
Chapter 14: Link Analysis
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Money isn't everything ... but it ranks right up there with oxygen.

-- Rita Davenport

We didn't know exactly what I was going to do with it,

but no one was really looking at the links on the Web. 

In computer science, there's a lot of big graphs. 

-- Larry Page

Like, like, like – my confidence grows with every click.

-- Keren David

The many are smarter than the few.

-- James Surowiecki
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Outline

14.1 PageRank for Authority Ranking

14.2 Topic-Sensitive, Personalized & Trust Rank

14.3 HITS for Authority and Hub Ranking

14.4 Extensions for Social & Behavioral Ranking

following Büttcher/Clarke/Cormack Chapter 15

and/or Manning/Raghavan/Schuetze Chapter 21
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Google‘s PageRank [Brin & Page 1998]

random walk: uniformly random choice of links + random jumps

PR( q ) j(q ) (1 )     
p IN ( q )

PR( p ) t( p,q )




Authority (page q) = 
stationary prob. of visiting q

Idea: links are endorsements & increase page authority,

authority higher if links come from high-authority pages

with

Nqj /1)( 

p)outdegree(qpt /1),( 

and

Wisdom of Crowds

Extensions with

• weighted links and jumps

• trust/spam scores

• personalized preferences

• graph derived from

queries & clicks
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Role of PageRank in Query Result Ranking

IRDM  WS 2015

• PageRank (PR) is a static (query-independent) measure 

of a page’s or site’s authority/prestige/importance

• Models for query result ranking combine 

PR with query-dependent content score

(and freshness etc.):

– linear combination of PR and score by LM, BM25, …

– PR is viewed as doc prior in LM

– PR is a feature in Learning-to-Rank
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Simplified PageRank

given: directed Web graph G=(V,E) with |V|=n and 

adjacency matrix E: Eij = 1 if (i,j)E, 0 otherwise

random-surfer page-visiting probability after i +1 steps:

)x(pC)y(p )i(

yxn..1x
)1i(  

  with conductance matrix C:

Cyx = Exy / out(x)

)i()1i( pCp 

finding solution of fixpoint equation p = Cp suggests

power iteration:

initialization: p(0) (y) =1/n for all y

repeat until convergence (L1 or L of diff of p(i) and p(i+1) < threshold)

p(i+1) := C p(i)
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PageRank as Principal Eigenvector 
of Stochastic Matrix

A stochastic matrix is an nn matrix M

with row sum j=1..n Mij = 1 for each row i

Random surfer follows a stochastic matrix

Theorem (special case of Perron-Frobenius Theorem):

For every stochastic matrix M 

all Eigenvalues  have the property ||1

and there is an Eigenvector x with Eigenvalue 1 s.t. x  0 and ||x||1 = 1

But: real Web graph

has sinks, may be periodic, is not strongly connected

Suggests power iteration x(i+1) = MT x(i)
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Dead Ends and Teleport

Web graph has sinks (dead ends, dangling nodes)

Random surfer can‘t continue there

Solution 1: remove sinks from Web graph

Solution 2: introduce random jumps (teleportation)

if node y is sink then jump to randomly chosen node

else with prob.  choose random neighbor by outgoing edge

with prob. 1 jump to randomly chosen node

pCp  fixpoint equation 

generalized into: r)1(pCp  with n1 teleport vector r
with ry = 1/n for all y
and 0 <  < 1
(typically 0.15 < 1 < 0.25)
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Power Iteration for General PageRank

power iteration (Jacobi method):

initialization: p(0) (y) =1/n for all y

repeat until convergence (L1 or L of diff of p(i) and p(i+1) < threshold)

p(i+1) :=  C p(i) +(1) r

• scalable for huge graphs/matrices

• convergence and uniqueness of solution guaranteed

• implementation based on adjacency lists for nodes y

• termination criterion based on stabilizing ranks of top authorities

• convergence typically reached after ca. 50 iterations

• convergence rate proven to be: |2 / 1| = 

with second-largest eigenvalue 2 [Havelivala/Kamvar 2002]

14-8



IRDM  WS 2015

Markov Chains (MC) in a Nutshell

0: sunny 1: cloudy 2: rainy0.8

0.2 0.3

0.3

0.4

0.5

0.5

state set: finite or infinite time: discrete or continuous

interested in stationary state probabilities: 

exist & unique for irreducible, aperiodic, finite MC (ergodic MC)

state prob‘s in step t: pi
(t) = P[S(t)=i]state transition prob‘s: pij

( t ) ( t 1 )
j j k kj

t t k

p : lim p lim p p


 
   j k kj

k

p p p j
j

p 1

Markov property: P[S(t)=i | S(0), ..., S(t-1)] = P[S(t)=i | S(t-1)] 

p0 = 0.8 p0 + 0.5 p1 + 0.4 p2
p1 = 0.2 p0 + 0.3 p2
p2 = 0.5 p1 + 0.3 p2
p0 + p1 + p2 = 1

 p0  0.657, p1 = 0.2, p2  0.143
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Digression: Markov Chains

A stochastic process is a family of

random variables {X(t) | t  T}.

T is called parameter space, and the domain M of X(t) is called

state space. T and M can be discrete or continuous.

A stochastic process is called Markov process if

for every choice of t1, ..., tn+1 from the parameter space and

every choice of x1, ..., xn+1 from the state space the following holds:

]x)t(X...x)t(Xx)t(X|x)t(X[P nnnn   221111

]x)t(X|x)t(X[P nnnn   11

A Markov process with discrete state space is called Markov chain.

A canonical choice of the state space are the natural numbers.

Notation for Markov chains with discrete parameter space:

Xn rather than X(tn) with n = 0, 1, 2, ...
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Properties of Markov Chains
with Discrete Parameter Space (1)

homogeneous if the transition probabilities
pij := P[Xn+1 = j | Xn=i] are independent of n

The Markov chain Xn with discrete parameter space is

irreducible if every state is reachable from every other state
with positive probability: 







1

0 0
n

n ]iX|jX[P for all i, j

aperiodic if every state i has period 1, where the
period of i is the gcd of all (recurrence) values n for which

011 0  ]iX|n,...,kforiXiX[P kn
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Properties of Markov Chains
with Discrete Parameter Space (2)

The Markov chain Xn with discrete parameter space is

positive recurrent if for every state i the recurrence probability
is 1 and the mean recurrence time is finite:

 


1
0 111

n
kn ]iX|n,...,kforiXiX[P

 


1
011

n
kn ]iX|n,...,kforiXiX[Pn

ergodic if it is homogeneous, irreducible, aperiodic, and
positive recurrent.
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Results on Markov Chains
with Discrete Parameter Space (1)

For the n-step transition probabilities

]iX|jX[P:p n
)n(

ij  0 the following holds:





k

kj
)n(

ik
)n(

ij ppp
1

with ik
)(

ij p:p 
1

11 


nlforpp
k

)l(
kj

)ln(
ik

in matrix notation: n)n( PP 

For the state probabilities after n steps

]jX[P: n
)n(

j  the following holds:


i

)n(
ij

)(
i

)n(
j p

0 with initial state probabilities 
)(

i
0



in matrix notation: )n()()n( P0
(Chapman-
Kolmogorov
equation) 14-13
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Results on Markov Chains
with Discrete Parameter Space (2)

Theorem: Every homogeneous, irreducible, aperiodic Markov chain

with a finite number of states is ergodic.

)n(
j

n
j lim: 




For every ergodic Markov chain there exist

stationary state probabilities

These are independent of (0)

and are the solutions of the following system of linear equations:

jallforp
i

ijij  

 
j

j 1

in matrix notation: P

11


(balance
equations)

(with 1n row vector )
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Page Rank as a Markov Chain Model   

Model a random walk of a Web surfer as follows:

• follow outgoing hyperlinks with uniform probabilities

• perform „random jump“ with probability 1

 ergodic Markov chain

PageRank of a page is its stationary visiting probability

(uniquely determined and independent of starting condition)

Further generalizations have been studied

(e.g. random walk with back button etc.)
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Page Rank as a Markov Chain Model: Example

with =0.15

approx. solution of P= 

G = C =
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Efficiency of PageRank Computation
[Kamvar/Haveliwala/Manning/Golub 2003]

Exploit block structure of the link graph:

1) partitition link graph by domains (entire web sites)

2) compute local PR vector of pages within

each block  LPR(i) for page i

3) compute block rank of each block:

a) block link graph B with

b) run PR computation on B,

yielding BR(I) for block I

4) Approximate global PR vector using LPR and BR:

a) set xj
(0) := LPR(j)  BR(J) where J is the block that contains j

b) run PR computation on A

speeds up convergence by factor of 2 in good "block cases"

unclear how effective it is in general






Jj,Ii

ij
T

IJ )i(LPRCB
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Efficiency of Storing PageRank Vectors
[T. Haveliwala, Int. Conf. On Internet Computing 2003] 

Memory-efficient encoding of PR vectors

(especially important for large number of PPR vectors)

Key idea:

• map real PR scores to n cells and encode cell no into ceil(log2 n) bits

• approx. PR score of page i is the mean score of the cell that contains i

• should use non-uniform partitioning of score values to form cells

Possible encoding schemes:

• Equi-depth partitioning: choose cell boundaries such that

is the same for each cell

• Equi-width partitioning with log values: first transform all

PR values into log PR, then choose equi-width boundaries

• Cell no. could be variable-length encoded (e.g., using Huffman code)


 jcelli

iPR )(
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Link-Based Similarity Search: SimRank
[G. Jeh, J. Widom: KDD 2002]

𝑠𝑖𝑚 𝑝, 𝑞 =
1

𝐼𝑛 𝑝 |𝐼𝑛 𝑞 |
 𝑥∈𝐼𝑛(𝑝))  𝑦∈𝐼𝑛(𝑞 𝑠𝑖𝑚(𝑥, 𝑦)

Idea: nodes p, q are similar if their in-neighbors are pairwise similar

with sim(x,x)=1

Examples: 2 users and their friends or people they follow

2 actors and their co-actors or their movies

2 people and the books or food they like

Efficient computation [Fogaras et al. 2004]:

• compute RW fingerprint for each node p:  P[reach node q]

• SimRank(p,q) ~ P[walks from p and q meet]

 test on fingerprints (viewed as iid samples)
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14.2 Topic-Specific & Personalized PageRank

random walk: uniformly random choice of links 
+ biased jumps to personal favorites

PR( q ) j(q ) (1 )     
p IN ( q )

PR( p ) t( p,q )




Idea: random jumps favor pages of personal interest such as

bookmarks, frequently&recently visited pages etc.

with



 


otherwise

BqforB
qj

0

||/1
)(

Authority (page q) = 
stationary prob. of visiting q
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Personalized PageRank

Linearity Theorem:

Let r1 and r2 be personal preference vectors for random-jump targets,

and let p1 and p2 denote the corresponding PPR vectors.

Then for all 1, 2  0 with 1 + 2 = 1 the following holds: 

1 p1 + 2 p2 =  C ( 1 p1 + 2 p2) + (1) (1 r1 + 2 r2) 

Corollary:

For preference vector r with m non-zero components and

base vectors ek (k=1..m) with (ek)i =1 for i=k, 0 for ik, we obtain:

with constants 1 ... m 

and                                    for PPR vector p with pk =  C pk +(1) ek

PageRank equation:  p =  C p +(1) r

Goal: Efficient computation and efficient storage of user-specific
personalized PageRank vectors (PPR)

for further optimizations see Jeh/Widom: WWW 2003

 


m..1k kk er

 


m..1k kk pp
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Spam Control: From PageRank to TrustRank

random walk: uniformly random choice of links 
+ biased jumps to trusted pages

PR( q ) j(q ) (1 )     
p IN ( q )

PR( p ) t( p,q )




Idea: random jumps favor designated high-quality pages

such as popular pages, trusted hubs, etc.

with



 


otherwise

BqforB
qj

0

||/1
)(

Authority (page q) = 
stationary prob. of visiting q

IRDM  WS 2015

many other ways

to detect web spam

 classifiers etc.
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Spam Farms and their Effect

page p0 to be
„promoted“

boosting

pages

(spam farm)

p1, ..., pk

Web transfers to p0 the „hijacked“ score mass („leakage“)

 = qIN(p0)-{p1..pk} PR(q)/outdegree(q) 

Typical structure:

Theorem:  p0 obtains the following PR authority:

The above spam farm is optimal within some family of spam farms
(e.g. letting hijacked links point to boosting pages).

„hijacked“ links








 





n

k
pPR

)1)1((
)1(

)1(1

1
)0(

2






[Gyöngyi et al.: 2004]

one kind of
“Search Engine

Optimization“
(obsolete today)
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Countermeasures: TrustRank and BadRank

BadRank:

start with explicit set B of blacklisted pages

define random-jump vector r by setting ri=1/|B| if iB and 0 else

propagate BadRank mass to predecessors

 


)p(OUTq
)q(indegree/)q(BR)1(r)p(BR

Problems:

maintenance of explicit lists is difficult

difficult to understand (& guarantee) effects

TrustRank:

start with explicit set T of trusted pages with trust values ti

define random-jump vector r by setting ri = 1/|T|  if i T and 0 else

(or alternatively ri = ti/ T t )

propagate TrustRank mass to successors

 


)q(INp
)p(outdegree/)p(TR)1(r)q(TR

Gyöngyi et al.: 2004]
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Link Analysis Without Links

Apply simple data mining to browsing sessions of many users,

where each session i is a sequence (pi1, pi2, ...) of visited pages:

• consider all pairs (pij, pij+1) of successively visited pages,

• compute their total frequency f, and

• select those with f above some min-support threshold

Construct implicit-link graph with the selected page pairs as edges

and their normalized total frequencies f as edge weights

or construct graph from content-based page-page similarities

Apply edge-weighted Page-Rank for authority scoring,

and linear combination of authority and content score etc.

[Xue et al.: SIGIR 2003]

[Kurland et al.: TOIS 2008]:
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Exploiting Click Log

Simple idea: Modify HITS or Page-Rank algorithm by weighting edges

with the relative frequency of users clicking on a link

More sophisticated approach

Consider link graph A and

link-visit matrix V (Vij=1 if user i visits page j, 0 else)

Define

authority score vector:    a = ATh + (1- )VTu

hub score vector:             h = Aa + (1- )VTu

user importance vector:  u = (1- )V(a+h)

with a tunable parameter  (=1: HITS, =0: DirectHit)

[Chen et al.: WISE 2002]

[Liu et al.: SIGIR 2008]
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QRank: PageRank on Query-Click Graph

Idea: add query-doc transitions + query-query transitions
+ doc-doc transitions on implicit links (by similarity)

with probabilities estimated from query-click log statistics

PR(q ) j(q ) (1 )     

p IN ( q )

PR( p ) t( p,q )




QR( q ) j( q ) ( 1 )     

p exp licitIN ( q )

PR( p ) t( p,q )


 


p implicitIN ( q )

( 1 ) PR( p ) sim( p,q )


 

IRDM  WS 2015

[Luxenburger et al.: WISE 2004]
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14.3 HITS:  Hyperlink-Induced Topic Search

Idea:

Determine • good content sources: Authorities

(high indegree)

• good link sources: Hubs

(high outdegree)

Find • better authorities that have good hubs as predecessors

• better hubs that have good authorities as successors

For Web graph G = (V, E) define for nodes x, y V

authority score and

hub score


E)y,x(

xy h~a


E)y,x(

yx a~h

[J. Kleinberg: JACM 1999]
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HITS as Eigenvector Computation

Iteration with adjacency matrix A:

aEEhEa TT 
 hEEaEh T




a and h are Eigenvectors of ET E and E ET, respectively

Authority and hub scores in matrix notation:

hEa T


 aEh




Intuitive interpretation:

EEM T)auth( 
is the cocitation matrix: M(auth)

ij  is the 

number of nodes that point to both i and j 

T)hub( EEM  is the bibliographic-coupling matrix: M(hub)
ij  

is the number of nodes to which both i and j point

with constants , 
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HITS Algorithm

compute fixpoint solution by

iteration with length normalization:

initialization: a(0) = (1, 1, ..., 1)T, h(0) = (1, 1, ..., 1)T

repeat until sufficient convergence

h(i+1) := E a(i)

h(i+1) := h(i+1) / ||h(i+1)||1
a(i+1) := ET h(i)

a(i+1) := a(i+1) / ||a(i+1)||1

convergence guaranteed under fairly general conditions
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Implementation of the HITS Algorithm

1) Determine sufficient number (e.g. 50-200) of „root pages“ 

via relevance ranking (e.g. tf*idf, LM …)

2) Add all successors of root pages

3) For each root page add up to d predecessors

4) Compute iteratively

authority and hub scores of this „expansion set“ (e.g. 1000-5000 pages)

with initialization ai := hi := 1 / |expansion set|

and L1 normalization after each iteration

 converges to principal Eigenvector

5) Return pages in descending order of authority scores

(e.g. the 10 largest elements of vector a)

„Drawback“ of HITS algorithm:
relevance ranking within root set is not considered
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expansion set

Example: HITS Construction of Graph

1

2

3
root set

4

5

6

7

8

query result
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Enhanced HITS Method

Potential weakness of the HITS algorithm:
• irritating links (automatically generated links, spam, etc.)
• topic drift (e.g. from „python code“ to „programming“ in general)

Improvement:

• Introduce edge weights:

0 for links within the same host,

1/k with k links from k URLs of the same host to 1 URL (aweight)

1/m with m links from 1 URL to m URLs on the same host (hweight)

• Consider relevance weights w.r.t. query topic (e.g. tf*idf, LM …)

 Iterative computation of

authority score

hub score

)q,p(aweight)p(scoretopich:a

E)q,p(

pq  


)q,p(hweight)q(scoretopica:h

E)q,p(

qp  

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Finding Related URLs

Cocitation algorithm:

• Determine up to B predecessors of given URL u

• For each predecessor p determine up to BF successors  u

• Determine among all siblings s of u those

with the largest number of predecessors that

point to both s and u (degree of cocitation)

Companion algorithm:

• Determine appropriate base set

for URL u („vicinity“ of u)

• Apply HITS algorithm to this base set
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Companion Algorithm

for Finding Related URLs

1) Determine expansion set: u plus

• up to B predecessors of u and

for each predecessor p up to BF successors  u plus

• up to F successors of u and

for each successor c up to FB predecessors  u

with elimination of stop URLs (e.g. www.yahoo.com)

2) Duplicate elimination:

Merge nodes both of which have more than 10 successors

and have 95 % or more overlap among their successors

3) Compute authority scores

using the improved HITS algorithm
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HITS Algorithm for „Community Detection“

Root set may contain multiple topics or „communities“,

e.g. for queries „jaguar“, „Java“, or „randomized algorithm“

Approach:

• Compute k largest Eigenvalues of ET E

and the corresponding Eigenvectors a (authority scores)

(e.g., using SVD on E)

• For each of these k Eigenvectors a 

the largest authority scores indicate

a densely connected „community“ Community Detection

more fully captured

in Chapter 8
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SALSA: Random Walk on Hubs and Authorities

View each node v of the link graph G(V,E) as two nodes vh and va

Construct bipartite undirected graph G‘(V‘,E‘) from G(V,E):

V‘ = {vh | vV and outdegree(v)>0}  {va | vV and indegree(v)>0}

E‘ = {(vh ,wa) | (v,w) E}

Stochastic hub matrix H:
)k(degree

1

)i(degree

1
h

ak h
ij 

for i, j and k ranging over all nodes with (ih,ka), (ka,jh)  E‘

Stochastic authority matrix A:
)k(degree

1

)i(degree

1
a

hk a
ij 

for i, j and k ranging over all nodes with (ia,kh), (kh,ja)  E‘

The corresponding Markov chains are ergodic on connected component

Stationary solution: [vh] ~ outdegree(v) for H,  [va] ~ indegree(v) for A

Further extension with random jumps: PHITS (Probabilistic HITS)

many other variants of

link analysis methods

[Lempel et al.: TOIS 2001]
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14.4 Extensions for Social & Behavioral Graphs

Typed graphs: data items, users, friends, groups, 

postings, ratings, queries, clicks, …

with weighted edges

users

tags

docs
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Social Tagging Graph

Tagging relation in „folksonomies“:

• ternary relationship between users, tags, docs

• could be represented as hypergraph or tensor

• or (lossfully) decomposed into 3 binary projections (graphs):

UsersTags (UId, TId, UTscore) 

x.UTscore := d {s | (x.UId, x.TId, d, s)  Ratings}

TagsDocs (TId, Did, TDscore)

x.TDscore := u {s | (u, x.TId, x.DId, s)  Ratings}

DocsUsers (DId, UId, DUscore) 

x.DUscore := t {s | (x.UId, t, x.DId, s)  Ratings}

IRDM  WS 2015 14-39



Authority/Prestige in Social Networks

• FolkRank [Hotho et al.: ESWC 2006]:

Apply link analysis (PR, PPR, HITS etc.) to appropriately defined matrices

• SocialPageRank [Bao et al.: WWW 2007]:

Let MUT, MTD, MDU be the matrices corresponding to

relations UsersTags, TagsDocs, DocsUsers

Compute iteratively with renormalization:

D

T
DUU

rMr




T

T
TDD

rMr



U

T
UTT

rMr




Define graph G as union of graphs UsersTags, TagsDocs, DocsUsers

Assume each user has personal preference vector

Compute iteratively: prMrr DGDD


 

p

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Search & Ranking with Social Relations

Web search (or search in social network incl. enterprise intranets) 
can benefit from the taste, expertise, experience, recommendations 
of friends and colleagues

 combine content scoring with FolkRank, SocialPR, etc.

 integrate friendship strengths, tag similarities,

community behavior, individual user behavior, etc.

 further models based on random walks

for twitter followers, review forums, online communities, etc.

 use social neighborhood for query expansion, etc.
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Random Walks on Query-Click Graphs
Bipartite graph with queries and docs as nodes and

edges based on clicks with weights ~ click frequency

Source: N. Craswell, M. Szummer:

Random Walks on the Click Graph,
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Random Walks on Query-Click Graphs
[Craswell: SIGIR‘07]

transition probabilities:

t(q,d) = (1-s) Cqd / iCqi for qd

with click frequencies Cqd

t(q,q) = s with self-transitions

Bipartite graph with queries and docs as nodes and

edges based on clicks with weights ~ click frequency

Useful for:

• query-to-doc ranking

• query-to-query suggestions

• doc-to-query annotations

• doc-to-doc suggestions

Example: doc-to-query annotations
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Query Flow Graphs

transition probabilities: t(q,q‘) ~ P[q and q‘ appear in same session]

Graph with queries as nodes and edges derived from

user sessions (query reformulations, follow-up queries, etc.)

Link analysis yields suggestions for

query auto-completion, reformulation, refinement, etc.

[Boldi et al.: CIKM‘08, 

Bordino et al.: SIGIR‘10]

Session 

graph

Click 

graph

Source:  Ilaria Bordino, Graph Mining and its applications 

to Web Search, Doctoral Dissertation, 

La Sapienza University Rome, 2010
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Summary of Chapter 14

• PageRank (PR), HITS, etc. are elegant models for

query-independent page/site authority/prestige/importance

• Query result ranking combines PR with content

• Many interesting extensions for

personalization (RWR), query-click graphs, doc-doc similarity etc.

• Potentially interesting for ranking/recommendation in social networks

• Random walks are a powerful instrument
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