Chapter 12: Query Processing

Computers are useless, they can only give you answers.

-- Pablo Picasso

You have to think anyway, so why not think big?

-- Donald Trump

There are lies, damn lies, and workload assumptions.

-- anonymous
Outline

12.1 Query Processing Algorithms
12.2 Fast Top-k Search
12.3 Phrase and Proximity Queries
12.4 Query Result Diversification

loosely following Büttcher/Clarke/Cormack Chapters 5 and 8.6 plus Manning/Raghavan/Schütze Chapters 7 and 9 plus specific literature
Query Types

- **Conjunctive**
 (i.e., all query terms are required)

- **Disjunctive**
 (i.e., subset of query terms sufficient)

- **Phrase or proximity**
 (i.e., query terms must occur in right order or close enough)

- **Mixed-mode with negation**
 (e.g., “harry potter” review +movie -book)

- Combined with **ranking of result documents** according to
 \[
 \text{score}(q, d) = \sum_{t \in q} \text{score}(t, d)
 \]
 with \(\text{score}(t, d) \) depending on retrieval model (e.g. tf*idf)
Indexing with Document-Ordered Lists

Data items: d_1, \ldots, d_n

Index lists

<table>
<thead>
<tr>
<th>t_1</th>
<th>d_1</th>
<th>d_{10}</th>
<th>d_{23}</th>
<th>d_{78}</th>
<th>d_{88}</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_2</td>
<td>d_1</td>
<td>d_{10}</td>
<td>d_{23}</td>
<td>d_{64}</td>
<td>d_{78}</td>
</tr>
<tr>
<td>t_3</td>
<td>d_{10}</td>
<td>d_{34}</td>
<td>d_{64}</td>
<td>d_{78}</td>
<td>d_{99}</td>
</tr>
</tbody>
</table>

$s(t_1,d_1) = 0.7$

\ldots

$s(t_m,d_1) = 0.2$

Index-list entries stored in ascending order of document identifiers (document-ordered lists)

process all queries (conjunctive/disjunctive/mixed) by sequential scan and merge of posting lists
Document-at-a-Time Query Processing

Document-at-a-Time (DAAT) query processing
 – assumes document-ordered posting lists
 – scans posting lists for query terms $t_1, \ldots, t_{|q|}$ concurrently
 – maintains an accumulator for each candidate result doc:

 $acc(d) = \sum_{i: \text{d seen in } L(t_i)} score(t_i, d)$

- $acc(d) = \sum_{i: \text{d seen in } L(t_i)} score(t_i, d)$

<table>
<thead>
<tr>
<th></th>
<th>d_1</th>
<th>d_4</th>
<th>d_7</th>
<th>d_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1.0</td>
<td>2.0</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>b</td>
<td>1.0</td>
<td>2.0</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>c</td>
<td>3.0</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- always advances posting list with lowest current doc id
- exploit skip pointers when applicable
- required memory depends on # results to be returned
- top-k results in priority queue
Disjunctive (Weak And) query processing

- assumes document-ordered posting lists with known \textbf{maxscore(i) values} for each \(t_i \): \(\max_d \text{ (score (d,} t_i)) \)
- While scanning posting lists keep track of
 - \textbf{min-k}: the lowest total score in current top-k results
 - \textbf{ordered term list}: terms sorted by docId at current scan pos
 - \textbf{pivot term}: smallest \(j \) such that \(\text{min-k} \leq \sum_{i \leq j} \text{maxscore}(i) \)
 - \textbf{pivot doc}: doc id at current scan pos in posting list \(L_j \)

Eliminate docs that cannot become top-k results (\textbf{maxscore pruning})

- \textbf{if} pivot term does not exist (\(\text{min-k} > \sum_i \text{maxscore}(i) \))
- \textbf{then} stop
- \textbf{else} advance scan positions to \(\text{pos} \geq \text{id of pivot doc} \) ("big skip"")
Example: DAAT with WAND Method

[Broder et al. 2003]

Key invariant: For terms \(i=1..|q|\) and current scan positions \(\text{cur}_i\)

assume that \(\text{cur}_1 = \min \{\text{cur}_i \mid i=1..|q|\}\)

Then for each posting list \(i\) there is no docid between \(\text{cur}_1\) and \(\text{cur}_i\)

<table>
<thead>
<tr>
<th>(\text{maxscore}_i)</th>
<th>(\text{term}_i)</th>
<th>(\text{cur}_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1</td>
<td>…</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>…</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>…</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Suppose that \(\min-k = 12\)
then the pivot term is 4
\((\sum_{i=1.3} \text{maxscore}_i > \min-k, \sum_{i=1.4} \text{maxscore}_i \leq \min-k)\)
and the pivot docid is 600
→ can advance all scan positions \(\text{cur}_i\) to 600

cannot contain any docid \(\in [102,599]\)
Term-at-a-Time Query Processing

Term-at-a-Time (TAAT) query processing
– assumes document-ordered posting lists
– scans posting lists for query terms \(t_1, \ldots, t_{|q|} \) one at a time,
 (possibly in decreasing order of idf values)
– maintains an accumulator for each candidate result doc
– after processing \(L(t_j) \): \(\text{acc}(d) = \sum_{i \leq j} \text{score}(t_i, d) \)

<table>
<thead>
<tr>
<th>Accumulators</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d_1) : 0.0</td>
</tr>
<tr>
<td>(d_4) : 0.0</td>
</tr>
<tr>
<td>(d_7) : 0.0</td>
</tr>
<tr>
<td>(d_8) : 0.0</td>
</tr>
<tr>
<td>(d_9) : 0.0</td>
</tr>
</tbody>
</table>

– memory depends on the number of accumulators maintained
– TAAT is attractive when scanning many short lists
Indexing with Impact-Ordered Lists

Data items: d_1, \ldots, d_n

Index lists

<table>
<thead>
<tr>
<th>t_1</th>
<th>d_{78}</th>
<th>d_{23}</th>
<th>d_{10}</th>
<th>d_1</th>
<th>d_{88}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td>0.8</td>
<td>0.8</td>
<td>0.7</td>
<td>0.2</td>
<td>...</td>
</tr>
<tr>
<td>t_2</td>
<td>d_{64}</td>
<td>d_{23}</td>
<td>d_{10}</td>
<td>d_1</td>
<td>d_{78}</td>
</tr>
<tr>
<td>0.8</td>
<td>0.6</td>
<td>0.6</td>
<td>0.2</td>
<td>0.1</td>
<td>...</td>
</tr>
<tr>
<td>t_3</td>
<td>d_{10}</td>
<td>d_{78}</td>
<td>d_{64}</td>
<td>d_{99}</td>
<td>d_{34}</td>
</tr>
<tr>
<td>0.7</td>
<td>0.5</td>
<td>0.4</td>
<td>0.2</td>
<td>0.1</td>
<td>...</td>
</tr>
</tbody>
</table>

index-list entries stored in descending order of per-term score impact (impact-ordered lists)

aims to avoid having to read entire lists rather scan only (short) prefixes of lists
Greedy Query Processing Framework

Assume index lists are sorted by $tf(t_i,d_j)$ or $tf(t_i,d_j) \times idf(d_j)$ values
idf values are stored separately

Open scan cursors on all m index lists $L(i)$

Repeat

Find $pos(g)$ among current cursor positions $pos(i)$ ($i=1..m$)

with the largest value of $idf(t_i) \times tf(t_i,d_j)$
(or $idf(t_i) \times tf(t_i,d_j) \times idf(d_j)$);

Update the accumulator of the corresponding doc;

Increment $pos(g)$;

Until stopping condition
Stopping Criterion: Quit & Continue Heuristics

For scoring of the form

\[\text{score}(q,d_j) = \sum_{i=1}^{m} s_i(t_i,d_j) \]

with

\[s_i(t_i,d_j) \sim \text{tf}(t_i,d_j) \cdot \text{idf}(t_i) \cdot \text{idl}(d_j) \]

Assume **hash array of accumulators for** summing up score mass of candidate results

quit heuristics (with docId-ordered or tf-ordered or tf*idl-ordered index lists):

- ignore index list \(L(i) \) if \(\text{idf}(t_i) \) is below tunable threshold or
- stop scanning \(L(i) \) if \(\text{idf}(t_i) \cdot \text{tf}(t_i,d_j) \cdot \text{idl}(d_j) \) drops below threshold or
- stop scanning \(L(i) \) when the number of accumulators is too high

continue heuristics:

upon reaching threshold, continue scanning index lists, but do not add any new documents to the accumulator array
12.2 Fast Top-k Search

Top-k aggregation query over relation \(R(\text{Item}, A_1, ..., A_m) \):

\[
\text{Select Item, } s(R_1.A_1, ..., R_m.A_m) \text{ As Aggr}
\]

\[
\text{From Outer Join R}_1, \ldots, \text{ R}_m \text{ Order By Aggr Limit k}
\]

with monotone \(s \): \((\forall i: x_i \geq x_i') \Rightarrow s(x_1 \ldots x_m) \geq s(x_1' \ldots x_m)\)

(example: item is doc, attributes are terms, attr values are scores)

- Precompute per-attr (index) lists sorted in desc attr-value order
 (score-ordered, impact-ordered)
- Scan lists by sorted access (SA) in round-robin manner
- Perform random accesses (RA) by Item when convenient
- Compute aggregation \(s \) incrementally in accumulators
- Stop when threshold test guarantees correct top-k
 (or when heuristics indicate „good enough“ approximation)

simple & elegant, adaptable & extensible to distributed system

following R. Fagin: Optimal aggregation algorithms for middleware, JCSS. 66(4), 2003
Threshold Algorithm (TA)

simple & DB-style; needs only $O(k)$ memory

Data items: $d_1, ..., d_n$

Query: $q = (t_1, t_2, t_3)$

Threshold algorithm (TA):
scan index lists; consider d at pos i in L_i;
$\text{high}_i := s(t_i,d)$;
if $d \not\in \text{top-k}$ then {
 look up $s_{\nu}(d)$ in all lists L_{ν} with $\nu \neq i$;
 $\text{score}(d) := \text{aggr} \{ s_{\nu}(d) | \nu = 1..m \}$;
 if $\text{score}(d) > \text{min-k}$ then
 add d to top-k and remove min-score d';
 $\text{min-k} := \min \{ \text{score}(d') | d' \in \text{top-k} \}$;
 threshold := $\text{aggr} \{ \text{high}_\nu | \nu = 1..m \}$;
 if threshold $\leq \text{min-k}$ then exit;
}

STOP!
TA with Sorted Access only (NRA) [Fagin 01, Güntzer 01]

No-random-access algorithm (NRA):
scan index lists; consider \(d \) at pos \(i \) in \(L_i \);
\(E(d) := E(d) \cup \{i\} \); \(high_i := s(t_i,d) \);
worstscore\((d) := \text{aggr}\{s(t_v,d) \mid v \in E(d)\}\);
bestscore\((d) := \text{aggr}\{\text{worstscore}(d),
\text{aggr}\{high_v \mid v \notin E(d)\}\}\);
if worstscore\((d) > \text{min-k}\) then add \(d \) to top-k
\text{min-k} := \text{min}\{\text{worstscore}(d') \mid d' \in \text{top-k}\};
else if bestscore\((d) > \text{min-k}\) then
\(\text{cand} := \text{cand} \cup \{d\} \);
\(\text{threshold} := \max \{\text{bestscore}(d') \mid d' \in \text{cand}\} \);
if threshold \(\leq \text{min-k} \) then exit;

Sequential access (SA) faster than random access (RA) by factor of 20-1000

Data items: \(d_1, \ldots, d_n \)

Query: \(q = (t_1, t_2, t_3) \)

\[\begin{array}{cccccccc}
\text{Index lists} & \text{Rank} & \text{Doc} & \text{Worst-score} & \text{Best-score} \\
\text{t}_1 & d78 & 0.9 & d23 & 0.8 & d10 & 0.8 & d1 & 0.7 & d88 & 0.2 & \ldots \\
\text{t}_2 & d64 & 0.8 & d23 & 0.6 & d10 & 0.6 & d12 & 0.2 & d78 & 0.1 & \ldots \\
\text{t}_3 & d10 & 0.7 & d78 & 0.5 & d64 & 0.4 & d99 & 0.2 & d34 & 0.1 & \ldots \\
\end{array} \]

\(k = 1 \)

Scan depth 3

STOP!
TA Complexity and Instance Optimality

TA has worst-case run-time $O(n^{\frac{m-1}{m}})$ with high prob. and space $O(1)$
NRA has worst-case run-time $O(n)$ and space $O(n)$

Definition:
For class \mathcal{A} of algorithms and class \mathcal{D} of datasets,
algorithm B is **instance optimal** over \mathcal{A} and \mathcal{D} if
for every $A \in \mathcal{A}$ on $D \in \mathcal{D}$: $\text{cost}(B,D) \leq c \ast O(\text{cost}(A,D)) + c'$
(\rightarrow competitiveness c).

Theorem:
• **TA is instance optimal** over all algorithms that are based on
 sorted and random accesses to m lists (no ,,wild guesses“).
• **NRA is instance optimal** over all algorithms with SA only.

if ,,wild guesses“ are allowed,
then no deterministic algorithm is instance-optimal
Implementation Issues for TA Family

• Limitation of asymptotic complexity:
 • \(m \) (#lists) and \(k \) (#results) are important parameters

• Priority queues:
 • straightforward use of Fibonacci heap has high overhead
 • better: periodic rebuild of bounded-size PQs

• Memory management:
 • peak memory use as important for performance as scan depth
 • aim for early candidate pruning even if scan depth stays the same

• Hybrid block index:
 • pack index entries into big blocks in desc score order
 • keep blocks in score order
 • keep entries within a block in item id order
 • after each block read: merge-join first, then PQ update
Approximate Top-k Answers

- **IR heuristics** for impact-ordered lists [Anh/Moffat: SIGIR’01]:
 - Accumulator Limiting, Accumulator Thresholding

- **Approximation TA** [Fagin et al. 2003]:
 - **θ-approximation** T' for q with $\theta > 1$ is a set T' of items with:
 - $|T'| = k$ and
 - For each $d' \in T'$ and each $d'' \not\in T'$:
 - $\theta \cdot \text{score}(q,d') \geq \text{score}(q,d'')$
 - Modified TA:
 - ... stop when $\min-k \geq \text{aggr} (\text{high}_1, ..., \text{high}_m) / \theta$

- **Probabilistic Top-k** [Theobald et al. 2004]:
 - Guarantee small deviation from exact top-k result with high probability
Probabilistic Top-k Answers

TA family of algorithms based on invariant (with sum as aggr):

\[
\sum_{i \in E(d)} s_i(d) \leq s(d) \leq \sum_{i \in E(d)} s_i(d) + \sum_{i \notin E(d)} \text{high}_i
\]

worstscore(d)

bestscore(d)

• Add \(d\) to top-k result, if worstscore(d) > min-k

• Drop \(d\) only if bestscore(d) < min-k, otherwise keep in PQ

→ Often overly conservative (deep scans, high memory for PQ)

Approximate top-k with probabilistic guarantees:

\[
p(d) := P \left[\sum_{i \in E(d)} s_i(d) + \sum_{i \notin E(d)} S_i > \delta \right] \quad \text{with } \delta = \text{min-k}
\]

discard candidates \(d\) from queue if \(p(d) \leq \varepsilon\)

\[\Rightarrow E[\text{rel. precision@k}] = 1 - \varepsilon\]
Combined Algorithm (CA) for Balanced SA/RA Scheduling [Fagin et al. 03]

cost ratio $C_{RA}/C_{SA} = r$

perform NRA (TA-sorted)

... after every r rounds of SA ($m*r$ scan steps)

perform RA to look up all missing scores of „best candidate“ in Q

cost competitiveness w.r.t. „optimal schedule“

(scan until $\Sigma_i \text{high}_i \leq \min\{\text{bestscore}(d) \mid d \in \text{final top-k}\}$, then perform RAs for all d' with bestscore(d') > min-k): $4m + k$
Flexible Scheduling of SA‘s and RA‘s for Top-k Query Processing

Goals:
1. decrease high upper-bounds quickly
 → decreases bestscore for candidates
 → reduces candidate set
2. reduce worstscore-bestscore gap for most promising candidates
 → increases min-k threshold
 → more effective threshold test for other candidates

Ideas for better scheduling:
1. Non-uniform choice of SA steps in different lists
2. Careful choice of postponed RA steps for promising candidates when worstscore is high and worstscore-bestscore gap is small
Scheduling Example

batch of $b = \sum_{i=1..m} b_i$ steps:
choose b_i values so as to achieve high score reduction δ

+ carefully chosen RAs:
score lookups for „interesting“ candidates

$\delta = 1.48$

$\delta = 1.7$
Scheduling Example

compute top-1 result using flexible SAs and RAs
Scheduling Example

<table>
<thead>
<tr>
<th></th>
<th>L₁</th>
<th>L₂</th>
<th>L₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.8</td>
<td>G: 0.7</td>
<td>Y: 0.9</td>
</tr>
<tr>
<td>B</td>
<td>0.2</td>
<td>H: 0.5</td>
<td>A: 0.7</td>
</tr>
<tr>
<td>K</td>
<td>0.19</td>
<td>R: 0.5</td>
<td>P: 0.3</td>
</tr>
<tr>
<td>F</td>
<td>0.17</td>
<td>Y: 0.5</td>
<td>F: 0.25</td>
</tr>
<tr>
<td>M</td>
<td>0.16</td>
<td>W: 0.3</td>
<td>S: 0.25</td>
</tr>
<tr>
<td>Z</td>
<td>0.15</td>
<td>D: 0.25</td>
<td>T: 0.2</td>
</tr>
<tr>
<td>W</td>
<td>0.1</td>
<td>W: 0.2</td>
<td>Q: 0.15</td>
</tr>
<tr>
<td>Q</td>
<td>0.07</td>
<td>A: 0.2</td>
<td>X: 0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

candidates:

- A: [0.8, 2.4]
- G: [0.7, 2.4]
- Y: [0.9, 2.4]
- ?: [0.0, 2.4]
Scheduling Example

<table>
<thead>
<tr>
<th></th>
<th>(L_1)</th>
<th>(L_2)</th>
<th>(L_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>0.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>0.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>0.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>0.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td>0.07</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(L_1)</th>
<th>(L_2)</th>
<th>(L_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td></td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td></td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td></td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td></td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>0.1</td>
<td></td>
</tr>
</tbody>
</table>

Candidates:
- A: [1.5, 2.0]
- G: [0.7, 1.6]
- Y: [0.9, 1.6]
- ?: [0.0, 1.4]
Scheduling Example

L1

A: 0.8
B: 0.2
K: 0.19
F: 0.17
M: 0.16
Z: 0.15
W: 0.1
Q: 0.07

L2

G: 0.7
H: 0.5
R: 0.5
Y: 0.5
W: 0.3
D: 0.25
W: 0.2
A: 0.2

L3

Y: 0.9
A: 0.7
P: 0.3
F: 0.25
S: 0.25
T: 0.2
Q: 0.15
X: 0.1

candidates:

A: [1.5, 2.0]
Y: [1.4, 1.6]
G: [0.7, 1.2]

IRDM WS 2015
Scheduling Example

L₁
- A: 0.8
- B: 0.2
- K: 0.19
- F: 0.17
- M: 0.16

L₂
- G: 0.7
- H: 0.5
- R: 0.5
- Y: 0.5
- W: 0.2

L₃
- Y: 0.9
- A: 0.7
- P: 0.3
- F: 0.25
- S: 0.25

execution costs: 9 SA + 1 RA

candidates:
- A: [1.7, 2.0]
- Y: [1.4, 1.6]
Top-k Queries on Internet Sources

[Marian et al. 2004]

Setting:
• score-ordered lists **dynamically produced** by Internet sources
• some sources restricted to lookups only (no lists)

Example:
preference search for hotel based on *distance, price, rating*
using *mapquest.com, booking.com, tripadvisor.com*

Goal:
good **scheduling** for (parallel) access to restricted sources:
 SA-sources, RA-sources, universal sources
with different costs for SA and RA

Method (Idea):
• scan all SA-sources in **parallel**
• in each step: choose next SA-source or perform RA on RA-source or universal source
 with best **benefit/cost** contribution
Top-k Rank Joins on Structured Data
[Ilyas et al. 2008]

extend TA/NRA/etc. to ranked query results from structured data
(improve over baseline: evaluate query, then sort)

Select \texttt{R.Name, C.Theater, C.Movie}

From \texttt{RestaurantsGuide R, CinemasProgram C}

Where \texttt{R.City = C.City}

Order By \texttt{R.Quality/R.Price + C.Rating Desc}

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Quality</th>
<th>Price</th>
<th>City</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>BlueDragon</td>
<td>Chinese</td>
<td>★★★</td>
<td>€15</td>
<td>SB</td>
<td>SB</td>
</tr>
<tr>
<td>Haiku</td>
<td>Japanese</td>
<td>★★★★</td>
<td>€30</td>
<td>SB</td>
<td>SB</td>
</tr>
<tr>
<td>Mahatma</td>
<td>Indian</td>
<td>★★★</td>
<td>€20</td>
<td>IGB</td>
<td>IGB</td>
</tr>
<tr>
<td>Mescal</td>
<td>Mexican</td>
<td>★★</td>
<td>€10</td>
<td>IGB</td>
<td>IGB</td>
</tr>
<tr>
<td>BigSchwenk</td>
<td>German</td>
<td>★★★</td>
<td>€25</td>
<td>SLS</td>
<td>SLS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theater</th>
<th>Movie</th>
<th>Rating</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>BlueSmoke</td>
<td>Tombstone</td>
<td>7.5</td>
<td>SB</td>
</tr>
<tr>
<td>Oscar‘s</td>
<td>Hero</td>
<td>8.2</td>
<td>SB</td>
</tr>
<tr>
<td>Holly‘s</td>
<td>Die Hard</td>
<td>6.6</td>
<td>SB</td>
</tr>
<tr>
<td>GoodNight</td>
<td>Seven</td>
<td>7.7</td>
<td>IGB</td>
</tr>
<tr>
<td>BigHits</td>
<td>Godfather</td>
<td>9.1</td>
<td>IGB</td>
</tr>
</tbody>
</table>

IRDM WS 2015
DAAT, TAAT, Top-k: Lessons Learned

• TA family over impact-ordered lists
 • is most elegant and potentially most efficient
 • but depending on score skew, it may degrade badly

• DAAT over document-ordered lists
 • is most versatile and robust
 • has lowest overhead and still allows pruning
 • can be easily scaled out on server farm

• TAAT is of interest for special use-cases
 (e.g. patent search with many keywords in queries)
12.3 Phrase Queries and Proximity Queries

Phrase queries such as:
“Wir schaffen das“, “to be or not to be“, “roots of cubic polynomials“, “evil empire“

difficult to anticipate and index all (meaningful) phrases
sources could be thesauri/dictionaries or query logs

→ standard approach:
combine single-term index with separate position index

<table>
<thead>
<tr>
<th>term</th>
<th>doc</th>
<th>score</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>empire</td>
<td>77</td>
<td>0.85</td>
</tr>
<tr>
<td>empire</td>
<td>39</td>
<td>0.82</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>evil</td>
<td>49</td>
<td>0.81</td>
</tr>
<tr>
<td>evil</td>
<td>39</td>
<td>0.78</td>
</tr>
<tr>
<td>evil</td>
<td>12</td>
<td>0.75</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>evil</td>
<td>77</td>
<td>0.12</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>term</th>
<th>doc</th>
<th>offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>empire</td>
<td>39</td>
<td>191</td>
</tr>
<tr>
<td>empire</td>
<td>77</td>
<td>375</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>evil</td>
<td>12</td>
<td>45</td>
</tr>
<tr>
<td>evil</td>
<td>39</td>
<td>190</td>
</tr>
<tr>
<td>evil</td>
<td>39</td>
<td>194</td>
</tr>
<tr>
<td>evil</td>
<td>49</td>
<td>190</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>evil</td>
<td>77</td>
<td>190</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bigram and Phrase Indexing

build index over all **word pairs (bigrams):**
- index lists (term1, term2, doc, score) or
 for each term1 nested list (term2, doc, score)

variations:
- treat nearest nouns as pairs,
 or discount articles, prepositions, conjunctions
- index **phrases from query logs**, compute correlation statistics

query processing by merging posting lists:
- decompose even-numbered phrases into bigrams
- decompose odd-numbered phrases into bigrams
 with low selectivity (as estimated by df(term1))
- may additionally use standard single-term index if necessary

Examples:
- to be or not to be → (to be) (or not) (to be)
- The Lord of the Rings → (The Lord) (Lord of) (the Rings)
Proximity Search

Example queries: root polynom three, high cholesterol measure, doctor degree defense

Idea: identify positions (pos) of all query-term occurrences and reward short distances

keyword proximity score [Büttcher/Clarke: SIGIR’06]:
aggregation of per-term scores #
+ per-term-pair scores attributed to each term

\[
score(t_1...t_m) = \sum_{i=1..m} \left(\sum_{j\neq i} \left\{ \frac{idf(t_j)}{(pos(t_i) - pos(t_j))^2} \right\} \right) + \sum_{j\neq i} \left\{ \frac{idf(t_j)}{(pos(t_i) - pos(t_j))^2} \right\} \left[\exists t_k (pos(t_i) < pos(t_k) < pos(t_j) \text{ or } ...) \right]
\]

cannot be precomputed → expensive at query-time

count only pairs of query terms with no other query term in between
Example: Proximity Score Computation

It took the sea thousand years, a thousand years to trace the granite features of this cliff.
In crag and scarp and base.

Query: \{sea, years, cliff\}

\[
\text{acc}(d, \text{sea}) = \frac{idf(\text{years})}{(7-4)^2}
\]

\[
\text{acc}(d, \text{years}) = \frac{idf(\text{sea})}{(7-4)^2} + \frac{idf(\text{cliff})}{(18-10)^2}
\]

\[
\text{acc}(d, \text{cliff}) = \frac{idf(\text{years})}{(18-10)^2}
\]
Efficient Proximity Search

Define aggregation function to be **distributive** [Broschart et al. 2007] **rather than „holistic“** [Büttcher/Clarke 2006]:

- precompute term-pair distances and sum up at query-time

\[
score(t_1...t_m) = \sum_{i=1..m} (score(t_i) + \sum_{j \neq i} \left\{ \frac{idf(t_j)}{(p(t_i) - p(t_j))^2} \right\})
\]

result quality comparable to „holistic“ scores

index all pairs within max. window size
(or nested list of nearby terms for each term),
with **precomputed pair-score mass**
Ex.: Efficiently Computable Proximity Score

It1 took2 the3 sea4 a5 thousand6 years7
A8 thousand9 years10 to11 trace12
The13 granite14 features15 of16 this17 cliff18
In19 crag20 and21 scarp22 and23 base.24

Query: \{sea, years, cliff\}

\[\text{acc}(d,\text{cliff},\text{sea}) = \frac{1}{(18-4)^2}\]
\[\text{acc}(d,\text{cliff},\text{years}) = \frac{1}{(18-7)^2} + \frac{1}{(18-10)^2}\]
\[\text{acc}(d,\text{sea},\text{years}) = \frac{1}{(7-4)^2} + \frac{1}{(10-4)^2}\]
Relevance Feedback

Given: a query q, a result set (or ranked list) D, a user’s assessment $u: D \rightarrow \{+, -\}$ yielding positive docs $D^+ \subseteq D$ and negative docs $D^- \subseteq D$

Goal: derive query q' that better captures the user’s intention, by adapting term weights in the query or by query expansion

Classical IR approach: *Rocchio method* (for term vectors)

$$q' = \alpha q + \frac{\beta}{|D^+|} \sum_{d \in D^+} d - \frac{\gamma}{|D^-|} \sum_{d \in D^-} d$$

with $\alpha, \beta, \gamma \in [0,1]$ and typically $\alpha > \beta > \gamma$

Modern approach: replace explicit feedback by *implicit feedback* derived from *query&click logs* (pos. if clicked, neg. if skipped)

or rely on *pseudo-relevance feedback*:
assume that all top-k results are positive
Relevance Feedback using Text Classification or Clustering

Relevant and irrelevant docs (as indicated by user) form two classes or clusters of text-doc-vector distribution

Classifier:
- train classifier on relevant docs as positive class
- run feature selection to identify best terms for expansion
- pass results of expanded query through classifier

Clustering:
- refine clusters or compute sub-space clusters:
- user explores the resulting sub-clusters and guides expansion

Search engine examples:

http://exalead.com
http://yippy.com
Query Expansion

- Query expansion can be beneficial whenever high recall is needed.
- **Expansion terms** can come from thesauri/dictionaries/ontologies or personalized profile, regardless of user feedback.
- **Term-term similarities** precomputed from co-occurrence statistics.

Example q: traffic tunnel disasters
(from TREC benchmark)

```
traffic 1.0

transit 0.9
highway 0.8

car 0.7
truck 0.6
metro 0.6

train 0.5
“rail car” 0.1

tunnel 1.0

tube 0.9
underground 0.8

“Mont Blanc” 0.7

disasters 1.0

catastrophe 1.0
accident 0.9
fire 0.7
flood 0.6
earthquake 0.6
“land slide” 0.5
```

d_1, d_2
WordNet: Thesaurus/Ontology of Words and Concepts

WordNet Search - 3.1
- WordNet home page - Glossary - Help

Word to search for: traffic

Display Options: (Select option to change) ▼ Change

Key: "S:" = Show Synset (semantic) relations, "W:" = Show Word (Display options for sense: (gloss) "an example sentence"

Noun

- S: (n) traffic (the aggregation of things (pedestrians or vehicles) coming and going in a particular locality during a specified period of time)
- S: (n) traffic (buying and selling, especially illicit trade)
- S: (n) traffic (the amount of activity over a communication system during a given period of time) “heavy traffic overloaded the trunk lines”, “traffic on the internet is lightest during the night”
- S: (n) dealings, traffic (social or verbal interchange (usually followed by `with’))

Verb

- S: (v) traffic (deal illegally) “traffic drugs”
- S: (v) traffic (trade or deal a commodity) “They trafficked with us for gold”

http://wordnet.princeton.edu

200 000 concepts and lexical relations can be cast into
• logical form or
• graph with weights for concept-concept relatedness strength
WordNet: Thesaurus/Ontology of Words and Concepts

Noun

- **S**: (n) **traffic** (the aggregation of things (pedestrians or vehicles) coming and going in a particular locality during a specified period of time)
 - *direct hyponym / full hyponym*
 - **S**: (n) **air traffic** (traffic created by the movement of aircraft)
 - **S**: (n) **commuter traffic** (traffic created by people going to or returning from work)
 - **S**: (n) **pedestrian traffic, foot traffic** (people coming and going on foot)
 - **S**: (n) **vehicular traffic, vehicle traffic** (the aggregation of vehicles coming and going in a particular locality)
 - **S**: (n) **automobile traffic, car traffic** (cars coming and going)
 - **S**: (n) **bicycle traffic** (bicycles coming and going)
 - **S**: (n) **bus traffic** (buses coming and going)
 - **S**: (n) **truck traffic** (trucks coming and going)
 - *direct hypernym / inherited hypernym / sister term*
 - **S**: (n) **traffic** (buying and selling; especially illicit trade)
 - **S**: (n) **traffic** (the amount of activity over a communication system during a given period of time) “heavy traffic overloaded the trunk lines”; “traffic on the internet is lightest during the night”
 - **S**: (n) **dealings, traffic** (social or verbal interchange (usually followed by `with`))
WordNet: Thesaurus/Ontology of Words and Concepts

Noun

- **S: (n) tunnel** (a passageway through or under something, usually underground (especially one for trains or cars)) “the tunnel reduced congestion at that intersection”
 - **direct hyponym / full hyponym**
 - **S: (n) catacomb** (an underground tunnel with recesses where bodies were buried (as in ancient Rome))
 - **S: (n) railroad tunnel** (a tunnel through which the railroad track runs)
 - **S: (n) underpass, subway** (an underground tunnel or passage enabling pedestrians to cross a road or railway)
 - **part meronym**
 - **S: (n) shaft** (a long vertical passage sunk into the earth, as for a mine or tunnel)
 - **domain category**
 - **S: (n) car, auto, automobile, machine, motorcar** (a motor vehicle with four wheels; usually propelled by an internal combustion engine) “he needs a car to get to work”
 - **direct hypernym / inherited hypernym / sister term**
 - **S: (n) passageway** (a passage between rooms or between buildings)
 - **derivationally related form**
 - **S: (n) burrow, tunnel** (a hole made by an animal, usually for shelter)
Robust Query Expansion

Threshold-based query expansion:
substitute \(w \) by \(\text{exp}(w) := \{c_1 \ldots c_k\} \) with all \(c_i \) with \(\text{sim}(w, c_i) \geq \delta \)

Naive scoring:
\[
s(q,d) = \sum_{w \in q} \sum_{c \in \text{exp}(w)} \text{sim}(w,c) \times s_c(d)
\]

Approach to careful expansion and scoring:

- determine **phrases** from query or best initial query results (e.g., forming 3-grams and looking up ontology/thesaurus entries)
- if **uniquely mapped** to one concept then expand with synonyms and weighted hyponyms
- avoid **undue score-mass accumulation** by expansion terms
\[
s(q,d) = \sum_{w \in q} \max_{c \in \text{exp}(w)} \{ \text{sim}(w,c) \times s_c(d) \}
\]
Query Expansion with Incremental Merging
[M. Theobald et al.: SIGIR 2005]

relaxable query \(q: \sim \text{professor research} \)
with expansions \(\exp(t) = \{ w | \text{sim}(t, w) \geq \theta, t \in q \} \)
based on ontology relatedness modulating
monotonic score aggregation by \(\text{sim}(t, w) \)

TA/NRA scans of index lists for \(\bigcup_{t \in q} \exp(t) \)
Better: dynamic query expansion with
incremental merging of additional index lists

index on terms

<table>
<thead>
<tr>
<th>research</th>
<th>professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>57: 0.6</td>
<td>12: 0.9</td>
</tr>
<tr>
<td>44: 0.4</td>
<td>14: 0.8</td>
</tr>
<tr>
<td>52: 0.4</td>
<td>28: 0.6</td>
</tr>
<tr>
<td>33: 0.3</td>
<td>17: 0.55</td>
</tr>
<tr>
<td>75: 0.3</td>
<td>61: 0.5</td>
</tr>
<tr>
<td></td>
<td>44: 0.5</td>
</tr>
<tr>
<td></td>
<td>...</td>
</tr>
</tbody>
</table>

meta-index (ontology / thesaurus)

<table>
<thead>
<tr>
<th>professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer: 0.7</td>
</tr>
<tr>
<td>scholar: 0.6</td>
</tr>
<tr>
<td>academic: 0.53</td>
</tr>
<tr>
<td>scientist: 0.5</td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>

efficient and robust
Query Expansion Example

From TREC 2004 Robust Track Benchmark:

Title: International Organized Crime
Description: Identify organizations that participate in international criminal activity, the activity, and, if possible, collaborating organizations and the countries involved.

Search Word: organized crime

Searches for organized crime: Noun

1 sense of organized crime

Sense 1

organized crime, gangland, gangdom -- (underworld organizations)

=> yakuza -- (organized crime in Japan; an alliance of criminal organizations and illegal enterprises)

=> Mafia, Maffia, Sicilian Mafia -- (a secret terrorist group in Sicily; originally opposed tyranny but evolved into a criminal organization in the middle of the 19th century)

=> Black Hand -- (a secret terrorist society in the United States early in the 20th century)

=> Camorra -- (a secret society in Naples notorious for violence and blackmail)

=> syndicate, crime syndicate, mob, family -- (a loose affiliation of gangsters in charge of organized criminal activities)
Query Expansion Example

From TREC 2004 Robust Track Benchmark:

Title: International Organized Crime

Description: Identify organizations that participate in international criminal activity, the activity, and, if possible, collaborating organizations and the countries involved.

Query = {international[0.145|1.00], ~META[1.00|1.00][{gangdom[1.00|1.00], gangland[0.742|1.00], "organ[0.213|1.00] & crime[0.312|1.00]", camorra[0.254|1.00], maffia[0.318|1.00], mafia[0.154|1.00], "sicilian[0.201|1.00] & mafia[0.154|1.00]", "black[0.066|1.00] & hand[0.053|1.00]", mob[0.123|1.00], syndicate[0.093|1.00}]}, organ[0.213|1.00], crime[0.312|1.00], collabor[0.415|0.20], cumbrian[0.686|0.20], cartel[0.466|0.20], ...}

135530 sorted accesses in 11.073s.

Results:

1. Interpol Chief on Fight Against Narcotics
2. Economic Counterintelligence Tasks Viewed
3. Dresden Conference Views Growth of Organized Crime in Europe
4. Report on Drug, Weapons Seizures in Southwest Border Region
5. SWITZERLAND CALLED SOFT ON CRIME
Statistics for Term-Term Similarity or Concept-Concept Relatedness

Relatedness measures \(\text{sim}(c1, c2) \) based on WordNet-like thesaurus:

Wu-Palmer distance: \[
|\text{path}(c1,\text{lca}(c1,c2))| + |\text{path}(c2,\text{lca}(c1,c2))|
\]
with lowest common ancestor \(\text{lca}(c1,c2) \) in DAG

Variants with edge weights based on edge type (hyponym, hypernym, …)

Relatedness measures \(\text{sim}(c1, c2) \) based on co-occurrences in corpus:

Dice coefficient:
\[
\frac{2|\{\text{docs with } c1\} \cap \{\text{docs with } c2\}|}{|\{\text{docs with } c1\}| + |\{\text{docs with } c2\}|}
\]

Jaccard coefficient:
\[
\frac{|\{\text{docs with } c1\} \cap \{\text{docs with } c2\}|}{|\{\text{docs with } c1\}| + |\{\text{docs with } c2\}| - |\{\text{docs with } c1 \text{ and } c2\}|}
\]

PMI (Pointwise Mutual Information):
\[
\log \frac{\text{freq}(c1 \text{ and } c2)}{\text{freq}(c1) \cdot \text{freq}(c2)}
\]

Conditional probability:
\[
P[\text{doc has } c1 | \text{doc has } c2]
\]
Exploiting Query Logs for Query Expansion

Given: user sessions of the form \((q, D^+)\) with clicked docs \(D^+\) (often only a single doc)

We are interested in the correlation between words \(w\) in a query and \(w'\) in a clicked-on document:

\[
P[w'|w] := P[w' \in d \text{ for some } d \in D^+ | w \in q]
= \sum_{d \in D^+} P[w' \in d | d \in D^+] \cdot P[d \in D^+ | w \in q]
\]

Estimate from query log:
- relative frequency of \(w'\) in \(d\)
- relative frequency of \(d\) being clicked on when \(w\) appears in query

Expand query by adding top \(m\) words \(w'\) in desc. order of \(\prod_{w' \in q} P[w'|w]\)
Term-Term Similarity Estimation from Query-Click Logs

Use co-occurrences of
• term and term in **same query** (ordered terms)
• term in **query** and term in (title or URL of) **clicked doc**
• term in **query** without click and term in **next query**

to compute maximum-likelihood estimator for multinominal distribution for ordered term pairs or n-grams

and derive

\[
P[\text{term } u \mid \text{term } w] \sim \text{freq}[\text{term } u \mid \text{term } w]
\]

Useful for
• Suggestions for alternative queries (“did you mean …?“)
• Suggestions for auto-completion
• Background statistics for geo-localization or user-personalization
12.4 Query Result Diversification

True goal of search engine is to maximize

\[P[\text{user clicks on at least one of the top-}k \text{ results}] \]

With ambiguity of query terms and uncertainty about user intention
we need to diversify the top-10 for risk minimization (portfolio mix)

Given a query q, query results \(D = \{d_1, d_2, \ldots\} \),
similarity scores for results and the query \(\text{sim}(d_i,q) \)
and pair-wise similarities among results \(\text{sim}(d_i,d_j) \)

\[\rightarrow \text{Select top-}k \text{ results } r_1, \ldots, r_k \in D \text{ such that } \]
\[\alpha \sum_{i=1..k} \text{sim}(r_i, q) - (1 - \alpha) \sum_{i \neq j} \text{sim}(r_i,r_j) = \max! \]
Alternative Models for Diversification

Variant 1: Max-Min-Dispersion [Ravi, Rosenkrantz, Tayi 1994]
determine results set R= \{ r_1, \ldots, r_k \} such that
\[
\alpha \min_{i=1..k} sim(r_i, q) - (1 - \alpha) \max_{i \neq j} sim(r_i, r_j) = max!
\]

Variant 2: intention-modulated [Agrawal et al. 2009]
assume that q may have m intentions t_1 \ldots t_m
(trained on query-click logs, Wikipedia disambiguation pages, etc.):
determine result set R with |R|=k such that
\[
P[R \mid q] = \sum_{i=1}^{m} P[t_i \mid q] \cdot \left(1 - \prod_{r \in R} (1 - P[r \mid q, t_i])\right) = max!
\]
at least one r clicked
given intention t_i for q

More variants in the literature, most are NP-hard
But many are submodular (have diminishing marginal returns)
→ greedy algorithms with approximation guarantees
Submodular Set Functions

Given a set Ω, a function $f: 2^\Omega \rightarrow \mathbb{R}$ is **submodular** if for every $X, Y \subseteq \Omega$ with $X \subset Y$ and $z \in \Omega - Y$ the following **diminishing-returns property** holds:

$$f(X \cup \{z\}) - f(X) \geq f(Y \cup \{z\}) - f(Y)$$

Typical **optimization** problem aims to choose a subset $X \subset \Omega$ that minimizes or maximizes f under cardinality constraints for X

- these problems are usually NP-hard but often have polynomial algorithms with very good approximation guarantees
- greedy algorithms often yield very good approximate solutions
Maximal Marginal Relevance (MMR): Greedy Reordering for Diversification

[Carbonell/Goldstein 1998]

Compute a pool of top-m candidate results where \(m > k \)
(e.g. \(m=1000 \) for \(k=10 \))
Initialize \(S := \emptyset \)

Choose results in descending order of marginal utility:
repeat

\[
S := S \cup \arg\max_d (\alpha \text{sim}(d, q) - (1 - \alpha) \sum_{r \in S} \text{sim}(r, d))
\]
until \(|S|=k \)
Summary of Chapter 12

• **document-ordered** posting lists:
 QP based on scan and merge; can optimize order of lists and heuristically control memory for accumulators

• **impact-ordered** posting lists:
 top-k search can be sublinear with **Threshold Algorithm** family

• additional algorithmic options and optimizations for **phrase and proximity queries** and for **query expansion**

• with **ambiguity** of query terms and **uncertainty** of user intention, query result **diversification** is crucial
Additional Literature for Chapter 12

- C. Buckley, A. Lewit: Optimization of Inverted Vector Searches, SIGIR 1985
- M. Theobald et al.: Top-k Query Processing with Probabilistic Guarantees, VLDB 2004
- H. Bast et al.: IO-Top-k: Index-access Optimized Top-k Query Processing, VLDB 2006
- H.E. Williams, J. Zobel, D. Bahle: Fast Phrase Querying with Combined Indexes, TOIS 2004
- A. Broschart, R. Schenkel: High-performance processing of text queries with tunable pruned term and term pair indexes. ACM TOIS 2012
- S. Büttcher, C. Clarke, B. Lushman: Term proximity scoring for ad-hoc retrieval on very large text collections. SIGIR 2006
- R. Schenkel et al.: Efficient Text Proximity Search, SPIRE 2007
Additional Literature for Chapter 12

- B. Billerbeck, F. Scholer, H.E. Williams, J. Zobel: Query expansion using associated queries. CIKM 2003
- M. Theobald, R. Schenkel, G. Weikum: Efficient and Self-Tuning Incremental Query Expansion for Top-k Query Processing, SIGIR 2005
- T. Joachims et al.: Evaluating the accuracy of implicit feedback from clicks and query reformulations in Web search, TOIS 2007
- S. Gollapudi, A. Sharma: An Axiomatic Approach for Result Diversification, WWW 2009