee) = 4 + 5 – 2*2 = 5

Alternative similarity measures:

Jaccard coefficient: |G(s1)G(s2)| / |G(s1)G(s2)|

Dice coefficient: 2 |G(s1)G(s2)| / (|G(s1)| + |G(s2)|)

IRDM WS 2015 11-54

N-Gram Indexing for Similarity Search

Theorem (Jokinen and Ukkonen 1991):

for query string s and a target string t,

the Levenshtein edit distance is bounded by the

N-Gram bag-overlap:

dNNstNgramssNgramsdtsedit )1(||)()(),(

 for similarity queries with edit-distance tolerance d,

perform query over inverted lists for N-grams,

using count for score aggregation

IRDM WS 2015 11-55

Example for Jokinen/Ukkonen Theorem

edit(s,t)  d  overlap(s,t)  |s|  (N1)  dN

overlap(s,t)  |s|  (N1)  dN  edit(s,t)  d

s = abababababa

|s|=11

N=2  Ngrams(s) = {ab(5),ba(5)}

N=3  Ngrams(s) = {aba(5), bab(4)}

N=4  Ngrams(s) = {abab(4), baba(4)}

t1 = ababababab, |t1|=10

t2 = abacdefaba, |t2|=10

t3 = ababaaababa, |t3|=11

t4 = abababb, |t4|=7

t5 = ababaaabbbb, |t5|=11

task: find all ti with edit(s,ti)  2

 prune all ti with edit(s,ti)  2 = d

 overlapBound = |s|  (N1)  dN

= 6 (for N=2)

 prune all ti with overlap(s,ti)  6

N=2:

Ngrams(t1) = {ab(5),ba(4)}

Ngrams(t2)

= {ab(2),ba(2),ac,cd,de,ef,fa}

Ngrams(t3) =

= {ab(4),ba(4),aa(2)}

Ngrams(t4) = {ab(3),ba(2),bb}

Ngrams(t5)

= {ab3),ba(2),aa(2)bb(3)}

 prune t2, t4, t5 because overlap(s,tj) < 6 for these tj

Similar Document Search

Given a full document d: find similar documents (related pages)

• Construct representation of d:

set/bag of terms, set of links,

set of query terms that led to clicking d, etc.

• Define similarity measure:

overlap, Dice coeff., Jaccard coeff., cosine, etc.

• Efficiently estimate similarity and design index:

use approximations based on N-grams (shingles)

and statistical estimators

 min-wise independent permutations / min-hash method:

compute min((D)), min((D‘) for random permutations 

of N-gram sets D and D‘ of docs d and d‘

and test min((D)) = min((D‘))

IRDM WS 2015 11-57

Min-Wise Independent Permutations (MIPs)
aka. Min-Hash Method

MIPs are unbiased estimator of resemblance:

P [min {h(x) | xA} = min {h(y) | yB}] = |AB| / |AB|

MIPs can be viewed as repeated sampling of x, y from A, B

set of ids

17 21 3 12 24 8

20 48 24 36 18 8

40 9 21 15 24 46

9 21 18 45 30 33

h1(x) = 7x + 3 mod 51

h2(x) = 5x + 6 mod 51

hN(x) = 3x + 9 mod 51

…

compute N random
permutations with:

…

8

9

9

N

MIPs
vector:
minima
of perm.

8

9

33

24

36

9

8

24

45

24

48

13

MIPs
(set1)

MIPs
(set2)

estimated
resemblance = 2/6

P[min{(x)|xS}=(x)]

=1/|S|

IRDM WS 2015 11-58

Duplicate Elimination [Broder et al. 1997]

Approach:

• represent each document d as set (or sequence) of

shingles (N-grams over tokens)

• encode shingles by hash fingerprints (e.g., using SHA-1),

yielding set of numbers S(d)  [1..n] with, e.g., n=264

• compare two docs d, d‘ that are suspected to be duplicates by

• resemblance:

• containment:

• drop 𝒅′ if resemblance or containment is above threshold

duplicates on the Web may be slightly perturbed

crawler & indexing interested in identifying near-duplicates

|)'()(|

|)'()(|

dSdS

dSdS





|)(|

|)'()(|

dS

dSdS 

Jaccard coefficient

IRDM WS 2015 11-59

Efficient Duplicate Detection
in Large Corpora [Broder et al. 1997]

Solution:

1) for each doc compute shingle-set and MIPs

2) produce (shingleID, docID) sorted list

3) produce (docID1, docID2, shingleCount) table

with counters for common shingles

4) Identify (docID1, docID2) pairs

with shingleCount above threshold

and add (docID1, docID2) edge to graph

5) Compute connected components of graph (union-find)

 these are the near-duplicate clusters

avoid comparing all pairs of docs

Trick for additional speedup of steps 2 and 3:
• compute super-shingles (meta sketches) for shingles of each doc
• docs with many common shingles have common super-shingle w.h.p.

IRDM WS 2015 11-60

Similarity Search by Random Hyperplanes
[Charikar 2002]

similarity measure: cosine

• generate random hyperplanes

with normal vector h

• test if 𝑑 and 𝑑′ are on

the same side of the hyperplane

P [sign(ℎ𝑇𝑑) = sign(ℎ𝑇𝑑′)] = 1  angle(𝑑, 𝑑′) / (/2)

IRDM WS 2015 11-61

Summary of Chapter 11

• indexing by inverted lists:

• posting lists in doc id order (or score impact order)

• partitioned across server farm for scalability

• major space and time savings by index compression:

Huffman codes, variable-bit Gamma and Golomb coding

• similarity search based on edit distances and N-gram overlaps

• efficient similarity search by min-hash signatures

Happy Holidays and Merry Christmas!

IRDM WS 2015 11-62

Additional Literature for Chapter 11

• S. Brin, L. Page: The Anatomy of a Large-Scale

Hypertextual Web Search Engine. Computer Networks 30(1-7), 1998

• M. McCandless, E. Hatcher, O. Gospodnetic: Lucene in Action, Manning 2010

• C. Gormley, Z. Tong: Elasticsearch – The Definitive Guide, O’Reilly 2015

• E.C. Dragut, W. Meng, C.T. Yu: Deep Web Query Interface Understanding

and Integration. Morgan & Claypool 2012

• F. Menczer, G. Pant, P. Srinivasan: Topical web crawlers: Evaluating

adaptive algorithms. ACM Trans. Internet Techn. 4(4): 378-419 (2004)

• J. Zobel, A. Moffat: Inverted files for text search engines.

ACM Computing Surveys 38(2), 2006

• X. Long, T. Suel: Three-Level Caching for Efficient Query Processing in

Large Web Search Engines, WWW 2005

• F. Transier, P. Sanders: Engineering basic algorithms of an

in-memory text search engine. ACM Trans. Inf. Syst. 29(1), 2010

IRDM WS 2015 11-63

Additional Literature for Chapter 11

• J. Dean, S. Ghemawat: MapReduce: Simplified Data Processing

in Large Clusters, OSDI 2004

• T. White: Hadoop – The Definitive Guide, O‘Reilly 2015

• J. Lin, C. Dyer: Data-Intensive Text Processing
with MapReduce, Morgan & Claypool 2010

• J. Dean: Challenges in Building Large-Scale Information Retrieval Systems,

WSDM 2009, http://videolectures.net/wsdm09_dean_cblirs/

• D. Peng, F. Dabek: Large-scale Incremental Processing Using Distributed

Transactions and Notifications, OSDI 2010

• A.Z. Broder, S.C. Glassman, M.S. Manasse, G. Zweig: Syntactic Clustering

of the Web. Computer Networks 29(8-13): 1157-1166 (1997)

• M. Henzinger: Finding near-duplicate web pages: a large-scale evaluation

of algorithms. SIGIR 2006: 284-291

IRDM WS 2015 11-64

