Chapter 12: Query Processing

Computers are useless,
they can only give you answers.
-- Pablo Picasso

You have to think anyway,
so why not think big?

-- Donald Trump

There are lies, damn lies,
and workload assumptions.

-- anonymous
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Outline

12.1 Query Processing Algorithms
12.2 Fast Top-k Search

12.3 Phrase and Proximity Queries *

12.4 Query Result Diversification

€<¢¢ ¢

loosely following Buttcher/Clarke/Cormack Chapters 5 and 8.6
plus Manning/Raghavan/Schitze Chapters 7 and 9
plus specific literature
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Query Types

« Conjunctive
(i.e., all query terms are required)

* Disjunctive
(1.e., subset of query terms sufficient)

* Phrase or proximity
(1.e., query terms must occur In right order or close enough)

« Mixed-mode with negation
(e.g., “harry potter” review +movie -book)

« Combined with ranking of result documents according to
score(q,d) = Z score(t,d)

teq
with score(t, d) depending on retrieval model (e.g. tf*idf)
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Indexing with Document-Ordered Lists

Data items: d, ..., d,

|
dy

s(ty,dp) = 0.7
s(tm,d;) = 0.2

/
\

Index lists

i dl [d10
1{ 07 |os

d23
0.8

d78
0.9

t di [d10
-~ Y21 02 |06

d23
0.6

d64
0.8

Index-list entries stored

In ascending order of
document identifiers
(document-ordered lists)

process all queries (conjunctive/disjunctive/mixed)
by sequential scan and merge of posting lists
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Document-at-a-Time Query Processing

Document-at-a-Time (DAAT) query processing
assumes document-ordered posting lists
scans posting lists for query terms ta, ..

., tig concurrently

maintains an accumulator for each candidate result doc:

acc(d) = Zi: d seen in L(ti) SCO?"e(ti, d)

Accumulators

- REREEREE di1, 1.0| |ds, 2.0| |d7, 0.2 |ds, 0.1
(REREEEEE ds, 1.0 |d7, 2.0| |ds, 0.2 |dg, 0.1
OREREEEER ds, 3.0 |d7, 1.0

di 1.0
d4 6.0
dz 3.2
ds 0.3
do 0.1

always advances posting list with lowest current doc id
exploit skip pointers when applicable
required memory depends on # results to be returned
— top-k results in priority queue
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DAAT with Weak And: WAND Method

[Broder et al. 2003]
Disjunctive (Weak And) query processing

— assumes document-ordered posting lists with known
maxscore(i) values for each t;: max, (score (d,t;))

— While scanning posting lists keep track of
* min-K: the lowest total score in current top-k results
 ordered term list: terms sorted by docld at current scan pos
+ pivot term: smallest j such that min-k < ¥ : maxscore(i)

 pivot doc: doc id at current scan pos in posting list L]

Eliminate docs that cannot become top-k results (maxscore pruning)
— if pivot term does not exist (min-k > ».; maxscore(i))

— then stop

— else advance scan positions to pos > id of pivot doc (“big skip*)
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Example: DAAT with WAND Method

[Broder et al. 2003]
Key invariant: For terms 1=1..|q| and current scan positions cur;

assume that cur, = min {curi | iI=1..|q|}
Then for each posting list 1 there Is no docid between cur, and cur;

maxscore; term | cur;

5 1 101

4 2 250

2 3 300
3 4

[ } 600
cannot contain any docid [102,599]

Suppose that min-k =12

then the pivot term is 4

(Zi=1 3 maxscore; > min-K, %,_; , maxscore; < min-k)
and the pivot docid is 600

— can advance all scan positions cur; to 600
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Term-at-a- Time Query Processing

Term-at-a-Time (TAAT) query processing

— assumes document-ordered posting lists
— scans posting lists for query terms fta, ..
(possibly in decreasing order of idf values)

., tjg One at a time,

— maintains an accumulator for each candidate result doc
— after processing L(tj): acc(d) = X;<;score(ti, d)

di, 1.0

ds4, 2.0

d7, 0.2

ds, 0.1

ds4, 1.0

d7, 2.0

ds, 0.2

do, 0.1

ds4, 3.0

d7z, 1.0

Accumulators

d1
ds
d7
ds
do

0.0
8.0
8.0
0.@
0.0

— memory depends on the number of accumulators maintained
— TAAT Is attractive when scanning many short lists
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Indexing with Impact-Ordered Lists

Data items: d, ..., d,

|
dy

s(ty,dp) = 0.7
s(tm,d;) = 0.2

Index lists

t d78 |d23
1{ 09 o3

d10
0.8

dl
0.7

de64 |d23
¥ 0.6

d10
0.6

dl
0.2

Index-list entries stored
In descending order of
per-term score impact

(impact-ordered lists)

aims to avoid having to read entire lists
rather scan only (short) prefixes of lists
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Greedy Query Processing Framework

Assume index lists are sorted by tf(t;,d;) or tf(t;,d;)*1dl(d;) values
Idf values are stored separately

Open scan cursors on all m index lists L(i)
Repeat
Find pos(g) among current cursor positions pos(i) (1=1..m)
with the largest value of idf(t;)*tf(t;,d;)
(or idf(t;)*tf(t;,d;)*1d1(d;));
Update the accumulator of the corresponding doc;
Increment pos(g);
Until stopping condition
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Stopping Criterion: Quit & Continue Heuristics

[Zobel/Moffat 1996]

m

For scoring of the form score(q,d;) = s;(tj,d;)
1=1

with Si(ti’dj) ~ tf(ti,dj)‘idf (tl)ldl(dj)

Assume hash array of accumulators for
summing up score mass of candidate results

quit heuristics (with docld-ordered or tf-ordered or tf*idl-ordered index lists):
 ignore index list L(i1) If 1df(t;) is below tunable threshold or

* stop scanning L(i) If 1df(t;)*tf(t;,d;)*1dl(d;) drops below threshold or
« stop scanning L(i1) when the number of accumulators is too high
continue heuristics:

upon reaching threshold, continue scanning index lists,
but do not add any new documents to the accumulator array
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12.2 Fast Top-k Search

Top-k aggregation query over relation R (ltem, Al, ..., Am):
Select Item, s(R1.A1l, ..., Rm.Am) As Aggr
From Outer Join R1, ..., Rm Order By Aggr Limit k
with monotone s: (Vi: X; = X ) = S(X; ... X)) = S(X;“ ... X)
(example: item Is doc, attributes are terms, attr values are scores)

» Precompute per-attr (index) lists sorted in desc attr-value order
(score-ordered, impact-ordered)
« Scan lists by sorted access (SA) in round-robin manner
 Perform random accesses (RA) by Item when convenient
« Compute aggregation s incrementally in accumulators
 Stop when threshold test guarantees correct top-k
(or when heuristics indicate ,,good enough* approximation)

simple & elegant, adaptable & extensible to distributed system
following R. Fagin: Optimal aggregation algorithms for middleware, JCSS. 66(4), 2003
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Threshold Algorithm (TA)  (ragin 01.6untzer oo,

Nepal 99, Buckley 85]

Threshold algorithm (TA):
scan index lists; consider d at pos; in L;;

simple & DB-style;
needs only O(k) memory

high; := s(t;,d);
, if d g top-k then {
Data items: di, ..., d, look up s,(d) in all lists L, with vsi;
' score(d) := aggr {s,(d) | v=1..m};
d; if score(d) > min-k then
s(t,d1) =0.7 add d to top-k and remove min-score d’;

min-k := min{score(d’) | d’ € top-k};
threshold := aggr {high,, | v=1..m};
if threshold < min-k then exit;

$(tm,d1) = 0.2

Query: q = (l‘], D, 13)

\
i d78 [d23 l/d18 /A1 \] dss k=2
11 09 |08 fo08Y07 V02 ..
i d64 |[d23[l d10ffd12 | d78 S
-~ 2| 0.9 |os6|lo6{j0.2 fo.1 can
.| d10 [ d78Y d64fdog [ d34 depth 4
31 0.7 105 N0.3/M0.2 /| 0.1

IRDM WS 2015



TA with Sorted Access only (NRA) ragin o1, Guntzer o1

sequential access (SA) faster
than random access (RA)

by factor of 20-1000

Data items: dj, ...

, dn

|
d;

s(ty,d;) = 0.7
$(tm,d1) = 0.2

|

Query: q = (l‘], D, 13)

No-random-access algorithm (NRA):

/
\

Index lists

d78
4] 0.9

d23
0.8

d10
0.8

dl
0.7

d64
0.8

d23
0.6

d10
0.6

di2
0.2
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scan index lists; consider d at pos; in L;;
E(d) := E(d) u {i}; high; := s(t;,d);
worstscore(d) := aggr{s(t,,d) | v eE(d)};
bestscore(d) := aggr{worstscore(d),
aggrihigh, [ v ¢ E(d)}};
if worstscore(d) > min-k then add d to top-k
min-k := min{worstscore(d’) | d’ € top-k};
else if bestscore(d) > min-k then
cand :=cand u {d};
threshold := max {bestscore(d’) | d’e cand};
If threshold < min-k then exit;

Worst- | Best-
score score
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TA Complexity and Instance Optimality ¢

m-—1

TA has worst-case run-time O(n = ) with high prob. and space O(1)
NRA has worst-case run-time O(n) and space O(n)

Definition:

For class 4 of algorithms and class @ of datasets,

algorithm B Is instance optimal over 4 and D if
for every Ae_4 on De®D: cost(B,D) < ¢c*O(cost(A,D)) + ¢°
(— competitiveness c).

Theorem:

« TAIs Instance optimal over all algorithms that are based on
sorted and random accesses to m lists (no ,,wild guesses).

 NRA Is instance optimal over all algorithms with SA only.

If ,,wild guesses* are allowed, _
then no deterministic algorithm is instance-optimal
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Implementation Issues for TA Family o3¢

* Limitation of asymptotic complexity:
* m (#lists) and k (#results) are important parameters
* Priority queues:
» straightforward use of Fibonacci heap has high overhead
* better: periodic rebuild of bounded-size PQs
 Memory management:
* peak memory use as important for performance
as scan depth
« aim for early candidate pruning
even If scan depth stays the same
« Hybrid block index:
 pack index entries into big blocks in desc score order
 keep blocks in score order
» keep entries within a block in item id order
« after each block read: merge-join first, then PQ update
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Approximate Top-k Answers o5

* IR heuristics for impact-ordered lists [Anh/Moffat: SIGIR'01]:
Accumulator Limiting, Accumulator Thresholding

 Approximation TA [Fagin et al.2003] :
G-approximation T for g with ©® > 1 is a set T* of items with:
* | T*|=k and
« foreachd‘eT“and each d“gT*: 6 *score(q,d*) > score(qg,d*)
Modified TA:
.. stop when min-k >aggr (highy, ..., high.)) / @

* Probabilistic Top-k [Theobald et al. 2004] :
guarantee small deviation from exact top-k result
with high probability
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Probabilistic Top-k Answers s

TA family of algorithms based on invariant (with sum as aggr):
> si(d) £ s(d) £ X si(d)+ X high;

\iEE(@ , JeE(d) \/igE(d)
worstscore(d) bestscore(d)
score
»  Add d to top-k result, if t B == = I
worstscore(d) > min-k eStf_Cf’_r_e_(_—)-———--""":,q:”' >/ priority
e
min-k, otherwise keep in PQ T T o
_ , score predictor estimates
—> Often overly conservative min-k Convelltiantith
(deep scans, :
high memory for PQ) histograms or
1 poisson mixtures or ...
- Approximate top-k with i t d scan
probabilistic guarantees: wotstscore . depth
p(d)=P[ X sj(d)+ X S >J] withd=min-k
icE(d) igE(d)
discard candidates d from queue if p(d) < ¢ = E[rel. precision@k] = 1-
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Combined Algorithm (CA) oK
for Balanced SA/RA Scheduling ragineta. 03]

cost ratio Co/Cep =1

perform NRA (TA-sorted)

after every r rounds of SA (m*r scan steps)
perform RA to look up all missing scores of ,,best candidate* in Q

cost competitiveness w.r.t. ,,optimal schedule
(scan until X; high; < min{bestscore(d) | d € final top-k},
then perform RAs for all d° with bestscore(d) > min-K): 4m + k
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Flexible Scheduling of SA‘s and RA‘s ofe
for Top-k Query Processing

Goals:
1. decrease high; upper-bounds quickly
— decreases bestscore for candidates
— reduces candidate set
2. reduce worstscore-bestscore gap for most promising candidates
— Increases min-k threshold
— more effective threshold test for other candidates

Ideas for better scheduling:

1. Non-uniform choice of SA steps in different lists
2. Careful choice of postponed RA steps for promising candidates
when worstscore Is high and worstscore-bestscore gap is small
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Scheduling Example

Ly

batch of b =%_; . b, steps: + carefully chosen RAs:
choose b; values so as to score lookups for
achieve high score reduction & Jinteresting” candidates
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Scheduling Example

A:0.2

compute top-1 result
using flexible SAs and RAs
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Scheduling Example

candidates:

A: [0.8, 2.4]

G: [0.7, 2.4]

2:10.0, 2.4]
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Scheduling Example

A: [15, 2.0]

candidates:

G: [0.7, 1.6]
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Scheduling Example

A L5200 |V[14,16)
candidates: E I
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Scheduling Example

A: [1.7, 2.0]

candidates:
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Top-k Queries on Internet Sources ofe

[Marian et al. 2004]
Setting:

» score-ordered lists dynamically produced by Internet sources
 some sources restricted to lookups only (no lists)

Example:
preference search for hotel based on distance, price, rating
using mapquest.com, booking.com, tripadvisor.com

Goal:

good scheduling for (parallel) access to restricted sources:
SA-sources, RA-sources, universal sources
with different costs for SA and RA

Method (ldea):
e scan all SA-sources in parallel
* In each step: choose next SA-source or
perform RA on RA-source or universal source
with best benefit/cost contribution
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Top-k Rank Joins on Structured Data
[llyas et al. 2008] *

extend TA/NRA/etc. to ranked query results from structured data
(improve over baseline: evaluate query, then sort)

Select R.Name, C.Theater, C.Movie

From RestaurantsGuide R, CinemasProgram C
Where R.City = C.City

Order By R.Quality/R.Price + C.Rating Desc

RestaurantsGuide CinemasProgram

Name Type Quality | Price| City Theater Movie Rating| City
BlueDragon [Chinese |* * x |€15 5B BlueSmoke |[Tombstone | 7.5 SB
Haiku Japanese [* * *x *x €30 $B Oscars Hero 8.2 SB
Mahatma |Indian |[* *x x [€20 |GB Holly*s Die Hard | 6.6 SB
Mescal Mexican | * X €10 |GB GoodNight | Seven 7.7 IGB
BigSchwenk| German |* * x  [€25 5LS BigHits Godfather | 9.1 IGB
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DAAT, TAAT, Top-k: Lessons Learned

 TA family over impact-ordered lists
* IS most elegant and potentially most efficient
* but depending on score skew, it may degrade badly

« DAAT over document-ordered lists
* IS most versatile and robust
* has lowest overhead and still allows pruning
 can be easily scaled out on server farm

* TAAT Is of interest for special use-cases
(e.g. patent search with many keywords in queries)
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12.3 Phrase Queries and Proximity Queries

phrase queries such as:
“Star \Wars Episode 7% “The Force Awakens*, “Obi Wan Kenobi*, “dark lord*
“Wir schaffen das*, “to be or not to be*, “roots of cubic polynomials®, “evil empire «

difficult to anticipate and index all (meaningful) phrases
sources could be thesauri/dictionaries or query logs

— standard approach:
combine single-term index with separate position index

term doc score term doc offset

empire 39 191
& | | empire 77 0.85 empire 77 375 ||
2 || empire 39 0.82 &
— evil 12 45 =
S evil 49 0.81 evil 39 190 =
T |levil 39 0.78 evil 39 194 —
S || evil 12 0.75 evil 49 190 =3
(- (D
|| evil 77 012 evil 77 190 ><
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Bigram and Phrase Indexing

build index over all word pairs (bigrams):
Index lists (terml, term2, doc, score) or
for each term1 nested list (term2, doc, score)
variations:
» treat nearest nouns as pairs,

or discount articles, prepositions, conjunctions
» iIndex phrases from query logs, compute correlation statistics

guery processing by merging posting lists:
» decompose even-numbered phrases into bigrams
» decompose odd-numbered phrases into bigrams
with low selectivity (as estimated by df(term1))
» may additionally use standard single-term index if necessary

Examples:
to be or not to be — (to be) (or not) (to be)
The Lord of the Rings — (The Lord) (Lord of) (the Rings)

IRDM WS 2015
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Proximity Search

Example queries: root polynom three,
high cholesterol measure, doctor degree defense

Idea: identify positions (pos) of all query-term occurrences
and reward short distances

Keyword proximity score [Bittcher/Clarke: SIGIR’06]:

aggregation of per-term scores #
+ per-term-pair scores attributed to each term

score(t,..t,)=>_  (score(t,)+

-

idf (t;)
,Z (pos(t;) — pos(t;}))*

cannot be precomputed
— expensive at query-time

IRDM WS 2015

| =3ty (POs(tj) < pos(ty) < pos(tj) or...)

\ 2

N
count only pairs of query terms
with no other query term in between
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Example: Proximity Score Computation

It took? the¥sea?]as thousand®
A8 thousand?® tol! tracel?

The!3 granite!4 features!® of!6 this! cliff,'?
In® crag?® and?! scarp?? and%® base.?*

Query: {sea, , cliff}
__lédf( )
acc(d,sea)= =2)

g adf (ClITE

acc(d, ):;?J;(_Sf)aQ) _|_(1f8(_<‘—_1lo))2
acc(d,cliff):igl{é_lop)
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Efficient Proximity Search

Define aggregation function to be distributive [Broschart et al. 2007]
rather than ,,holistic* [Buttcher/Clarke 2006]:
precompute term-pair distances and sum up at query-time

idf (t,)
score(ty.-tm) =3y m(SCOMe(t) + 20 {0y " pt )" |
g %
.

count all pairs of query terms

result quality comparable to ,,holistic* scores

Index all pairs within max. window size
(or nested list of nearby terms for each term),
with precomputed pair-score mass
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Ex.: Efficiently Computable Proximity Score
It! took? the{ sea?]as thousand®| |

A8 thousand® | tol! tracel?
The?®3 granite! features!® of16 this!7 cliff,’
It crag?® and?! scarp?? and?? base.?*

Query: {sea, , cliff}
acc(d,cliff,sea)= (18i4)2
acc(d,cliff, )—(18i7)2

acc(d,sea, ):I (7_14)2\ |
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Relevance Feedback

Given: a query g, a result set (or ranked list) D,
a user‘s assessment u: D — {+, -}
yielding positive docs D*c D and negative docs D-< D

Goal: derive query q° that better captures the user‘s intention,
by adapting term weights in the query or by query expansion
Classical IR approach: Rocchio method (for term vectors)

' P /4 ith
=aQ + d——"—>d with o, B, v € [0,1]
! ! |D* |dez[:)+ | D™ |dez[:)— and typically o > B >y

Modern approach: replace explicit feedback by implicit feedback
derived from query&click logs (pos. if clicked, neg. if skipped)

or rely on pseudo-relevance feedback:
assume that all top-k results are positive
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Relevance Feedback using
Text Classification or Clustering

Relevant and irrelevant docs (as indicated by user)
form two classes or clusters of text-doc-vector distribution

Classifier:

« train classifier on relevant docs as positive class

* run feature selection to identify best terms for expansion
« pass results of expanded query through classifier

Clustering:
« refine clusters or compute sub-space clusters:
* user explores the resulting sub-clusters and guides expansion

Search engine examples:
http://exalead.com

http://yippy.com

IRDM WS 2015
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http://yippy.com/
http://exalead.com/

Query Expansion

» Query expansion can be beneficial whenever high recall is needed

« Expansion terms can come from thesauri/dictionaries/ontologies
or personalized profile, regardless of user feedback

« Term-term similarities precomputed from co-occurrence statistics

Example g: traffic tunnel disasters

(from TREC benchmark)
traffic 1.0 tunnel 1.0 disasters1.0
transit 0.9 tube 0.9 catastrophe 1.0
highway 0.8 underground 0.8 accident 0.9
d, car 0.7 | |“MontBlanc” 0.7 fire 0.7
d, truck 0.6 flood 0.6
metro 0.6 earthquake 0.6
train 0.5 “land slide” 0.5

“raill car 0.1
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WordNet: Thesaurus/Ontology
of Words and Concepts

http://wordnet.princeton.edu
WordNet Search - 3.1

. 200 000 concepts and
lexical relations

YWiord to searchfo - Search WordMNet | can be cast into
Word Mﬁelect option to change) ¥ || Change * |Og|CaI form O[:

Key "S:" = Show Synset (semantic) relations, "W:" = Show Word | ® g faph with We'g hts
Display options for sense: (gloss) "an example sentence” for Concept-concept

Noun relatedness strength

word sense = 5 (n)traffic (the aggregation of things (pedestrians or vehicles) coming and going in a
parncular locality during a specified period of time)
(synset, . yITg ang Semng, especialy ot raae)

Concept) » S (n)traffic (the amount of activity over a communication system during a given period
of time) “heavy fraffic overioaded the frunk lines”, © ' o |
during the night”

o Sin) dealings, traffic (social or verbal interchange (usually followed by with'))

Verb

« S traffic (deal illegally) “frafic drugs”
« S v traffic (trade or deal a commodity) “They rafficked with us for goid”
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WordNet: Thesaurus/Ontology
of Words and Concepts

Noun

« S (n)traffic (the aggregation of things (pedestrians or vehicles) coming and going in a
particular locality during a specified period of time)
o direct hvponyn [ il hyponym
o S(n)airtraffic (traffic created by the movement of aircraft)
S0 commuter traffic (traffic created by people going to or returning from
worl{]l
hyponyms |{ I pedestrian traffic, foot traffic (people coming and going on foot)
(SUb Concepts) (n wehicular traffic, vehicle traffic ithe aggregation of wehicles coming
and going in a particular locality)
. 5 (N automobile traffic, car traffic (cars coming and going)

=i (n) bicycle traffic (blcycles coming and going)

S (n) bus traffic (buses coming and going)

= (n) truck traffic (trucks coming and going)

o diract hw:!emvm finherted hypermyin f sistar farm

« So(n)traffic (buying and selling; especially illicit trade)

« 5 (n) traffic (the amount of activity over a communication system during a given period
of time) “heavy fraffic overioadead the frunk linas” "fraffic on the internet Is lightast
during the night”

« 5 (n) dealings, traffic (social orverbal interchange (usually followed by with'))
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WordNet: Thesaurus/Ontology
of Words and Concepts

Noun

« S (n)tunnel (a passageway through or under something, usually underground
(especially one for trains or cars)) “the funhel reduced congestion at that infersection”

hyponyms o direct hvponyin [ il ooy
* S (n) catacomb (an underground tunnel with recesses where bodies were
(SUb-COﬂCGptS) buried {as in ancient Rome))

o 5 (n)railroad tunnel (a tunnel through which the railroad track runs)
e S (n)underpass, subway (an underground tunnel or passage enabling
pedestrians to cross a road or railway)
meronyms o paf meronym
(part-of) « 5 (n) shaft (& long wertical passage sunk into the earth, as for a mine or
tunnel)
o domain categony
* S (n)car, auto, automobile, machine, motorcar (a motor vehicle with four
wheels; usually propelled by an internal combustion engine) “he needs a
hypernyms car o get fo work”
o direct hypernym ! inhented hvoemyim | sister farm
(SUper'ConCeptS) S (n) passageway (a passage between rooms or between buildings)
o denvalionally related form
« S0 burrow, tunnel (a hole made by an animal, usually for shelter)
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Robust Query Expansion

Threshold-based query expansion:
substitute w by exp(w):={c, ... ¢} with all c; with sim(w, ¢;) 2 ¢

Naive scoring: risk of
5(,d) = 24yq 2ccexp(w) SIMWiC) * (0 topic drift

Approach to careful expansion and scoring:

« determine phrases from query or best initial query results
(e.g., forming 3-grams and looking up ontology/thesaurus entries)
* iIf uniquely mapped to one concept
then expand with synonyms and weighted hyponyms
« avoid undue score-mass accumulation by expansion terms
s(q,d) = 2Weq maX ¢ coxpew § SIM(W,C) * s¢(d) }

IRDM WS 2015 12-42



Query Expansion with Incremental Merqging

[M. Theobald et al.: SIGIR 2005]

relaxable query qg: —professor research

with expansions exp(t)={w | sim(t,w) >0, teq}
based on ontology relatedness modulating

monotonic score aggregation by sim(t,w)

TA/NRA scans of index lists for \Jicq exp(t)

Better: dynamic query expansion with

Incremental merging of additional index lists

index on terms

research professor Iec%u;er'lscholar: 0.6/
57:06] | [12:0.9 37:0.9 | [92:0.9]
44:04 | | [14: 08 44-0.8 ] [67:0.9
52:0.4 ] | [28-0.6 22:0.7] [52:0.9
33:0.3] |[17:055] [23:0.6 [44:08
75:0.3| | 61:05 51:0.6| [55:0.8

M ¥ 144:05 52:0.6| | :

efficient and robust
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magician

wizard

scientist

intellectual

scholar

academic,
academician,
faculty member

alchemist

artist director

Related (0.48))

researcher O\professor
Hyponym (0.749);
NG

-
lecturer
mentor

meta-index

(ontology / thesuarus)

professor

L
[ fecturer: 0.7

[ scholar: 0.6

academic: 0.53
scientist: 0.5
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Query Expansion Example
From TREC 2004 Robust Track Benchmark:

Title: International Organized Crime

Description: Identify organizations that participate in international criminal activity,
the activity, and, if possible, collaborating organizations and the countries involved.

Search \Word: |Drganized Crime Redizplay Owvervie

Searches for organized cnime; Moun \ Senges: |

1 sense of organized crime

mense |
organized ciine, gangland, gangdom -- (underworld orgatizations)
== yaluza -- (organized critne i Japan; an alliance of crirminal organizations and illegal
enterprises )
== Mafia, Waffia, Hicilian WWafia -- (a secret terronist group m sicily;, onginally opposed
tyranmy but evolved into a critminal organization in the middle of the 19th century)
== Black Hand -- (a secret terrorist society in the United States eatly m the 20th century)
= Camorta -- (a secret zociety in Maples notorious for wiolence and blaclomail)
== syndicate, crime syndicate, moh, farmily -- (a loose affiliation of gangsters in charge of
corganized crirminal activities) 1244



Query Expansion Example

From TREC 2004 Robust Track Benchmark:

Title: International Organized Crime

Description: Identify organizations that participate in international criminal activity,
the activity, and, if possible, collaborating organizations and the countries involved.

Query = {international[0.145|1.00],
~META[1.00|1.00][{gangdom[1.00|1.00], gangland[0.742|1.00],
""organ[0.213|1.00] & crime[0.312[1.00]"", camorra[0.254|1.00], maffia[0.318|1.00],
mafia[0.154|1.00], "'sicilian[0.201|1.00] & mafia[0.154|1.00]",
"black[0.066|1.00] & hand[0.053|1.00]"*, mob[0.123|1.00], syndicate[0.093|1.00]}],
organ[0.213|1.00], crime[0.312|1.00], collabor[0.415|0.20],
columbian[0.686|0.20], cartel[0.466|0.20], ...}}

135530 sorted accesses in 11.073s.

Results:

Interpol Chief on Fight Against Narcotics

Economic Counterintelligence Tasks Viewed

Dresden Conference Views Growth of Organized Crime in Europe
Report on Drug, Weapons Seizures in Southwest Border Region
SWITZERLAND CALLED SOFT ON CRIME

R0 E
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Statistics for Term-Term Similarity

or Concept-Concept Relatedness
Relatedness measures sim(cl, c2) based on WordNet-like thesaurus:

Wu-Palmer distance:  [path(cl,lca(cl,c2))| + path(c2,lca(cl,c2))
with lowest common ancestor Ica(cl,c2) in DAG|

Variants with edge weights based on edge type (hyponym, hypernym, ...)
Relatedness measures sim(cl, c2) based on co-occurrences in corpus:

Dice coefficient:  2|{ docs with c1}~{ docs with c2}
{docs with c1} + Kdocs with c2}|

Jaccard coefficient: { docs with c1}~{ docs with c2}
{docs with c1}{ + Kdocs with c2}—|{docs with c1 and c2}|
PMI (Pointwise freq(cl and c2)

Mutual Information): '°9 freq(cl)- freg(c2)
Conditional probability: P[doc has cl| doc has c2]
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Exploiting Query Logs for Query Expansion

Given: user sessions of the form (g, D+)
with clicked docs D+ (often only a single doc)

We are interested in the correlation between words
w In a query and w* in a clicked-on document:

Plw'|w]:= P[w'ed for some d e D" |weq]
= Y P[w'ed|deD"]-P[de D" |weq]
deD™ \_ AN Y,
_ Y R
Estimate relative frequency relative frequency of d being clicked on
from query log: of w*ind when w appears in query

Expand query by adding top m words w* in desc. order of JTT P[w"| w]

weg
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Term-Term Similarity Estimation
from Query-Click Logs

Use co-occurrences of

« term and term in same query (ordered terms)

« term in query and term in (title or URL of) clicked doc
* term in query without click and term in next query

to compute maximum-likelihood estimator for
multinomial distribution for ordered term pairs or n-grams
and derive P[term u | term w] ~ freq[term u | term w]

Useful for

 Suggestions for alternative queries (“did you mean ...?7%)
 Suggestions for auto-completion

« Background statistics for geo-localization or user-personalization
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12.4 Query Result Diversification

True goal of search engine is to maximize
Pluser clicks on at least one of the top-k results]

With ambiguity of query terms and uncertainty about user intention

(examples: “apple farm*, “mpi research®, “darwin expedition®,
“Star Wars 7: The Force Awakens*, “physics nobel prize®, ...)

we need to diversify the top-10 for risk minimization (portfolio mix)

Given a query g, query results D={d,, d,, ...},
similarity scores for results and the query sim(d;,q)
and pair-wise similarities among results sim(d;,d;)

— Select top-k results r, ..., r, € D such that
adi=1.,Sim(r,q) — (1 —a) X Sim(ri,rj) = max!
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Alternative Models for Diversification

Variant 1. Max-Min-Dispersion [Ravi, Rosenkrantz, Tayi 1994]
determine results set R={ r, ..., r, } such that

a min sim(r;,q) — (1 — a) maxsim(r;, ;) = max!
i=1.k ( [ Q) ( ) e ( [ ])
Variant 2: intention-modulated [Agrawal et al. 2009]

assume that g may have m intentions t;..t,
(trained on query-click logs, Wikipedia disambiguation pages, etc.):
determine result set R with |R|=k such that

PIR|q]=>" PIt, [a]-L-]] _.(L~PIr|q,t])) = max!

\ )

Y )
at least one r clicked
given intention t; for

More variants in the literature, most are NP-hard
But many are submodular (have diminishing marginal returns)
— greedy algorithms with approximation guarantees
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Submodular Set Functions

Given aset Q, a function f: 22 — R is submodular if

forevery X, YcQwith X cYandz € Q-Y
the following diminishing-returns property holds
f(X U{z}) — 1(X) > (Y U{z}) — f(Y)

Typical optimization problem aims to
choose a subset X < € that minimizes or maximizes f
under cardinality constraints for X

* these problems are usually NP-hard
but often have polynomial algorithms with
very good approximation guarantees

« greedy algorithms often yield very good
approximate solutions

IRDM WS 2015 12-51



Maximal Marginal Relevance (MMRY):
Greedy Reordering for Diversification

[Carbonell/Goldstein 1998]

Compute a pool of top-m candidate results where m > k
(e.g. m=1000 for k=10)
Initialize S .= &

Choose results in descending order of marginal utility:
repeat

S=85 U argmax,; (asim(d,q) — (1 —a) ).ressim(r,d))
until |S|=k
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Summary of Chapter 12

» document-ordered posting lists:
QP based on scan and merge; can optimize order of lists
and heuristically control memory for accumulators

 Impact-ordered posting lists:
top-k search can be sublinear with Threshold Algorithm family

» additional algorithmic options and optimizations for
phrase and proximity queries and for query expansion

 with ambiguity of query terms and uncertainty of user intention,
query result diversification is crucial
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