Chapter 14: Link Analysis

We didn't know exactly what I was going to do with it, but no one was really looking at the links on the Web. In computer science, there's a lot of big graphs.

-- Larry Page

The many are smarter than the few.

-- James Surowiecki

Like, like, like – my confidence grows with every click.

-- Keren David

Money isn't everything ... but it ranks right up there with oxygen.

-- Rita Davenport
Outline

14.1 PageRank for Authority Ranking
14.2 Topic-Sensitive, Personalized & Trust Rank
14.3 HITS for Authority and Hub Ranking
14.4 Extensions for Social & Behavioral Ranking

following Büttcher/Clarke/Cormack Chapter 15
and/or Manning/Raghavan/Schuetze Chapter 21
Google's PageRank [Brin & Page 1998]

Idea: links are endorsements & increase page authority, authority higher if links come from high-authority pages

\[PR(q) = \varepsilon \cdot j(q) + (1 - \varepsilon) \cdot \sum_{p \in IN(q)} PR(p) \cdot t(p,q) \]

with \(t(p,q) = 1 / \text{outdegree}(p) \)

and \(j(q) = 1 / N \)

Authority (page q) = stationary prob. of visiting q

random walk: uniformly random choice of links + random jumps

Wisdom of Crowds

Extensions with
- weighted links and jumps
- trust/spam scores
- personalized preferences
- graph derived from queries & clicks
Role of PageRank in Query Result Ranking

- PageRank (PR) is a static (query-independent) measure of a page’s or site’s authority/prestige/importance

- Models for query result ranking combine PR with query-dependent content score (and freshness etc.):
 - linear combination of PR and score by LM, BM25, …
 - PR is viewed as doc prior in LM
 - PR is a feature in Learning-to-Rank
Simplified PageRank

given: directed Web graph $G=(V,E)$ with $|V|=n$ and adjacency matrix E: $E_{ij} = 1$ if $(i,j) \in E$, 0 otherwise

random-surfer page-visiting probability after $i + 1$ steps:

$$p^{(i+1)}(y) = \sum_{x=1..n} C_{yx} p^{(i)}(x)$$

with conductance matrix C:

$$C_{yx} = \frac{E_{xy}}{\text{out}(x)}$$

finding solution of fixpoint equation $p = Cp$ suggests

power iteration:

initialization: $p^{(0)}(y) = 1/n$ for all y

repeat until convergence (L_1 or L_∞ of diff of $p^{(i)}$ and $p^{(i+1)} < \text{threshold}$)

$$p^{(i+1)} := C p^{(i)}$$
PageRank as Principal Eigenvector of Stochastic Matrix

A **stochastic matrix** is an n×n matrix M with row sum $\sum_{j=1..n} M_{ij} = 1$ for each row i

Random surfer follows a stochastic matrix

Theorem (special case of Perron-Frobenius Theorem): For every stochastic matrix M all Eigenvalues λ have the property $|\lambda| \leq 1$ and there is an Eigenvector x with Eigenvalue 1 s.t. $x \geq 0$ and $\|x\|_1 = 1$

Suggests power iteration $x^{(i+1)} = M^T x^{(i)}$

But: real Web graph has sinks, may be periodic, is not strongly connected
Dead Ends and Teleport

Web graph has sinks (dead ends, dangling nodes)
Random surfer can’t continue there

Solution 1: remove sinks from Web graph

Solution 2: introduce random jumps (teleportation)
 if node y is sink then jump to randomly chosen node
 else with prob. α choose random neighbor by outgoing edge
 with prob. $1-\alpha$ jump to randomly chosen node

→ fixpoint equation $p = Cp$

 generalized into: $p = \alpha Cp + (1-\alpha)r$
 with $n \times 1$ teleport vector r
 with $r_y = 1/n$ for all y
 and $0 < \alpha < 1$
 (typically $0.15 < 1-\alpha < 0.25$)
Power Iteration for General PageRank

power iteration (Jacobi method):
- initialization: $p^{(0)}(y) = \frac{1}{n}$ for all y
- repeat until convergence (L_1 or L_∞ of diff of $p^{(i)}$ and $p^{(i+1)} < \text{threshold}$)

 $p^{(i+1)} := \alpha C p^{(i)} + (1-\alpha) r$

- scalable for huge graphs/matrices
- convergence and uniqueness of solution guaranteed
- implementation based on adjacency lists for nodes y
- termination criterion based on stabilizing ranks of top authorities
- convergence typically reached after ca. 50 iterations
- convergence rate proven to be: $|\lambda_2 / \lambda_1| = \alpha$
 with second-largest eigenvalue λ_2 [Havelivall/Kamvar 2002]
Markov Chains (MC) in a Nutshell

0: sunny

1: cloudy

2: rainy

state set: finite or infinite

time: discrete or continuous

state transition prob’s: p_{ij}

state prob’s in step t: $p_i^{(t)} = P[S(t) = i]$

Markov property: $P[S(t) = i | S(0), ..., S(t-1)] = P[S(t) = i | S(t-1)]$

interested in **stationary state probabilities**:

$$p_j := \lim_{t \to \infty} p_j^{(t)} = \lim_{t \to \infty} \sum_k p_k^{(t-1)} p_{kj}$$

$$p_j = \sum_k p_k p_{kj} \quad \sum_j p_j = 1$$

exist & unique for irreducible, aperiodic, finite MC (ergodic MC)

$p_0 = 0.8 \ p_0 + 0.5 \ p_1 + 0.4 \ p_2$

$p_1 = 0.2 \ p_0 + 0.3 \ p_2$

$p_2 = 0.5 \ p_1 + 0.3 \ p_2$

$p_0 + p_1 + p_2 = 1$

$p_0 \approx 0.657, \ p_1 = 0.2, \ p_2 \approx 0.143$
Digression: Markov Chains

A **stochastic process** is a family of random variables \(\{X(t) \mid t \in T\} \).

\(T \) is called parameter space, and the domain \(M \) of \(X(t) \) is called state space. \(T \) and \(M \) can be discrete or continuous.

A stochastic process is called **Markov process** if for every choice of \(t_1, \ldots, t_{n+1} \) from the parameter space and every choice of \(x_1, \ldots, x_{n+1} \) from the state space the following holds:

\[
\begin{align*}
P \left(X(t_{n+1}) = x_{n+1} \mid X(t_1) = x_1 \land X(t_2) = x_2 \land \ldots \land X(t_n) = x_n \right) &= P \left(X(t_{n+1}) = x_{n+1} \mid X(t_n) = x_n \right)
\end{align*}
\]

A Markov process with discrete state space is called **Markov chain**. A canonical choice of the state space are the natural numbers. Notation for Markov chains with discrete parameter space: \(X_n \) rather than \(X(t_n) \) with \(n = 0, 1, 2, \ldots \).
Properties of Markov Chains with Discrete Parameter Space (1)

The Markov chain X_n with discrete parameter space is

homogeneous if the transition probabilities

$$p_{ij} := P[X_{n+1} = j \mid X_n = i]$$

are independent of n

irreducible if every state is reachable from every other state with positive probability:

$$\sum_{n=1}^{\infty} P[X_n = j \mid X_0 = i] > 0 \quad \text{for all } i, j$$

aperiodic if every state i has period 1, where the period of i is the gcd of all (recurrence) values n for which

$$P[X_n = i \wedge X_k \neq i \text{ for } k = 1, \ldots, n-1 \mid X_0 = i] > 0$$
Properties of Markov Chains
with Discrete Parameter Space (2)

The Markov chain X_n with discrete parameter space is

positive recurrent if for every state i the recurrence probability is 1 and the mean recurrence time is finite:

$$\sum_{n=1}^{\infty} P[X_n = i \land X_k \neq i \text{ for } k = 1, \ldots, n-1 \mid X_0 = i] = 1$$

$$\sum_{n=1}^{\infty} n P[X_n = i \land X_k \neq i \text{ for } k = 1, \ldots, n-1 \mid X_0 = i] < \infty$$

ergodic if it is homogeneous, irreducible, aperiodic, and positive recurrent.
Results on Markov Chains with Discrete Parameter Space (1)

For the **n-step transition probabilities**

\[p_{ij}^{(n)} := P \left[X_n = j \mid X_0 = i \right] \]

the following holds:

\[p_{ij}^{(n)} = \sum_{k} p_{ik}^{(n-1)} p_{kj} \quad \text{with} \quad p_{ij}^{(1)} := p_{ik} \]

\[= \sum_{k} p_{ik}^{(n-l)} p_{kj}^{(l)} \quad \text{for} \ 1 \leq l \leq n - 1 \]

in matrix notation: \(P^{(n)} = P^n \)

For the **state probabilities after n steps**

\[\pi_j^{(n)} := P \left[X_n = j \right] \]

the following holds:

\[\pi_j^{(n)} = \sum_{i} \pi_i^{(0)} p_{ij}^{(n)} \quad \text{with initial state probabilities} \quad \pi_i^{(0)} \]

in matrix notation: \(\Pi^{(n)} = \Pi^{(0)} P^{(n)} \quad (\text{Chapman-Kolmogorov equation}) \)
Results on Markov Chains with Discrete Parameter Space (2)

Theorem: Every homogeneous, irreducible, aperiodic Markov chain with a finite number of states is ergodic.

For every ergodic Markov chain there exist **stationary state probabilities**

These are independent of \(\Pi^{(0)} \) and are the solutions of the following system of linear equations:

\[
\pi_j = \sum_i \pi_i p_{ij} \quad \text{for all } j
\]

\[
\sum_j \pi_j = 1
\]

in matrix notation: \(\Pi = \Pi P \)

(with 1×n row vector \(\Pi \)) \(\Pi \mathbf{1} = 1 \)
Page Rank as a Markov Chain Model

Model a **random walk** of a Web surfer as follows:

- follow outgoing hyperlinks with uniform probabilities
- perform „random jump“ with probability $1 - \alpha$

→ ergodic Markov chain

PageRank of a page is its **stationary visiting probability**
(uniquely determined and independent of starting condition)

Further generalizations have been studied
(e.g. random walk with back button etc.)
Page Rank as a Markov Chain Model: Example

\[G = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix} \quad C = \begin{bmatrix} 0 & 1/2 & 0 & 1/2 & 0 \\ 0 & 0 & 1/2 & 1/2 & 0 \\ 1/1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1/1 \\ 0 & 0 & 1/1 & 0 & 0 \end{bmatrix} \]

with \(\varepsilon = 0.15 \)

\[
P = \begin{bmatrix} 0.030 & 0.455 & 0.030 & 0.455 & 0.030 \\ 0.030 & 0.030 & 0.455 & 0.455 & 0.030 \\ 0.880 & 0.030 & 0.030 & 0.030 & 0.880 \\ 0.030 & 0.030 & 0.030 & 0.030 & 0.880 \\ 0.030 & 0.030 & 0.880 & 0.030 & 0.030 \end{bmatrix}
\]

approx. solution of \(P\pi = \pi \)

\[
\pi = [0.24079 \quad 0.13234 \quad 0.24799 \quad 0.18858 \quad 0.19029]
\]
Efficiency of PageRank Computation
[Kamvar/Haveliwala/Manning/Golub 2003]

Exploit block structure of the link graph:
1) partition link graph by domains (entire web sites)
2) compute local PR vector of pages within each block → LPR(i) for page i
3) compute block rank of each block:
 a) block link graph B with $B_{ij} = \sum_{i \in I, j \in J} C^T_{ij} \cdot LPR(i)$
 b) run PR computation on B, yielding BR(I) for block I
4) Approximate global PR vector using LPR and BR:
 a) set $x_j^{(0)} := LPR(j) \cdot BR(J)$ where J is the block that contains j
 b) run PR computation on A

speeds up convergence by factor of 2 in good "block cases"
unclear how effective it is in general
Efficiency of Storing PageRank Vectors
[T. Haveliwala, Int. Conf. On Internet Computing 2003]

Memory-efficient encoding of PR vectors
(especially important for large number of PPR vectors)

Key idea:
• map real PR scores to n cells and encode cell no into ceil(log₂ n) bits
• approx. PR score of page i is the mean score of the cell that contains i
• should use non-uniform partitioning of score values to form cells

Possible encoding schemes:
• **Equi-depth partitioning**: choose cell boundaries such that
\[\sum_{i \in \text{cell } j} PR(i) \] is the same for each cell

• **Equi-width partitioning with log values**: first transform all
PR values into log PR, then choose equi-width boundaries
• Cell no. could be variable-length encoded (e.g., using Huffman code)
Link-Based Similarity Search: SimRank

[G. Jeh, J. Widom: KDD 2002]

Idea: nodes p, q are similar if their in-neighbors are pairwise similar

$$\text{sim}(p, q) = \frac{1}{|\text{In}(p)||\text{In}(q)|} \sum_{x \in \text{In}(p)} \sum_{y \in \text{In}(q)} \text{sim}(x, y)$$

with sim(x,x)=1

Examples: 2 users and their friends or people they follow
2 actors and their co-actors or their movies
2 people and the books or food they like

Efficient computation [Fogaras et al. 2004]:
• compute RW fingerprint for each node p: \(\approx P[\text{reach node } q]\)
• SimRank(p,q) \(\sim P[\text{walks from p and q meet}]\)
 \(\rightarrow\) test on fingerprints (viewed as iid samples)
14.2 Topic-Specific & Personalized PageRank

Idea: random jumps favor pages of personal interest such as bookmarks, frequently & recently visited pages etc.

\[PR(q) = \varepsilon \cdot j(q) + (1 - \varepsilon) \cdot \sum_{p \in IN(q)} PR(p) \cdot t(p,q) \]

with
\[j(q) = \begin{cases}
1/|B| & \text{for } q \in B \\
0 & \text{otherwise}
\end{cases} \]

Authority (page q) = stationary prob. of visiting q

random walk: uniformly random choice of links + biased jumps to personal favorites
Personalized PageRank

Goal: Efficient computation and efficient storage of user-specific personalized PageRank vectors (PPR)

PageRank equation: $p = \alpha C p + (1 - \alpha) r$

Linearity Theorem:
Let r_1 and r_2 be personal preference vectors for random-jump targets, and let p_1 and p_2 denote the corresponding PPR vectors. Then for all $\beta_1, \beta_2 \geq 0$ with $\beta_1 + \beta_2 = 1$ the following holds:

$$\beta_1 p_1 + \beta_2 p_2 = \alpha C (\beta_1 p_1 + \beta_2 p_2) + (1 - \alpha) (\beta_1 r_1 + \beta_2 r_2)$$

Corollary:
For preference vector r with m non-zero components and base vectors e_k ($k=1..m$) with $(e_k)_i = 1$ for $i=k$, 0 for $i \neq k$, we obtain:

$$r = \sum_{k=1..m} \beta_k e_k \quad \text{with constants } \beta_1 \ldots \beta_m$$

and

$$p = \sum_{k=1..m} \beta_k p_k \quad \text{for PPR vector } p \text{ with } p_k = \alpha C p_k + (1 - \alpha) e_k$$

for further optimizations see Jeh/Widom: WWW 2003
Spam Control: From PageRank to TrustRank

Idea: random jumps favor designated high-quality pages such as popular pages, trusted hubs, etc.

\[
PR(q) = \varepsilon \cdot j(q) + (1 - \varepsilon) \cdot \sum_{p \in \text{IN}(q)} PR(p) \cdot t(p, q)
\]

with \(j(q) = \begin{cases} 1/|B| & \text{for } q \in B \\ 0 & \text{otherwise} \end{cases} \)

Authority (page q) = stationary prob. of visiting q

random walk: uniformly random choice of links + biased jumps to trusted pages

many other ways to detect web spam \(\rightarrow \) classifiers etc.
Spam Farms and their Effect

Typical structure:

Web transfers to \(p_0 \) the „hijacked“ score mass („leakage“)

\[
\lambda = \sum_{q \in \text{IN}(p_0)-\{p_1..p_k\}} \frac{\text{PR}(q)}{\text{outdegree}(q)}
\]

Theorem: \(p_0 \) obtains the following PR authority:

\[
\text{PR}(p_0) = \frac{1}{1-(1-\varepsilon)^2} \left((1-\varepsilon)\lambda + \frac{\varepsilon((1-\varepsilon)k + 1)}{n} \right)
\]

The above spam farm is optimal within some family of spam farms (e.g. letting hijacked links point to boosting pages).
Countermeasures: TrustRank and BadRank

TrustRank:

start with explicit set T of trusted pages with trust values t_i
define random-jump vector r by setting $r_i = 1/|T|$ if $i \in T$ and 0 else
(or alternatively $r_i = t_i/\sum_{v \in T} t_v$)
propagate TrustRank mass to successors

$$TR(q) = \tau r + (1 - \tau) \sum_{p \in IN(q)} TR(p) / \text{outdegree}(p)$$

BadRank:

start with explicit set B of blacklisted pages
define random-jump vector r by setting $r_i = 1/|B|$ if $i \in B$ and 0 else
propagate BadRank mass to predecessors

$$BR(p) = \beta r + (1 - \beta) \sum_{q \in OUT(p)} BR(q) / \text{indegree}(q)$$

Problems:

maintenance of explicit lists is difficult
difficult to understand (& guarantee) effects
Link Analysis Without Links

[Kurland et al.: TOIS 2008]:
[Xue et al.: SIGIR 2003]

Apply simple data mining to **browsing sessions** of many users, where each session i is a sequence $(pi_1, pi_2, ...)$ of **visited pages**:

- consider all pairs (pi_j, pi_{j+1}) of successively visited pages,
- compute their total frequency f, and
- select those with f above some min-support threshold

Construct **implicit-link graph** with the selected page pairs as edges and their normalized total frequencies f as edge weights
or construct graph from content-based **page-page similarities**

Apply **edge-weighted Page-Rank** for authority scoring, and linear combination of authority and content score etc.
Exploiting Click Log

Simple idea: Modify HITS or Page-Rank algorithm by weighting edges with the relative frequency of users clicking on a link

More sophisticated approach
Consider link graph A and link-visit matrix V ($V_{ij}=1$ if user i visits page j, 0 else)
Define

- authority score vector: $a = \beta A^T h + (1-\beta)V^T u$
- hub score vector: $h = \beta A a + (1-\beta)V^T u$
- user importance vector: $u = (1-\beta)V(a+h)$

with a tunable parameter β ($\beta=1$: HITS, $\beta=0$: DirectHit)
QRank: PageRank on Query-Click Graph

[Luxenburger et al.: WISE 2004]

Idea: add *query-doc transitions* + *query-query transitions* + *doc-doc transitions* on implicit links (by similarity) with probabilities estimated from query-click log statistics

\[
PR(q) = \varepsilon \cdot j(q) + (1 - \varepsilon) \cdot \sum_{p \in \text{IN}(q)} PR(p) \cdot t(p, q)
\]

\[
QR(q) = \varepsilon \cdot j(q) + (1 - \varepsilon) \cdot \left(\alpha \sum_{p \in \text{explicitIN}(q)} PR(p) \cdot t(p, q) + (1 - \alpha) \sum_{p \in \text{implicitIN}(q)} PR(p) \cdot \text{sim}(p, q) \right)
\]
14.3 HITS: Hyperlink-Induced Topic Search

[I. Kleinberg: JACM 1999]

Idea:
Determine
• good content sources: Authorities (high indegree)
• good link sources: Hubs (high outdegree)

Find
• better authorities that have good hubs as predecessors
• better hubs that have good authorities as successors

For Web graph $G = (V, E)$ define for nodes $x, y \in V$

authority score $a_y \sim \sum_{(x, y) \in E} h_x$

hub score $h_x \sim \sum_{(x, y) \in E} a_y$
HITS as Eigenvector Computation

Authority and hub scores in matrix notation:

\[\tilde{a} = \alpha E^T \tilde{h} \quad \tilde{h} = \beta E \tilde{a} \]

with constants \(\alpha, \beta \)

Iteration with adjacency matrix \(A \):

\[\tilde{a} = \alpha E^T \tilde{h} = \alpha \beta E^T E \tilde{a} \]
\[\tilde{h} = \beta E \tilde{a} = \alpha \beta E E^T \tilde{h} \]

\(a \) and \(h \) are Eigenvectors of \(E^T E \) and \(E E^T \), respectively

Intuitive interpretation:

\(M^{(\text{auth})} = E^T E \) is the cocitation matrix: \(M^{(\text{auth})}_{ij} \) is the number of nodes that point to both \(i \) and \(j \)

\(M^{(\text{hub})} = EE^T \) is the bibliographic-coupling matrix: \(M^{(\text{hub})}_{ij} \) is the number of nodes to which both \(i \) and \(j \) point
HITS Algorithm

compute fixpoint solution by iteration with length normalization:

initialization: $a^{(0)} = (1, 1, ..., 1)^T, h^{(0)} = (1, 1, ..., 1)^T$

repeat until sufficient convergence

$$h^{(i+1)} := E \ a^{(i)}$$

$$h^{(i+1)} := h^{(i+1)} / \|h^{(i+1)}\|_1$$

$$a^{(i+1)} := E^T \ h^{(i)}$$

$$a^{(i+1)} := a^{(i+1)} / \|a^{(i+1)}\|_1$$

convergence guaranteed under fairly general conditions
Implementation of the HITS Algorithm

1) Determine sufficient number (e.g. 50-200) of „root pages“ via relevance ranking (e.g. tf*idf, LM ...)
2) Add all successors of root pages
3) For each root page add up to d predecessors
4) Compute iteratively
 authority and hub scores of this „expansion set“ (e.g. 1000-5000 pages)
 with initialization $a_i := h_i := 1 / |\text{expansion set}|$
 and L_1 normalization after each iteration
 \rightarrow converges to principal Eigenvector
5) Return pages in descending order of authority scores
 (e.g. the 10 largest elements of vector a)

„Drawback“ of HITS algorithm:
relevance ranking within root set is not considered
Example: HITS Construction of Graph

query result

root set

expansion set

1

2

3

4

5

6

7

8
Enhanced HITS Method

Potential weakness of the HITS algorithm:
• irritating links (automatically generated links, spam, etc.)
• topic drift (e.g. from „python code“ to „programming“ in general)

Improvement:
• Introduce **edge weights**:
 0 for links within the same host,
 1/k with k links from k URLs of the same host to 1 URL (**aweigh**)
 1/m with m links from 1 URL to m URLs on the same host (**hweight**)
• Consider **relevance weights** w.r.t. query topic (e.g. \(tf*idf, \text{LM} \ldots\))

→ Iterative computation of

\[
\text{authority score } \quad a_q := \sum_{(p,q) \in E} h_p \cdot \text{topicscore}(p) \cdot \text{aweigh}(p, q) \\
\text{hub score } \quad h_p := \sum_{(p,q) \in E} a_q \cdot \text{topicscore}(q) \cdot \text{hweight}(p, q)
\]
Finding Related URLs

Cocitation algorithm:

- Determine up to B predecessors of given URL u
- For each predecessor p determine up to BF successors $\neq u$
- Determine among all siblings s of u those with the largest number of predecessors that point to both s and u (degree of cocitation)

Companion algorithm:

- Determine appropriate base set for URL u ("vicinity" of u)
- Apply HITS algorithm to this base set
Companion Algorithm for Finding Related URLs

1) Determine **expansion set**: u plus
 - up to B predecessors of u and
 for each predecessor p up to BF successors ≠ u plus
 - up to F successors of u and
 for each successor c up to FB predecessors ≠ u
 with elimination of stop URLs (e.g. www.yahoo.com)

2) **Duplicate elimination**:
 Merge nodes both of which have more than 10 successors
 and have 95 % or more overlap among their successors

3) Compute **authority scores**
 using the improved HITS algorithm
HITS Algorithm for „Community Detection“

Root set may contain multiple topics or „communities“, e.g. for queries „jaguar“, „Java“, or „randomized algorithm“

Approach:

• Compute k largest Eigenvalues of $E^T E$
 and the corresponding Eigenvectors a (authority scores)
 (e.g., using SVD on E)

• For each of these k Eigenvectors a
 the largest authority scores indicate
 a densely connected „community“

Community Detection
more fully captured
in Chapter 8
SALSA: Random Walk on Hubs and Authorities
[Lempel et al.: TOIS 2001]

View each node v of the link graph $G(V,E)$ as two nodes v_h and v_a

Construct **bipartite undirected graph** $G'(V',E')$ from $G(V,E)$:

$V' = \{v_h | v \in V \text{ and } \text{outdegree}(v) > 0\} \cup \{v_a | v \in V \text{ and } \text{indegree}(v) > 0\}$

$E' = \{(v_h,w_a) | (v,w) \in E\}$

Stochastic hub matrix H:

$$h_{ij} = \sum_k \frac{1}{\text{degree}(i_h)} \frac{1}{\text{degree}(k_a)}$$

over all nodes with $(i_h,k_a), (k_a,j_h) \in E'$

Stochastic authority matrix A:

$$a_{ij} = \sum_k \frac{1}{\text{degree}(i_a)} \frac{1}{\text{degree}(k_h)}$$

for i, j and k ranging over all nodes with $(i_a,k_h), (k_h,j_a) \in E'$

The corresponding Markov chains are ergodic on connected component

Stationary solution: $\pi[v_h] \sim \text{outdegree}(v)$ for H, $\pi[v_a] \sim \text{indegree}(v)$ for A

Further extension with random jumps: **PHITS (Probabilistic HITS)**
14.4 Extensions for Social & Behavioral Graphs

Typed graphs: data items, users, friends, groups, postings, ratings, queries, clicks, ... with weighted edges
Social Tagging Graph

Tagging relation in „folksonomies“:
• ternary relationship between users, tags, docs
• could be represented as hypergraph or tensor
• or (lossfully) decomposed into 3 binary projections (graphs):

\[\text{UsersTags} (\text{ UID, TId, UTscore}) \]
\[x.UTscore := \sum_d \{ s \mid (x.UId, x.TId, d, s) \in \text{Ratings} \} \]

\[\text{TagsDocs} (\text{ TId, Did, TDscore}) \]
\[x.TDscore := \sum_u \{ s \mid (u, x.TId, x.DId, s) \in \text{Ratings} \} \]

\[\text{DocsUsers} (\text{ Did, UId, DUscore}) \]
\[x.DUscore := \sum_t \{ s \mid (x.UId, t, x.DId, s) \in \text{Ratings} \} \]
Authority/Prestige in Social Networks

Apply link analysis (PR, PPR, HITS etc.) to appropriately defined matrices.

- **SocialPageRank** [Bao et al.: WWW 2007]:

 Let M_{UT}, M_{TD}, M_{DU} be the matrices corresponding to relations UsersTags, TagsDocs, DocsUsers.

 Compute iteratively with renormalization:

 $$ \vec{r}_T = M_{UT}^T \times \vec{r}_U $$
 $$ \vec{r}_D = M_{TD}^T \times \vec{r}_T $$
 $$ \vec{r}_U = M_{DU}^T \times \vec{r}_D $$

- **FolkRank** [Hotho et al.: ESWC 2006]:

 Define *graph G as union of graphs* UsersTags, TagsDocs, DocsUsers.

 Assume each user has personal preference vector \vec{p}.

 Compute iteratively:

 $$ \vec{r}_D = \alpha \vec{r}_D + \beta M_G \times \vec{r}_D + \gamma \vec{p} $$
Search & Ranking with Social Relations

Web search (or search in social network incl. enterprise intranets) can benefit from the taste, expertise, experience, recommendations of friends and colleagues

→ use social neighborhood for query expansion, etc.

→ combine content scoring with FolkRank, SocialPR, etc.

→ integrate friendship strengths, tag similarities, community behavior, individual user behavior, etc.

→ further models based on random walks for twitter followers, review forums, online communities, etc.
Random Walks on Query-Click Graphs

Bipartite graph with queries and docs as nodes and edges based on clicks with weights ~ click frequency

Source: N. Craswell, M. Szummer: Random Walks on the Click Graph, SIGIR 2007
Random Walks on Query-Click Graphs

Bipartite graph with queries and docs as nodes and edges based on clicks with weights ~ click frequency

[Craswell: SIGIR‘07]

transition probabilities:

\[t(q,d) = (1-s) \frac{C_{qd}}{\sum_i C_{qi}} \text{ for } q \neq d \]

with click frequencies \(C_{qd} \)

\[t(q,q) = s \text{ with self-transitions} \]

Useful for:

• query-to-doc ranking
• query-to-query suggestions
• doc-to-query annotations
• doc-to-doc suggestions

Example: doc-to-query annotations
Query Flow Graphs

Graph with queries as nodes and edges derived from user sessions (query reformulations, follow-up queries, etc.)

transition probabilities: $t(q,q') \sim P[q \text{ and } q' \text{ appear in same session}]$

Link analysis yields suggestions for query auto-completion, reformulation, refinement, etc.

Source: Ilaria Bordino, Graph Mining and its applications to Web Search, Doctoral Dissertation, La Sapienza University Rome, 2010
• **PageRank** (PR), **HITS**, etc. are elegant models for query-independent page/site authority/prestige/importance

• Query result ranking combines PR with content

• Many **interesting extensions** for personalization (RWR), query-click graphs, doc-doc similarity etc.

• Potentially interesting for ranking/recommendation in **social networks**

• **Random walks** are a powerful instrument
Additional Literature for 14.1 and 14.3

• M. Bianchini, M. Gori, F. Scarselli: Inside PageRank, TOIT 5(1), 2005
• A. Broder et al.: Efficient PageRage Approximation via Graph Aggregation. Inf. Retr. 2006
• G. Jeh, J. Widom: SimRank: a Measure of Structural-Context Similarity, KDD 2002
• D. Fogaras, B. Racz.: Scaling link-based similarity search. WWW 2005
• J.M. Kleinberg: Authoritative Sources in a Hyperlinked Environment, JACM 1999
• J. Dean, M. Henzinger: Finding Related Pages in the WorldWideWeb, WWW 1999
• A. Borodin et al.: Link analysis ranking: algorithms, theory, and experiments. TOIT 5(1), 2005
Additional Literature for 14.2 and 14.4

- Z. Gyöngyi et al.: Link Spam Detection based on Mass Estimation, VLDB‘06
- Y. Liu et al.: BrowseRank: letting web users vote for page importance. SIGIR 2008
- G.-R. Xue et al.: Implicit link analysis for small web search, SIGIR 2003
- J. Weng et al.: TwitterRank: finding topic-sensitive influential twitterers, WSDM 2010
- I. Bordino et al.: Query similarity by projecting the query-flow graph, SIGIR 2010