15.3 Knowledge Harvesting

Web of Open Linked Data and Knowledge

> 50 Bio. subject-predicate-object triples from > 1000 sources

IRDM WS 2015

http://richard.cyganiak.de/2007/10/lod/lod-datasets_2011-09-19_colored.php

Knowlede Bases on the Web

> 50 Bio. subject-predicate-object triples from > 1000 sources

http://richard.cyganiak.de/2007/10/lod/lod-datasets 2011-09-19 colored3png

Knowlede Bases on the Web

> 50 Bio. subject-predicate-object triples from > 1000 sources

Bob_Dylan type songwriter Bob_Dylan type civil_rights_activist songwriter subclassOf artist Bob_Dylan composed Hurricane Hurricane isAbout Rubin_Carter Bob_Dylan marriedTo Sara_Lownds validDuring [Sep-1965, June-1977] Bob_Dylan knownAs "voice of a generation" Steve_Jobs "was big fan of" Bob_Dylan Bob_Dylan_mbriefly dated" Joan_Baez

taxonomic knowledge

factual knowledge

temporal knowledge

terminological knowledge

/200 evidence & belief knowledge

Knowledge Base (aka. Knowledge Graph): a Pragmatic Definition

Comprehensive and semantically organized

machine-readable collection of universally relevant or domain-specific entities, classes, and SPO facts (attributes, relations)

plus spatial and temporal dimensions plus commonsense properties and rules plus contexts of entities and facts (textual & visual witnesses, descriptors, statistics) plus

Some Publicly Available Knowledge Bases

yago-knowledge.org YAGO: dbpedia.org Dbpedia: Freebase: freebase.com www.wikidata.org Wikidata: Entitycube: entitycube.research.microsoft.com renlifang.msra.cn rtw.ml.cmu.edu NELL: DeepDive: deepdive.stanford.edu **Probase:** research.microsoft.com/en-us/projects/probase/ KnowItAll / ReVerb: openie.cs.washington.edu reverb.cs.washington.edu babelnet.org **BabelNet**: www.h-its.org/english/research/nlp/download/ WikiNet: conceptnet5.media.mit.edu ConceptNet: WordNet: wordnet.princeton.edu Linked Open Data: linkeddata.org IRDM WS 2015

Example: YAGO

http://yago-knowledge.org

Example: DBpedia

About: Steve Jobs

An Entity of Type : agent, from Named Graph : http://dbpedia.org, within Data Space : dbpedia.org

Steven Paul Jobs (/'dʒpbz/; February 24, 1955 – October 5, 2011) was an American entrepreneur, marketer, and inventor, who was the cofounder, chairman, and CEO of Apple Inc.

Property	Value	
dbo:activeYearsEndYear	 2011-01-01 (xsd:date) 	
dbo:activeYearsStartYear	 1974-01-01 (xsd:date) 	
dbo:alias	 Jobs, Steven Paul 	
dbo:almaMater	 dbr:Reed_College 	
dbo:birthDate	 1955-02-24 (xsd:date) 	
dbo:birthName	 Steven Paul Jobs 	
dbo:birthPlace	dbr:Californiadbr:San_Francisco	
dbo:birthYear	 1955-01-01 (xsd:date) 	
dbo:board	 dbr:Apple_Inc. dbr:The_Walt_Disney_Company 	
dbo:child	 dbr:Lisa_Brennan-Jobs 	
dbo:deathDate	 2011-10-05 (xsd:date) 	
dbo:deathPlace	 dbr:California 	
dbo:deathYear	 2011-01-01 (xsd:date) 	
dbo:networth	 8.3E9 	
dbo:occupation	 dbr:Pixar dbr:Apple_Inc. dbr:NeXT dbr:Steve_Jobs1 dbr:Steve_Jobs2 dbr:Steve_Jobs3 dbr:Steve_Jobs4 dbr:Steve_Jobs_5 dbr:Steve_Jobs_6 	
dbo:partner	 dbr:Chrisann_Brennan 	
dbo:relative	 dbr:Mona_Simpson 	
dbo:religion	dbr:Lutheranismdbr:Zen	http://dbpedia.org/page/Steve_Jobs 15-4
XDM WS 2015	 dbr:California 	

Example: Wikidata

David Bowie (Q5383)

IRDM

https://www.wikidata.org/wiki/Q5383

occupation	painter	🥒 edit
	▼ 0 references	+ add reference
	singer-songwriter	🖉 edit
	✓ 0 references	+ add reference
	guitarist	🖉 edit
	✓ 0 references	+ add reference
	axophonist	🥒 edit
	1 reference	
	composer	🥒 edit
	▼ 0 references	+ add reference
	film actor	🥒 edit
1 WS 2015	▼ 0 references	+ add reference

Example: NELL

50 Mio. SPO assertions, 2.5 Mio high confidence

Browse the Knowledge Base!

Recently-Learned Facts Lewitter

instance	iteration	date learned	confidence
<u>bresaola</u> is a <u>visualizable thing</u>	922	05-may-2015	96.4
<u>francis_derwent_wood</u> is a <u>visual artist</u>	922	05-may-2015	99.9
<u>frank_g</u> is an <u>Australian person</u>	922	05-may-2015	92.2
<u>g protein coupled receptor 124</u> is a <u>protein</u>	922	05-may-2015	100.0
<u>n butyl benzyl phthalate</u> is a <u>chemical</u>	922	05-may-2015	100.0
<u>chicken001</u> <u>eat potatoes</u>	926	20-may-2015	100.0
<u>bioinformatics</u> is an academic program <u>at the university college</u>	922	05-may-2015	93.8
samuel j palmisano is the <u>CEO of ibm</u>	926	20-may-2015	100.0
national001 is a company that <u>has an office in</u> the country <u>czech_rep</u>	ublic 922	05-may-2015	99.2
the companies <u>dc</u> and <u>fox news channel compete with</u> eachother	922	05-may-2015	98.4
IRDM WS 2015	http://rtw.ml.cmu.edu	/rtw/kbbrow	<u>ser/</u> 15-50

Example: NELL

50 Mio. SPO assertions, 2.5 Mio high confidence

NELL Knowledge Base Browser

log in | preferences | help/instructions | feedback

sportsleague

- tradeunion
- nonprofitorganization
- person
- monarch
- astronaut
- personbylocation
- personnorthamerica
 - personcanada
 - personus
 - politicianus
 - personmexico
- personeurope
- personaustralia
- personafrica
- personsouthamerica
- personasia
- personantarctica
- visualartist
- model
- scientist
- iournalist
- female
- actor
- professor
- director
- architect
- politician
- politicianus
- athlete
- musician
- chef
- male
- writer
- ceo
- judge
- mlauthor Recoder

nick cave (musician)

literal strings: NICK CAVE, nick cave, Nick cave, Nick Cave

Help NELL Learn!

NELL wants to know if this belief is correct. If it is or ever was, click thumbs-up. Otherwise, click thumbs-down.

• <u>nick_cave</u> is a <u>musician</u> 少 ኛ

categories

- musician(98.7%)
 - MBL @865 (96.9%) on 25-aug-2014 [Promotion of celebrity:nick_cave musicianinmusicartist musicartist:bad seeds]
 - SEAL @623 (57.5%) on 10-aug-2012 [1] using nick_cave

NELL has only weak evidence for items listed in grey

- visualartist
 - SEAL @221 (50.0%) on 18-mar-2011 [1] using nick_cave
- personaustralia
 - SEAL @628 (65.7%) on 26-aug-2012 [1] using nick_cave
- celebrity
 - SEAL @347 (75.0%) on 13-jul-2011 [1 2] using nick cave

relations

NELL has only weak evidence for items listed in grev

http://rtw.ml.cmu.edu/rtw/kbbrowser/

agentcollaborateswitha john

Search

=

Example: NELL

50 Mio. SPO assertions, 2.5 Mio high confidence

addia quitar

NELL Knowledge Base Browser

Search

musician

log in | preferences | help/instructions | feedback

Specifies that a musical instrument is played by a paritcular

d tha Mah Prai

- touristattractionsuchastouristattraction
- celebritysuchascelebrity
- archaeasuchasarchaea
- agriculturalproductincludingagricultura
- plantincludeplant
- actorsuchasactor
- arachnidssuchasarachnids
- mammalsuchasmammal
- architectssuchasarchitects
- companyeconomicsector
- trophywonbycoaches
- agentinvolvedwithitem
- wineryproduceswine
- agentworkedondrug
- producesproducttype
- producesproduct
- automakerproducesmodel
- mlauthorofsoftware
- musicianplaysinstrument
- animaldevelopdisease
- countrylanguage
- issueofpoliticsbill
- universityoperatesinlanguage
- iteminvolvedwithagent
 - drugworkedonbyagent
- wineproducedbywinery
- mlsoftwareauthor
- producedby
- automodelproducedbymaker
- typeproducedby
- instrumentplayedbymusician
- dateof
 - dateatwhichexistsitem
 - dateevent
 - dateofsportsgame
 - dateofmeetingeventtitle

musicianplaysinstrument

(relation: domain musician, range musicinstrument)

See metadata for musicianplaysinstrument 712 instances 1 page

712 Instances, 1 page			
instance	iteration	date learned	confidence
<u>adam, drums</u>	799	27-dec-2013	100.0
<u>adam, guitar</u>	799	27-dec-2013	100.0
<u>bach, piano</u>	551	19-apr-2012	100.0
<u>bach, violin</u>	551	19-apr-2012	100.0
<u>barber, violin</u>	598	21-jun-2012	100.0
<u>bb_king, guitar</u>	680	09-jan-2013	100.0
<u>beethoven, piano</u>	853	11-jul-2014	100.0
<u>beethoven, violin</u>	853	11-jul-2014	100.0
<u>ben_harper, guitar</u>	820	08-mar-2014	100.0
<u>billie_joe_armstrong, guitar</u>	818	03-mar-2014	100.0
<u>brahms, piano</u>	592	13-jun-2012	100.0
<u>brahms, violin</u>	503	06-feb-2012	100.0
<u>buddy_guy, guitar</u>	664	01-dec-2012	100.0
<u>b_b_king, guitar</u>	406	08-sep-2011	(Seed) 100.0
<u>charlie, guitar</u>	724	12-apr-2013	100.0
<u>chopin, piano</u>	683	15-jan-2013	100.0
<u>copland, piano</u>	665	05-dec-2012	100.0
<u>david, bass</u>	904	20-feb-2015	100.0
<u>david, drums</u>	904	20-feb-2015	100.0
<u>david, guitar</u>	904	20-feb-2015	100.0
<u>david, keyboards</u>	୨೧4	20-feb-2015	100.0
<u>earl_scruggs, banjo</u>	http://rtw.ml.cm	u.edu/rtw/kb	browser/15-3

Knowledge for Intelligent Applications

Enabling technology for:

disambiguation

in written & spoken natural language

- deep reasoning (e.g. QA to win quiz game)
- machine reading (e.g. to summarize book or corpus)
- semantic search

in terms of entities&relations (not keywords&pages)

entity-level linkage

for Big Data & Deep Text analytics

15.3.1 Harvesting Unary Predicates with Patterns

Which entity types (classes, unary predicates) are there?

scientists, doctoral students, computer scientists, ... female humans, male humans, married humans, ...

Which subsumptions should hold

(subclass/superclass, hyponym/hypernym, inclusion dependencies)?

subclassOf (computer scientists, scientists)
subclassOf (physicists, scientists),
subclassOf (scientists, humans), ...

Which **individual entities** belong to which classes?

instanceOf (Jim Gray computer scientists), instanceOf (Barbara Liskov, computer scientists), instanceOf (Barbara Liskov, female humans), instanceOf (Steve Jobs, male humans), instanceOf (Steve Jobs, entrepreneurs),

Hearst Patterns

Goal: find **instances of classes** (and/or: find subclasses of classes)

Hearst specified lexico-syntactic patterns for type relationship: X such as Y; X like Y; X and other Y; X including Y; X, especially Y;

Find such patterns in text: //better with POS tagging

companies such as Apple Google, Microsoft and other companies Internet companies like Amazon and Facebook Chinese cities including Kunming and Shangri-La computer pioneers like the late Steve Jobs

computer pioneers and other scientists lakes including the surrounding Hangzhou hills

Derive type(Y,X)

type(Apple, company), type(Google, company), ... or as unary predicates: company(Apple), ... occurrence statistics for better precision (e.g. #occurrences w/ different patterns)

Doubly-anchored patterns

[Kozareva/Hovy 2010, Dalvi et al. 2012]

Goal:

find instances of classes

Start with a set of seeds: companies = {Microsoft, Google}

Parse Web documents and find the pattern W, Y and Z

If two of three placeholders match seeds, harvest the third:

Google, Microsoft and Amazon \longrightarrow type(Amazon, company) Cherry, Apple, and Banana \longrightarrow ---- (no output)

Set Completion from Tables

[Kozareva/Hovy 2010, Dalvi et al. 2012]

- Goal: find instances of classes
- Start with a set of seeds: cities = {Paris, Shanghai, Brisbane}
- Parse Web documents and find tables

Paris	France
Shanghai	China
Berlin	Germany
London	UK

Paris	Iliad
Helena	Iliad
Odysseus	Odysee
Rama	Mahabaratha

If at least two seeds appear in a column, harvest the others: type(Berlin, city) type(London, city)

Automatically create sets of items from a few examples.

Enter a few items from a set of things. (example)

Next, press Large Set or Small Set and we'll try to predict other items in the set.

•	Stanford
•	Princeton
•	Penn State
•	
•	

Predicted Items	<u>georgetown</u>
penn state	<u>michigan</u>
stanford	arizona
princeton	washington
ucla	<u>dartmouth</u>
harvard	oregon
mit	<u>nyu</u>
	<u>california</u>
<u>usc</u>	<u>brown</u>
yale	<u>chicago</u>
<u>columbia</u>	northwestern
cornell	<u>caltech</u>
berkeley	<u>virginia</u>
IRDM WS 2015	penn

Automatically create sets of items from a few examples.

Enter a few items from a set of things. (<u>example</u>) Next, press *Large Set* or *Small Set* and we'll try to predict other items in the set.

•	Pushkin
•	Tolstoy
•	Pasternak
•	
•	
	(<u>clear all</u>)
Large Set	Small Set (15 items or fewer)

Examples: green, purple, red chicken dance, macarena, ymca alexander, gladiator, troy hilary duff, kelly clarkson more...

> labs.google.com - All About Google ©2007 Google

Predicted Items
tolstoy
pushkin
leo tolstoy
anna karenina
gogol
drama
<u>danielle steel</u>
dostoevsky
<u>maxim gorky</u>
russia
fyodor dostoevsky
anton chekhov
<u>ivan turgenev</u>
paulo coelho
dan brown
ernest hemingway
<u>dostojevski</u>
alexander pushkin

Zampie 2
john steinbeck
russian literature
lermontov
stephen king
<u>cs lewis</u>
madame bovary
bible
the idiot
mark twain
mikhail bulgakov
fyodor dostoyevsky
<u>nikolai gogol</u>
susanna tamaro
edward said
dirty dancing
albert camus
shakespeare
romance novel
jack london
george orwell
fiction
authors

Extracting instances from lists & tables

[Etzioni et al. 2004, Cohen et al. 2008, Mitchell et al. 2010]

State-of-the-Art Approach (e.g. SEAL):

- Start with seeds: a few class instances
- Find **lists**, **tables**, **text snippets** ("for example: …"), … that contain one or more seeds
- Extract candidates: noun phrases from vicinity
- Gather **co-occurrence stats** (seed&cand, cand&className pairs)
- Rank candidates
 - point-wise mutual information, ...
 - random walk (PR-style) on seed-cand graph

PMI (x,y) = $\log \frac{P(x,y)}{P(x)P(y)}$

Caveats:

Precision drops for classes with sparse statistics Harvested items are names, not entities Canonicalization (de-duplication) unsolved

15.3.2 Harvesting Binary Predicates with Seeds and Constraints

Which **instances** (pairs of individual entities) are there for given **binary relations** with specific **type signatures**?

hasAdvisor (JimGray, MikeHarrison) graduatedAt (JimGray, Berkeley) graduatedAt (Chris Manning, Stanford) hasWonPrize (JimGray, TuringAward) hasWonPrize (VintCerf, TuringAward) bornOn (JohnLennon, 9-Oct-1940) diedOn (JohnLennon, 8-Dec-1980) marriedTo (JohnLennon, YokoOno)

Which additional & interesting **relation types** are there between given classes of entities?

 $\rightarrow 15.3.3$

attendedSchool(x,y), competedWith(x,y), nominatedForPrize(x,y), ... divorcedFrom(x,y), affairWith(x,y), ... assassinated(x,y), rescued(x,y), admired(x,y), ...

Relational Facts from Text

composed (<musician>, <song>) appearedIn (<song>, <film>)

Bob Dylan wrote the song Knockin' on Heaven's Door Lisa Gerrard wrote many haunting pieces, including Now You Are Free Morricone's masterpieces include the Ecstasy of Gold Dylan's song Hurricane was covered by Ani DiFranco Strauss's famous work was used in 2001, titled Also sprach Zarathustra Frank Zappa performed a jazz version of Rota's Godfather Waltz Hallelujah, originally by Cohen, was covered in many movies, including Shrek

> composed (Bob Dylan, Knockin' on Heaven's Door) composed (Lisa Gerrard, Now You Are Free)

appearedIn (Knockin' on Heaven's Door, Billy the Kid) appearedIn (Now You Are Free, Gladiator)

Pattern-based Gathering (statistical evidence)

...

...

Constraint-aware Reasoning (logical consistency)

Pattern-based Harvesting: Fact-Pattern Duality

Task populate relation *composed* starting with seed facts

[Brin 1998, Etzioni 2004, Agichtein/Gravano 2000]

Facts & Fact Candidates (Dylan, Knockin) (Gerrard, Now)	<u>Patterns</u> X wrote the song Y X wrote including Y
(Dylan, Hurricane) (Morricone, Ecstasy) (Zappa, Godfather) (Mann, Buddenbrooks)	X covered the story of Y X has favorite movie Y X is famous for Y
(Gabriel, Biko) (Puebla, Che Guevara) (Mezrich, Zuckerberg) (Jobs, Apple) (Newton, Gravity)	 good for recall noisy, drifting not robust enough for high precision

Improving Pattern Precision or Recall

- Statistics for confidence: occurrence frequency with seed pairs distinct number of pairs seen
- Negative seeds for confusable relations: capitalOf(city,country) → X is the largest city of Y
 pos. seeds: (Paris, France), (Rome, Italy), (New Delhi, India), ...
 neg. seeds: (Sydney, Australia), (Istanbul, Turkey), ...
- Generalized patterns with wildcards and POS tags: hasAdvisor(student,prof) \rightarrow X met his celebrated advisor Y \rightarrow X * PRP ADJ advisor Y
- Dependency parsing for complex sentences:

Statistics for Pattern Quality Assessment

Support of pattern p:

occurrences of p with seeds (e1,e2)

occurrences of all patterns with seeds

Confidence of pattern p:

occurrences of p with seeds (e1,e2)

occurrences of p

Confidence of fact candidate (e1,e2):

 Σ_{p} freq(e1,p,e2)*conf(p) / Σ_{p} freq(e1,p,e2)

or: PMI (e1,e2) =
$$\log \frac{\text{freq(e1,e2)}}{\text{freq(e1) freq(e2)}}$$

- gathering can be iterated,
- can promote best facts to additional seeds for next round

Negative Seeds for Improved Precision

(Ravichandran 2002; Suchanek 2006; ...)

Problem: Some patterns have high support, but poor precision:X is the largest city of Yfor isCapitalOf (X,Y)joint work of X and Yfor hasAdvisor (X,Y)

Idea: Use positive and negative seeds:

pos. seeds: (Paris, France), (Rome, Italy), (New Delhi, India), ... neg. seeds: (Sydney, Australia), (Istanbul, Turkey), ...

Compute the confidence of a pattern as:

occurrences of p with pos. seeds

occurrences of p with pos. seeds or neg. seeds

- can promote best facts to additional seeds for next round
- can promote rejected facts to additional counter-seeds
- works more robustly with few seeds & counter-seeds

Generalized Patterns for Improved Recall

(N. Nakashole 2011)

Problem: Some patterns are too narrow and thus have small recall:

X and his celebrated advisor Y

X carried out his doctoral research in math under the supervision of Y

X received his PhD degree in the CS dept at Y

X obtained his PhD degree in math at Y

Idea: generalize patterns to n-grams, allow POS tags

- X { his doctoral research, under the supervision of } Y
- X { PRP ADJ advisor } Y
- X { PRP doctoral research, IN DET supervision of } Y

Compute match quality of pattern p with sentence q by Jaccard:

 $|\{n\text{-grams} \in p\} \cap \{n\text{-grams} \in q]|$

 $|\{n-grams \in p\} \cup \{n-grams \in q]|$

=> Covers more sentences, increases recall

IRDM WS 2015

Frequent sequence mining

Constrained Reasoning for Logical Consistency

 $\forall x, y: \text{composed } (x,y) \Rightarrow \text{type}(x) = \text{musician}$

 $\forall x, y: \text{composed } (x,y) \Rightarrow \text{type}(y) = \text{song}$

 \forall x, y, z: composed (x,y) \land appearedIn(y,z) \Rightarrow wroteSoundtrackFor (x,z)

 \forall x,y,t,b,e: composed (x,y) \land composedInYear (y, t) \land

bornInYear (x, b) \land diedInYear (x,e) $\Rightarrow b < t \le e$

 $\forall x, y, w: \text{composed}(x, y) \land \text{composed}(w, y) \Rightarrow x = w$

 $\forall x, y: sings(x,y) \land type(x,singer-songwriter) \Rightarrow composed(x,y)$

consistent subset(s) of hypotheses ("possible world(s)", "truth") → Weighted MaxSat solver for set of logical clauses max a posteriori (MAP) for probabilistic factor graph 15-70

Weighted Max-Sat Reasoning

- Grounding of formulas produces clauses

 (propositional logic: disjunctions of positive or negative literals)
 connecting patterns, facts, hypotheses, constraints
 EX.: composed(Gabriel,Biko); ¬composed(Gabriel,Biko) v type(Gabriel,musician);
 composed(Mandela,Biko); ¬composed(Mandela,Biko) v type(Mandela,musician);
 composed(Gabriel,Biko) v ¬ appearedIn(Biko,CryForFreedom) v wroteSoundtrack(Gabriel,CryForFreedom);
 composed(Gabriel,Biko) v ¬ composed(Mandela,Biko) v False;
- Treat hypotheses (literals) as variables, facts as constants:
 A; ¬A∨B; C; ¬C∨D; ¬A∨¬E∨F; ¬A∨¬C; …..
- Clauses are weighted by pattern statistics and rule confidence
- Solve weighted Max-Sat problem: assign truth values to variables s.t. total weight of satisfied clauses is max!
 → NP-hard, but good approximation algorithms

Markov Logic Networks (MLN's)

Map logical constraints & fact candidates (M. Richardson / P. Domingos 2006) into probabilistic graph model: Markov Random Field (MRF)

Variety of algorithms for joint inference: Gibbs sampling, other MCMC, belief propagation, ... MAP inference equivalent to Weighted MaxSat s(Carla,Nick) s(Lisa,Nick) s(Carla,Ben) s(Carla,Sofie)

m(Nick) m(Ben) m(Sofie)

RVs coupled by MRF edge if they appear in same clause

MRF assumption: $P[X_i|X_1..X_n] = P[X_i|N(X_i)]$

> joint distribution has product form over all cliques

MRF: Markovian Probabilistic Graphical Model

Markov assumption: $P[X_1|X_2, X_3 \dots X_n] = P[X_1|Neighbors(X_1)]$

Hammersley-Clifford Theorem: $P[X_1X_2...] = 1/Z \prod_c \Phi_c(X_iX_j... \in c)$ over all cliques c or as log-linear model: $P[X_1X_2...] = 1/Z \exp(\sum_c w_c f_c(X_iX_j... \in c))$

weights features

Inference for Xi's by Monte Carlo sampling, belief propagation, etc.

Parameter learning by non-convex optimization

Related Alternative Probabilistic Models

Constrained Conditional Models [Roth et al.]

log-linear classifiers with constraint-violation penalty mapped into Integer Linear Programs

Factor Graphs with Imperative Variable Coordination [A. McCallum et al.]

RV's share "factors" (joint feature functions) generalizes MRF, BN, CRF; inference via advanced MCMC flexible coupling & constraining of RV's

Probabilistic Soft Logic (PSL) [L. Getoor et al.]

gains MAP efficiency by continuous RV's (degree of truth)

IRDM WS 2015

15.3.3 Harvesting SPO Triples by Open Information Extraction

so far KB has explicit model:

- canonicalized entities
- relations with type signatures <entity1, relation, entity2>
- < CarlaBruni marriedTo NicolasSarkozy> ∈ Person × R × Person

< NataliePortman wonAward AcademyAward > \in Person × R × Prize

Open and Dynamic Knowledge Harvesting: would like to discover new entities and new relation types <name1, phrase, name2>

Madame Bruni in her happy marriage with the French president ... The first lady had a passionate affair with Stones singer Mick ... Natalie was honored by the Oscar ...

Bonham Carter was disappointed that her nomination for the Oscar ...

Example: ReVerb

Open Information Extraction ?x	,,an affair with"?y
Argument 1: Relation: affair with	Argument 2:
307 answers from 1015 sentences (cached) all person (54) author (35) tv actor (33) person or entity appearing in film (31)	actor (29) misc. more types -
Whitney Houston , Jermaine Jackson (7)	
John McCain , a lobbyist (5)	
Bill Clinton , Monica Lewinsky (5)	
Jesus , Mary Magdalene (5)	
Suzanne Coleman , Bill Clinton (3)	
her mother , Tiger Woods (3)	
the medias , Barack Obama (3)	
Newt Gingrich , House (3)	
Thomas Jefferson , Sally Hemings (3)	
Saddam Hussein , Samira Shahbandar (3)	
Suzanne Coleman Reportedly , Bill Clinton (3)	
his wife , George Foreman (2)	
Clementine Churchill, Baroness Spencer-Churchill , Terence Phillip (2)	
the extraterrestrial , Hillary Rodham Clinton (2)	http://openie.cs.washington.edu
an unrannewigt2015, John F. Kennedy (2)	http://openie.allenai.org-76

Open IE with ReVerb

Consider all verbal phrases as potential relations and all noun phrases as arguments

Problem 1: incoherent extractions

"New York City has a population of 8 Mio" \rightarrow <New York City, has, 8 Mio> "Hero is a movie by Zhang Yimou" \rightarrow <Hero, is, Zhang Yimou> **Problem 2: uninformative extractions**

"Gold has an atomic weight of 196" \rightarrow <Gold, has, atomic weight> "Faust made a deal with the devil" \rightarrow <Faust, made, a deal>

Problem 3: over-specific extractions

"Hero is the most colorful movie by Zhang Yimou"

 \rightarrow <..., is the most colorful movie by, ...>

Solution:

regular expressions over POS tags:
 VB DET N PREP; VB (N | ADJ | ADV | PRN | DET)* PREP; etc.

relation phrase must have # distinct arg pairs > threshold

Mining Paraphrases of Relations

composed (<musician>, <song>)

covered (<musician>, <song>)

Dylan wrote his song Knockin' on Heaven's Door, a cover song by the Dead Morricone 's masterpiece is the Ecstasy of Gold, covered by Yo-Yo Ma Amy's souly interpretation of Cupid, a classic piece of Sam Cooke Nina Simone's singing of Don't Explain revived Holiday's old song Cat Power's voice is set in her version of Don't Explain Cale performed Halle on written by L. Cohen

covered by:(Amy,Cupid), (Ma, Ecstasy), (Nina, Dor't)
(Cat, Don't), (Cale, Hallelujah), ...frequent sequence mining
for relational phrases
support sets of entity pairs
for paraphrasesvoice in
version of:(Amy,Cupid), (Sam, Cupid), (Nina, Do
(Cat, Don't), (Cale, Hallelujah), ...for relational phrases
support sets of entity pairs
for paraphrases
clustering for "synsets"

covered (<musician>, <song>):
 cover song, interpretation of, singing of, voice in ... version , ...
composed (<musician>, <song>):
 wrote song, classic piece of, 's old song, written by, composition of, ...

PATTY: Pattern Taxonomy for Relations

[Nakashole et al.: EMNLP-CoNLL'12, VLDB'12, Moro et al.: CIKM'12, Grycner et al.: COLING'14]

WordNet-style dictionary/taxonomy for relational phrases based on SOL patterns (syntactic-lexical-ontological)

Relational phrases are typed

<person> graduated from <university>
<singer> covered <song>
<book> covered <event>

Relational phrases can be synonymous

"graduated from" ⇔ "obtained degree in * from"
"and PRPADJ advisor" ⇔ "under the supervision of"

One relational phrase can **subsume** another **"wife of"** ⇒ **" spouse of"**

PATTY: Pattern Taxonomy for Relations

[N. Nakashole et al.: EMNLP 2012, VLDB 2012]

Thesaurus Relations Ta	axonomy		
DBPedia Relations		lead singer;	
	Relation: dbpedia:bandMember	⊟ Synset	
academicAdvisor affiliation album almaMater anthem	⁼ 📧 🔹 1-31 of 31 🕟 👀	lead singer; s lead singer;	
	Pattern	[[adj]] lead singer;	
appointer architect	is formed by;		
artist	lead singer;		
assembly associate associatedBand associatedMusicalArtist author automobilePlatform award bandMember	has announced that;	Paramore , 🛛 Hayley Williams 🕀 📄	
	is composed;	All (band), Dave Smalley 🕀 📄	
	currently consists;		
	which founded;	Alabama (band) , Randy Owen 🕀	
	vocalist [[con]] guitarist;	Clutch (band) , 🛛 Neil Fallon 😠 📄	
basedOn	was formed by vocalist;	Nirvana (band) , 🛛 Kurt Cobain 😑 📄	1
battle beatifiedBy beatifiedPlace	[[det]] liveaction version as;		-
	led by;		In particular, Rossdale 's forced random, stream of consciousne
billed binomialAuthority	bassist [[con]];	on]]; dismissed by son	dismissed by some as an imitation
birthPlace board bodyDiscovered bodyStyle borough broadcastArea broadcastNetwork	bandmates [[con]];		singer , Kurt Cobain .
	[[adj]] consisting of;	Los Bravos, Mike Kogel 😠 📄	
	performing as [[det]] quintet;	Twisted Sister , Dee Snider 🕀 📄	
	launched with [[adj]] members;		
	[[det]] line up consisting of;		

350 000 SOL patterns with 4 Mio. instances accessible at: www.mpi-inf.mpg.de/yago-naga/patty

15.3.4 Harvesting Commonsense by Patterns and Logical & Statistical Inference

Assertions **about general concepts** (not individual entities) and their attributes and relations

hasProperty (circle, round), hasProperty (lake, round) hasProperty (coffee, strong) hasAbility (bird, fly), hasAbility (human, make jokes) hasColor (cherry, red), hasTaste (cherry, juicy), hasShape (cherry, round) smallerThan (cherry, apple), largerThan (cherry, pea) partOf (pedal, bike), partOf (nose, human), visualPartOf (nose, human) locatedAt (bike, park), locatedAt (coffee, cup), usedFor (cherry, ice cream), usedFor (book, learn), happensAtTime (traffic jam, rush hour), happensAtLocation (traffic jam, street)

Commonsense Acquisition: Not So Easy

Every child knows that

apples are green, red, round, juicy, ... but not fast, funny, verbose, ...

pots and pans are in the kitchen or cupboard, on the stove, ... but not in the bedroom, in your pocket, in the sky, ...

children usually live with their parents

But: commonsense is rarely stated explicitly Plus: web and social media have reporting bias

rich family: 27.8 Mio on Bing poor family: 3.5 Mio on Bing

singers: 22.8 Mio on Bing workers: 14.5 Mio on Bing

Example: ConceptNet

[Speer & Havasi 2012]

Example: WebChild

WEBCHILD Commonsense Browser

beer

Guess the concept beer Domain ▲ Comparable ▲

۸

۸

Physical Part

Activity

Property

Location

Ask me!

https://gate.d5.mpi-inf.mpg.de/webchild

a general name for alcoholic beverages made by fermenting a cereal (or mixture of cereals) flavored with

hops

TYPE OF	brew		
	Related to food , under the category of food		
COMPARABLES	beer,wine cider,beer coffee,beer ale,beer beer,liquor More		
ACTIVITIES	drink beer buy beer make beer order beer finish beer		
HAS PHYSICAL PARTS	food		
HAS SUBSTANCE	beverage silica glass		
IS SUBSTANCE OF	brewpub microbrewery brewery		
IN SPATIAL PROXIMITY WITH	pub house bar store beach More		

Pattern-Based Harvesting of Commonsense Properties

(N. Tandon et al.: AAAI 2011)

Approach: Start with seed facts for apple hasProperty round dog hasAbility bark plate hasLocation table Find patterns that express these relations, such as X is very Y, X can Y, X put in/on Y, ... Apply these patterns to find more facts. Problem: noise and sparseness of data Solution: harness Web-scale n-gram corpora

 \rightarrow 5-grams + frequencies

Confidence score: PMI (X,Y), PMI (p,(XY)), support(X,Y), ... are features for regression model

Commonsense with SPO Properties

[N. Tandon et al.: WSDM'14]

Who looks hot ? What tastes hot ?

What is hot ? What feels hot ?

- → 4 Mio sense-disambiguated SPO triples for predicates: hasProperty, hasColor, hasShape, hasTaste, hasAppearance, isPartOf, hasAbility, hasEmotion, ...
- pattern learning with seeds: high recall
- semisupervised label propagation: good precision
- integer linear program: sense disambiguation, high precision

Visual Commonsense

ImageNet: populate WordNet classes with many photos [J. Deng et al.: CVPR'09] http://www.image-net.org

NEIL: infer instances of partOf occursAt, inScene relations [X. Chen et al.: ICCV'13] <u>http://www.neil-kb.com/</u>

How:

crowdsourcing for seeds, distantly supervised classifiers, object recognition (bounding boxes) in computer vision 15-87

IRDM WS 2015

Commonsense for Visual Scenes

[N. Tandon et al.: CIKM'15, AAAI'16]

Activity knowledge from movie&TV scripts, aligned with visual scenes

→ 0.5 Mio activity types with attributes: location, time, participants, prev/next

Refined part-whole relations from web&books text and image tags

→ 6.7 Mio sense-disambiguated triples for physicalPartOf, visualPartOf, hasCardinality, memberOf, substanceOf

Challenge: Commonsense Rules

Horn clauses: can be learned by Inductive Logic Programming

 \forall x,m,c: type(x,child) \land mother(x,m) \land livesIn(m,t)) \Rightarrow livesIn(x,t) \forall x,m,f: type(x,child) \land mother(x,m) \land spouse(m,f) \Rightarrow father(x,f)

Advance rules beyond Horn clauses:

specified by human experts

 $\forall x: type(x,spider) \Rightarrow numLegs(x)=8$

- \forall x: type(x,animal) \land hasLegs(x) \Rightarrow even(numLegs(x))
- $\forall x: human(x) \Rightarrow (\exists y: mother(x,y) \land \exists z: father(x,z))$
- $\forall x: human(x) \Rightarrow (male(x) \lor female(x))$

Additional Literature for 15.3

- F.M. Suchanek, G. Weikum: Knowledge harvesting in the big-data era, SIGMOD 2013
- M. Hearst: Automatic Acquisition of Hyponyms from Large Text Corpora. COLING 1992
- S Brin: Extracting Patterns and Relations from the World Wide Web. WebDB 1998:
- E. Agichtein. Snowball: extracting relations from large plain-text collections, ACM DL 2000
- O. Etzioni et al.: Unsupervised named-entity extraction from the Web, Art. Intell. 2005
- R.C. Wang, W. Cohen: Iterative Set Expansion of Named Entities Using the Web, ICDM 2008
- F. Suchanek et al.: SOFIE: a self-organizing framework for information extraction, WWW '09
- M. Mintz et al.: Distant supervision for relation extraction without labeled data. ACL 2009
- N. Nakashole : Scalable knowledge harvesting with high precision and high recall, WSDM '11
- Z. Nie, J.-R. Wen, W.-Y. Ma:: Statistical Entity Extraction From the Web. Proc. IEEE 2012
- T. Mitchell et al.: Never-Ending Learning. AAAI 2015:
- A. Fader et al.: Identifying Relations for Open Information Extraction, EMNLP 2011
- Mausam et al.: Open Language Learning for Information Extraction, EMNLP 2012
- N. Nakashole: PATTY: A Taxonomy of Relational Patterns with Semantic Types, EMNLP'12
- R. Speer, C. Havasi: Representing General Relational Knowledge in ConceptNet 5, LREC'12
- N. Tandon et al.: Deriving a Web-Scale Common Sense Fact Database, AAAI 2011
- N. Tandon et al.: WebChild: harvesting and organizing commonsense knowledge from the web, WSDM 2014.

Summary of Chapter 15

- Information Extraction lifts text&Web contents into structured data: entities, attributes, relations, facts and opinions
- **Regex-centric rules and patterns** good for **homogenous** Web sites
- **Statistical learning** of patterns (HMM, CRF/MRF, classifiers, etc.) crucial for **heterogenous** sources and **natural-language** text
- Knowledge harvesting exploits Web-scale redundancy & statistics