
A Flexible Model for Retrieval of SGML Documents

Sung Hyon Myaeng & Dong-Hyun Jang
Dept. Computer Science

Chungnam National University
TaeJon, Korea

irsun.chungnam.ac.kr/-shmyaeng

Abstract In traditional information retrieval (IR) systems, a
document as a whole is the target for a query. With increasing
interests in structured documents like SGML documents, there
is a growing need to build an LR system that can retrieve parts
of documents, which satisfy not only content-based but also
structure-based requirements. In this paper, we describe an
inference-net-based approach to this problem. The model is
capable of retrieving elements at any level in a principled way,
satisfying certain containment constraints in a quety. Moreover,
lvhile the model is general enough to reproduce the ranking
strategy adopted by conventional document retrieval systems
by making use of document and collection level statistics such
as TF and IDF, its flexibility allows for incorporation of a
variety of pragmatic and semantic information associated with
document structures. We implemented the model and ran a
series of experiments to show that, in addition to the added
functionality, the use of the structural information embedded in
SGML documents can improve the effectiveness of document
retrieval, compared to the case where no such information is

used. We also show that giving a pragmatic preference to a
certain element tape of the SGML documents can enhance
retrieval effectiveness.

1 Introduction

III traditional intbrmation retrieval (IR) systems, a document as
a whole is the tarSet for a query. Since documents are the basic
unit for retrieval regardless of their lengths and their internal
structures, users are limited to a single access point and are not
allowed to take advantage of the structural information (e.g.
titles, chapters, sections, paragraphs) in expressing their
information needs. Structural information may have a meaning
only when users browse through individual documents. Even
\vhen structural information is used in conjunction with
retrieval results to help users narrow down to smaller units of
text ([I]), the granularity for statistical information is usually at
the document or collection level. There are only a few
exceptions: one is the recent research on passage retrieval, and
the other is the effort to retrieve text units smaller than a
document from structured documents ([2], [3]). In passage
retrieval, a document is decomposed into a set passages, and its
retrieval is based on the similarity of each passage to the query
(see [4] for comparisons among different approaches).

Permission to make digital/hard copy of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage, the
copyright notice, the title of the publication and its date appear, and
notice is given that copying is by permission of XChl, Inc. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission a&or fee. SIGIR’gX, hlelhourne,

.~ustralia01998 Xhl l-58113-015-58198 $5.00.

Mun-Seok Kim & Zong-Cheol Zhoo
Information Retrieval Lab

Systems Engineering Research Institute
Taejon, Korea

wwwkle.seri.re.kr/-zczhoo

This paper introduces a new approach to retrieval of*
structured documents, especially SGML (Structured
Generalized Markup Language) documents[S]. With SGML,
the logical structure of a document can be expressed by
defining a coherent unit of text as an element that can be
embedded in another element or include other smaller elements.
In addition, SGML documents can contain the relationship
between units of a document using a link and the antihutes of
individual elements. While our research scope covers all the
three aspects of SGML documents, we locus on the first aspect
in this paper. More specifically we are interested in:

0 how a retrieval system can provide users with a variety
of access points to documents in response to queries that
express both the content and the structure requirements,
and

0 how the structural (sometimes discourse-level)
information embedded in documents can be exploited to
enhance effectiveness of document-level retrieval.

It should be noted that while the latter is related to the
motivation of the recent research on passage retrieval, the
former addresses the issue of providing new mnctionality to IR
systems,

This paper introduces a new IR model that is derived from
the inference net model developed for document-level retrieval
[6,7]. The main thrust of our model is to represent all the
SGML elements of various granularities in a network so that
their structural and semantic interdependency can be expressed.
This model allows the users to specify structural constraints in
their queries. The basic retrieval scheme is to calculate the
degree to which an element at any level supports the query by
considering what elements are contained in it. This scheme
makes it possible to systematically calculate the expected
relevance of an element at any level, taking into account its
relationship with other elements in the network,

Our model is distinguished from the “proximal nodes”
model [8] that focuses on the set-oriented query language
capable of expressing both content and structural requirements.
Not only can our model both represent .structured documents
and process various query types, but also elements at any level
can be in the model. Recent work on retrieval of- structured
document using a logic-based model [2] is also difIerent from
ours. The emphasis is on the logical framework within which
various document objects (i.e. elements) are represented. The
framework provides a specific method of calculating the
relevance of composite objects with limited expressiveness of
queries. Besides, there is no report on its implementation. In
contrast, we have implemented our model that is flexible
enough to accommodate a variety of queries, belief calculation
methods, and some pragmatic aspects of element types and
queries.

<r&&d element>

Figure 1. An inference net for a structured document and a query

There are several issues to be addressed in order to
implement the model. First of all, since the original Bayesian
inference net model requires expensive calculations of belief
values, it is important to emp1oy.a more efIicient calculation
method that approximates the origmal. In fact, we take a stance
that we can use a variety of belief calculation methods under
the same representational framework as long as they do not
violate basic probabilistic principles. We elaborate on this in
the next .section together with the description of the model

Other implementation details are explained in Section 3,
with an emphasis on the index structure and the belief
calculation method that is applied at the time of indexing. As a
way to make this model practical while complying with the
inference net framework as faithfully as possible, we attempted
to pre-calculate probability values at the time indices are
created so that we can avoid calculating them at retrieval time.

In Section 4, we report on our ex%ments whose purpose
was to demonstrate that the implemented model is capable of
handling a variety of queries by exploiting additional
information extracted from documents. In addition, we show
how the structural information and pragmatic biases given to
the text structure can enhance the quality of document retrieval.

2 A model for structured documents

From the outset of the research, we set up the following criteria
with which we designed our model:

0 provision of new retrieval functions for satisfying both
content and structural information needs,

0 improvement of retrieval effectiveness for document
retrieval by using the s&uctural information,

0 flexibility in incorporating various interpretation and
modulation of structural and semantic information
embedded in structured documents, and

0 possibility of developing a practical system with the
model.

This section describes how these criteria can be addressed in
our model. Other capabilities such as utilizing links and

attributes and answering pure structural queries are left out as
future works.

2.1 The Inference net model for IR

An inference net consists of nodes and directional links,
representing random variables and relationships between the
two linked nodes, respectively. It is otten assumed that random
variables take on values from {true, false}, allowing for a
natural interpretation of a node as a proposition. A link from a
parent to a child node represents a causal relationship, and a
conditional probability is assigned to express the strength of
the relationship. All dependencies are directly represented in
the network, and no link between two nodes indicates that the
nodes exist independently of each other and have no direct
relationship between them. As long as there is a path between
nodes, the belief that a node causes the other can be calculated
by employing a mechanism that combines probabilities in a
principled way.

When this framework is used for document retrieval as in
[6], a node is created at least for each of document
representations, index terms, query terms, and queries. The
strength value on the link between a document and an index
term, for example, can he interpreted as the degree of belief
that the document supports for the term or vice versa,
depending on which way the probabilities are propagated.
Given all the probability values on the links as well as on the
root nodes representing documents, the relevance of a
document is determined by computing the degree to which a
query is supported by a document. The readers are referred to
[6] for details.

2.2 Representation of structured documents

In terms of topology, our model adopts the basic scheme of
connecting two kinds of sub-nets, one for a set of documents
and the other for a query. A unique aspect of our approach lies
in its representation of structure information in documents. As
in Fig. 1 that depicts a representation of a document instance
and a query connected to it, a node and a link in the document

139

net represents an element and a hierarchical or containment
relationship between two elements, respectively. This reflects
the logical structure of SGML documents, expressing the fact
that a child element (e.g. a section) is nested within a parent
element (e.g. a chapter).

In the document sub-net in Fig. 1, the document consists of
ho chapters (cl and c,), and the first chapter contains a title
(t,& and three sections (sii, s,*, s,~). Although there are only
three levels shown in this instance, the number of layers can
vary depending on the document type. It should be obvious that
only leaf nodes (titles and sections in this case) contain actual
text, and that each leaf node has a number of term nodes that
are omitted here.

The query sub-net connected to the document sub-net
represents the following query containing both content and
structural restrictions:

“FIND a document that INCLUDES a chapter whose title
CONTAINS the term hypeflevr AND whose section
CONTAINS the tern blowsing.”

This is an example of a rnk~ qnely that consists of the
structure-based part, signified by the INCLUDES clause, and
the content-hased pmt, signified by the CONTAINS clause.
The structural requirements are shown in the network by the
links connecting the terms and the leaf nodes and those among
intermediate nodes, For example, if there were no connection
from “hypertext” node to t,,, under c,, the chapter would not
appear in this figure. In other words, the figure represents those
parts of the document, which are relevant to the query.

In order to show how a variety of query types are handled,
\ve make a distinction among document nodes. Nodes
participating in belief calculations can be labeled as a context,
retrieval, or path element. A context element is defined to be
the unit of text where a term is sought after, While the context
elements in the example are the title and section elements that
are also leaf elements, a query may specify a non-leaf element
as a context element as in “Find a document where a chapter
CONTAINS the term hyperkrt.‘”

A retrieval element is the type of an element the user wants
to retrieve and can be a leaf or non-leaf element. In traditional
IR, documents are the retrieval element by default even when
passage retrieval is performed. In the example query, the
retrieval element specified by the FIND clause also happens to
he a document. Users, however, may want to find sections or
titles satisfying a certain requirement. It should he noted that a
node can he both a context and retrieval element at the Same
time as in the case of traditional IR. Between a context element
and a retrieval element, there may he one or more path
elements that are used to compute the f-mal probability value
behveen a retrieval element and a leaf element. Path elements
are explicit or implicit depending on whether they are specified
in a quq. In the example query, the chapter node is an explicit
path element because it is specified in the INCLUDES clause.

2.3 Element retrieval with sub-net instantiation

Given the representation of a structured document, there should
he a mechanism hv which the belief value of a retrieval
element (more precisely, the degree of belief that a retrieval
element supports a qum;) is computed in a principled way.
Conceptually, a query consisting of terms and operators (e.g.
Boolean or vector) instantiates a part of the net composed of

the nodes and h&s participating in the computation. The
overall process consists of four steps:

mark all the candidate retrieval elements and the leaf
nodes containing at least one of the query terms as well
as the path elements,
compute the degree of belief that each retrieval element
supports the leaf node via path elements,
compute the degree of belief that a query term node is
supported by a set of leaf nodes connected to itself, and
compute the degree of belief that the query as a whole is
supported by each of the retrieval elements by
combining the evidence from all of the query term
nodes based on the query operator.

It should be noted that after the first step, the computation
process is described for a single retrieval element. When the
computations are done for all the candidate retrieval elements,
their rank order must be determined.

We currently assume there is no query that is purely
structure-based without any content-based requirements.
Therefore the process always starts with a leaf node, lvhich
may or may not be a context element, and works its way up to
a retrieval element. This assumption of bottom-up calculation
is motivated by an implementational need described in the next
section.

2.4 Bayesian computation of belief

Given the instantiation process, we still need to specify how to
compute the degree of belief at each of the steps 2 through 4.
The degree of belief B for a node is expressed in principle by a
conditional probability. Let C be a child node and F a set of
parent nodes linked to the child node. Then,

B(C) = Z F P (Cl F) X P(F) (1)

where the sum is over the power set (2 IF1) of the parent
elements that are random variables taking values on { 0, I } The
probability function P(CIF), expressed as a link matrix in [6],
leads to various specifications for computing B(C) in general
and for ranking strategies in particular. The summation is
weighted by the probability P(F) that is either a priori
probability associated with the node or a degree of belief
calculated using the formula (1) recursively.

For the sake of simplicity, we use the net in Fig. 2 in
explaining some variations of calculations. It shows a net with
two section elements as the parent nodes of a term node T and
as child nodes of the element C.

Figure 2. A simple network

The degree of belief for T given the network topology can
he computed as follows:

&TIC) = P(TI-S,, -Sj *8(-S,) * Bc-SJ
+P(Tj-S,,SJ *B(-SJ *B(s,,
+P(T/S,.-5.3 *B(s,, *B(-SJ
+P(TIS,.St) *Bls3 *BlsJ (2)

The degree of belief for the section elements can be computed
in a similar way:

BlsJ = P(& 1 C) *P(C) + P(S, 1 -C) l P(-C)
B(-Si) = P(-S, 1 C) *P(C) + P(-Si 1 -C) * P(-C)

= (I - P(S, I C)) * P(C) + (I - P(s) -C)) * P(-c)

(3)

(4)

This computation yields an exponential time complexity with
respect to the number of parent nodes, because it allows for an
arbitrary link matrix or an arbitrary set of coefficients. It is only
natural to consider different ways to calculate the degree of
belief for an arbitrary node, which hopefully approximate the
above formula.

2.5 A practical calculation method

In devising a method for belief calculations in our model, we
attempted to enforce three criteria: computational tractability,
consistency with the case of document retrieval (as opposed to
element retrieval), and flexibility in exploiting semantics
embedded in document structures and pragmatics users may
want to specify in their queries. The first criterion is essential
because strict adherence to the Bayesian method makes our
system impractical. The second one ensures that if no structural
information is used in addition to the usual TF, IDF, and length
information, the bottom-up evalution of a document similarib
as described in Section 2.3 produce the same result as that of
ignoring the document structure. In a sense, it makes the
simplified calculation method sound. Finally, by allowing for
the flexibility added to the basic framework, our model has a
potential to take into account a variety of discourse level
semantics and pragmatics for or against certain SGML
elements of a document type.

The first criterion can be met by adopting a simplified
formula that does not sacrifice the fundamental characteristics
of the inference net. We opted for the following:

BfljC) = P(TlS,) * Pn’J + PflISd *P&J
= PITIS * P(s,IC’) *P(c) + P(TI&J * P(s*IC) *P(c) (5)

which considers onl! positive events. This is somewhat in line
with Dempster-Shafer theory [9] where interactions among
propositions (hypotheses) are not handled by listing all
combinations of conditional probabilities, but by manipulating
sets of propositions. The diflerence, though, is that we only
deal with singleton sets of propositions (i.e. S,‘s in (5)). The
forumula can be easily generalized for cases with more than
two parents.

The second criterion ensures that the similarity of a
document to a given query be the same regardless of whether
the document is considered as a structured document or as a
flat text without any structural elements. Since one of our goals
is to enhance retrieval effectiveness by exploiting the semantics
implicit in structured documents, this restriction makes sense
only when no additional information other than usual statistical
parameters such as TF, IDF, and lengths of element. is used in
evaluations. In other words, we want to make sure that
identical terms in a document have the equal contributions
toward the document similarity regardless of their positions, as
long as no additional information about individual elements
participates in belief calculations.

Fig. 3 depicts the situation where two identical terms
occur in two different elements. Since the distance between
S,, and D is greater than that between S,, and D, there are

more multiplication operations involved with S,, than with
S, in computing B(rlD) as in:

MV’) =PfTk.J *&Y&L, J * * J’CS,,I~U’ * P(s,,,IDJ
* PcV + P(TI.%J * PF,.#d *PO (6)

where S,J is for i_th element at the i-th level. We contend that in
this situation, the influence from the two terms occurring in the
two elements must be the same, provided that no information
other than the usual statistical parameters and the topology
comes into play.

-
D

5, S, & ST ST

_..- .
. . .

Figure 3. A term occurring at different levels

A natural way of enforcing the restriction is to make
conditional probabilities proportional to the length of the child
element and ensure the sum of the conditional probabilities on
the links branching out of a parent node to be equal to 1, In
other words, we must assign probability values in such a \\a>
that:

c, P(s,jlSi.,,3 = I (7)

where kl is the number of children for S,_,,k for any k, and

where IS,1 for a leaf node is the number of index terms
occurring in the element. If S,J is a non-leaf node, IS,jl is the
sum of the sizes of its children.

In Fig. 3, for instance, P(s,,,(D) would be significantl!,
larger than P@,,,ID) if the sizes of the text associated with leaf
elements are about the same. While the distance (i.e. the
number conditional probabilities to be multiplied) to the root
node makes the influence of T in S, , weak, the same term T in
S,,, has a small impact on D as well; because of the small value
of the conditional probability P(s,,,ID).

2.6 Belief calculation with biases

The restrictions described so far provide our model nith
computational tractability and consistency of the belief
calculation mechanism. Although it serves the purpose ot
calculating the similarity of any element at any level (hence
retrieval of elements), it would have no impact on improving
efIectiveness of document retrieval. In order to take advantage
of the effect of passage retrieval where the similarities of
passages are used to retrieve documents, we should be able to
discriminate among different elements depending on their
contents and types. [lo] has demonstrated by, experiments that
certain elements are more usefid in retneving structured

documents than others.
The content and type of elements can be utilized by

reflecting them on the process of estimating conditional
probabilities ltith the formula (5), which starts from the leaf
element and all the way up to the retrieval element. A
conditional probability in this context can be interpreted as the
representativeness of the child node for the parent node or as
the degree to which the parent node supports the child element.
The type of an element can serve as a good indicator for the
representativeness of the element. For example, we can assume
that a title element is in general more central to the topic of the
document (hence more representative) than a figure caption
element and reflect it on probability calculations.

While there can be a number of different ways of
estimating the conditional probabilities based on the contents
of participating elements, which require further research, we
consider two intuitive methods. One is to use the well-known
vector similarity measure between the parent element and each
of its children elements. Assuming that element vectors are
constructed with the usual TF and IDF values, a child element
with a large number of unique terms whose lDF values are high
would have a high value for representativeness. That means, a
term in an element with important terms makes a stronger
contribution to the similarity of the retrieval element than a
term in an element with many weak terms.

Given a set of children elements Si and their parent C,
represented as S, = ~si,, siB sin:; and C = -:c,. c,. en:;,
respectively, where n is the number of index terms and sy and ci
are calculated with lDF and TF, the probability can be
estimated as follows:

P (qc:, = ,$zi+ (S, 0 C) (9)

where 1, is a weight of the particular element type, representing
its overall importance relative to other types of elements
sharing the same parent. This computation incorporates both
the content and the type of elements. The value of 1, can be
fixed a priori or changed with the history of system opemtions.
As in the equation (7), the parameter should be set in such a
way that the sum of all the probabilities conditioned by the
same parent is 1:

X,2+* (Si SC) = I (10)

The other method is based on our notion of coherency of
an element, which is assumed to be the degree to which the
content of the element is similar to those of sibling elements. If
the content of an element is a complete digression from the rest
of the elements under the same parent, it is determined to have
low coherency relative to its siblings and hence low
representativeness. On the other hand, if the average similarity
between the element and the rest of the elements under the
same parent is high, it is deemed to have high coherency. More
specifically, coherency of S, with respect to its parent C can be
computed as follows:

Coherency(SJ = Z; S, l 5’) whew j #i (11)

It should be noted that bl is the number of children for S,‘s
parent.

3 Implementation Issues

There are three main issues we explore in this section. The first

is how the probabilities are estimated in indexing, and the
second is how the indexing results are organized and stored for
retrieval tasks. Finally we describe how elements at any level
can be efficiently retrieved using the index structure. In the
current implementation, it is assumed that content-based
retrieval can be done before structural constrains are satisfied
in processing queries that contain both content and structure
specifications..

3.1 Indexing

The probabilities to be estimated directly from documents are
basically P(TIS,J, P(s,IC), and P(C) as in formula (5) As
indicated in the previous section, we make use of more or less
conventional statistical techniques using TF and IDF values
and the vector similarity measure in estimating various
probabilities. The probability P(rl SJ of observing a term T
given an element Si (or the degree of belief that S, supports 7’)
can be estimated with:

P(rlSJ =” IDF, * TF; si (12)

Here IDF, and TF,, s, are normalized as in [TCol]. The
probability P(SJC) of observing Si given C (or the degree of
belief that C supports SJ can be calculated as a similarity
between the two vectors as follows:

P(s,IC) zs,. c (13)

P(C) is the probability of observing C assuming that C is
the root node (i.e., document) in the inference net. One feasible
way of estimating this is to use the history of the svstem. The
more often a document (element) has been retrieved and
judged to be relevant, the higher the value. In our current
implementation, however, it is set to 1 as is the case in other
work [6].

It should be noted that all the probability values can be
calculated off-line, i.e., at the time of indexing. The only
calculations to be done at the retrieval time are the
multiplication operations of probability values from the leaf
nodes all the way up to the retrieval node. As explained in the
next sub-section, all the necessary information for the
multiplication operations can be found in a single inverted
index.

3.2 Index structure

Since an IR system that supports structured documents must
exploit additional information embedded in the structure, it is
natural that additional space is required for an index. ln order
to minimize the space as well as time complexity, hovvever, we
used the following design decisions.

0 Since processing a structure-based query is likely to be
expensive, we process the content-based retrieval first to
result in a smaller search space and then filter out those
that are not satisfied with attribute and/or structure
constraints.

0 In order to process pure structure-based and attribute-
based queries, there should be separate index structures,

0 Considering a huge number of composite elements in
which other elements are nested, indexing should be
done only with the leaf elements so that the storage
overhead is minimized.

Inverted List

Term Z IDF,

Terrm. IDF,,

< h I V V
Information about Information about

document & leaf node nodes on the path to the root
< , -

B+ tree Segment for each relevant element

Figure 4. Structure of Inverted Lists

0 Since conditional probabilities between parents and
children are used several times to calculate the similarity
value of an arbitrary element to a given query, these
probabilities should be accessible efficiently.

Considering the design decisions and our retrieval model
where the belief value is calculated in a bottom-up fashion
from the leaf node toward the retrieval element, we designed
and implemented an inverted index structure shown in Fig. 4.
The main thrust of this structure is that an inverted index list
consists of not only the list of leaf elements containing the path
but also the path information associated with each of the leaf.
The path information specifies \\hat elements exist between the
leaf element and the root element, together with a set of the
conditional probabilities between each pair of a parent and a
child along the path.

As shown in Fig. 4, an inverted list consists of one or more
segments, each of which corresponds to a complete path
starting from a leaf node to the root node. A segment is divided
into two parts. The first part contains a document ID, a unique
element ID, an element type (TID), and a probability value.
The pair of a DID (document ID) and a UlD uniquely identities
an element in the entire collection even if there are more than
one document tvpes, hence more than one DID’s, The second
part contains a list of <element type, probability> pairs, each of
which specifies the type of an element along the path and the
associated probability that the parent node supports the child
node.

It should be noted that the TID’s are stored for both leaf
nodes and the path nodes in order to deal the specifications as
to the context, explicit path, and retrieval elements in queries.
That is, not all the leaf nodes containing a query term can lead
to the final set of retrieval elements. The types of elements in
the path are checked against the context and/or explicit path
element type in the query so that the leaf nodes not satisfying
the structural constraints can be eliminated at an early stage.
On the other hand the element ID for each pair in the second
part is not stored because it can be calculated dynamically by
using the leaf element lD as in [111, The basic idea is that when
a unique ID is assigned to each element (node), a complete tree
with a branching factor k is assumed. Since unique IDS are
assigned to virtual nodes as well as the actual nodes, it is not
hard to compute the ID for the parent of a node.

At first glance, the inverted index structure seems to take
up an enormous amount of storage because the number
elements in a document can be large. When there are t index
terms and e elements per document on average, however, the
total number of element ID’s in the entire index (i.e. the sum of

the number of elements in all the inverted lists) is not as many
as e times the number of documents. This is because each
element contains a significantly less number of terms than a
document does, and hence an element ID does not occur in as
many inverted index as a document. In other words, the term-
element matrix is sparser than the term-document sparse
although the number of columns in the term-element matrix is
e times the number of columns in the term-document matrix

3.3 Retrieval process

As described in 2.3., the actual retrieval process is performed
in a bottom-up fashion, mainly due to the use of an inverted
index that drives the retrieval process to be triggered by a term
in a query as in other conventional systems. The other reason
for the bottom-up query evaluation is because of the way
documents are represented in an inference net: no elements
other than leaf elements contain actual text, and the retrieval
process must start with where the text containing a query term
is.

Our design of the inverted index structure as described in
the previous sub-section makes it possible to minimize the time
required for the bottom-up retrieval process. Since a large
portion of belief calculations is done off-line, retrieval
decisions can be made fairly efficiently. In addition, an inverted
list contains all the necessary information to determine whether
traversing the path toward the root node will lead to a success.
By scanning the inverted list associated with a query term, the
retrieval module can easily find out whether there is a segment
with the type of element specified as the retrieval element in
the query. If a segment does not have such element in the path
it is not a candidate for retrieval although the leaf element
contains the query term. If a segment contains an element of
the specified tvpe, however, the belief calculation begins.

Our system currently implements the p-norm model [121
for query processing so that it can process both the Boolean
and vector space query model. Once the evidence that a
retrieval element supports a query term is calculated, it can be
combined with the evidence calculated for another quq term.
The result can be combined with a still new query term, and so
on, until all of the query terms are taken into account.

4 Experiments

Since there was no suitable test collection available, lvhich
consists of SGML documents, a set of queries with structural
constraints, and associated relevance judgments, it was not
possible to test how effectively a variety of element-level

queries (as opposed to document-level queries) can be handled.
As a result, the goal in our experiments is limited to
demonstrate the following three aspects.

The first was to see if the implemented system could
process arbitrary queries that specify not only a retrieval
element at any level in SGML documents but also some
containment constraints (i.e., explicit path and context
elements) in themselves. The purpose was to validate the
model in a qualitative sense and see if the retrieval results are
reasonable. Since it is a test for new functionality supported by
the proposed model and the system, we won’t discuss it further
in this section. The second was to show that our use of the
structural information embedded in the SGML documents can
actually, improve the effectiveness of document retrieval, in
comparison with the case where no such information is used.
This is an indirect way of validating the model for its passage
retrieval function. Finally, we were interested in finding out
whether the idea of giving a bias (i.e. semantic and prapatic
preference) to an element type actually improves retrieval
effectiveness. This is also a way of indirectly testing the
hypothesis that certain element types have their inherent values
in satisfying queries.

~..~.. &..@.. &

a : with significant text

0 : without significant text

Figure 5. A typical structure of a patent document

We used the patent data and a subset of topics 51 through
150 in the TREC collection. The main reason for our choice
was because the patent documents are fairly long and, more
importantly, contain nested element type tags. Most patent
document trees have at least four levels. Fig. 5 shows the
structure of a typical patent document. We used 32 queries
because other queries in the collection have no relevant
documents in the patent collection. By selecting 234 relevant
documents for the queries and 766 irrelevant ones randomly
selected from the rest of the original patent collection, we built
a collection of 1,000 documents (about 40MB).

The baseline was the flat document case where all the tags
were removed. We employed the typical TF*IDF weighting
scheme, IDF weights on query terms, and the vector cosign
similarity measure for ranking. In order to test the value of
using structural information embedded in the documents, the
baseline was compared with the “pure” model case where the
belief calculation model described in sub-section 2.5 was
employed without any weighting biases against individual
element types. That is, the conditional probabilities were
computed using (12) and (13) in subsection 3.1 with the
constraints imposed by (7) in sub-section 2.5.

Table 1 shows the comparison between a baseline that
ignores all the structural information (i.e. flat documents) and

the test case where evidence from leaf nodes are combined in a
bottom-up fashion. The overall results indirectly demonstrates
the feasibility of using our model for structured documents and
directly shows that the use of structures in SGML documents
indeed improves the retrieval effectiveness, especially
precision, contiig previous results that the use of passages
is generally helpful. The major difference is that instead of
using artifacts such as the use of best scores, we used the
notion of the representativeness of elements and our belief
calculation method in the inference net representation of
SGML documents.

Recall
Baseline Use of

Level
(Flat Structured

%

Documents) Documents
Charge

0.00 0.2826 0.4027 42
0.10 0.2603 0.3864 48
0.20 0.2383 0.3295 38
0.30 0.2204 0.2710 23
0.40 0.1897 0.2304 21
0.50 0.1766 0.2156 22
0.60 0.1345 0.1433 6
0.70 0.1291 0.1224 -5
0.80 0.1117 0.0956 -14
0.90 0.0808 0.0872 8
1.00 0.0550 0.0795 45

Average 0.1563 0.2030 30

Table 1, Comparison between a case with flat documents and a
case with structured documents

For the third aspect of our experimental goal, we first
investigated on whether ditferent element types in the patent
document make different contributions to retrieval of whole
documents. Each of the non-trivial element types (i.e. those
containing some content-bearing terms) was used as the only
indexable region and tested for their effectiveness in document
retrieval. The experimental results are shown in Table 2. It
should be clear that when the <TEXT> element type and the
<BSUM> element tvpe, a child of <TEXT>, were used alone,
respectively, the retrieval results outperform the case where all
the element types were used.

Table 2. Retrieval results with individual element types

Having observed element types vary in their inherent
values for retrieval, we tested the idea of assigning weights on
element types as described in sub-section 2.6. Since the
immediate children of the <TEXT> element are most
interesting in their individual contributions to retrieval
effectiveness as in Table 2, we ran the system with different
biases given to <BSUM>, <ABST>, <CLMS>, <DETD>, and
<DRWD>. Table 3 shows some prominent parts of the

experimental results. The first row is the pure model case
without any biases at all, whereas the other rows shows the
cases with different weights given to the element types. It is
clear that the strategy of giving biases to individual element
types is worth further investigation.

0.9 -
(+20 %)

Table 3. Results with biases given to element types

5 Conclusions

We have defined and implemented an inference-net-based
model for retrieval of structured documents, which can handle
queries based on both the content and the structure of SGML
documents, The main thrust of the model lies in its capability
of retrieving elements at any level in a principled way,
satisfying certain containment constraints in a queiy Moreover,
while the model is general enough to reproduce the ranking
strategv adopted by conventional document retrieval systems
by making use of document and collection level statistics such
as IDF and TF, its flexibility allows for incorporation of a
variety of pragmatic and semantic information associated with
document structures.

We implemented the model and described some of
the details to show how the complex-looking model can be
realized as a practical system. In our current implementation, a
large portion of probability calculations are done off-line, and
the results are stored an inverted index so that retrieval can be
done efficiently. With the system, we conducted some
experiments to demonstrate:

that the model can be used to etfectively process queries
that specify not only a retrieval element at any level in
SGML documents but also some containment constraints
in themselves,
that our use of the structural information embedded in the
SGML documents can improve the effectiveness of
document retrieval, compared to the case where no such
information is used, and
that careful assignment of biases (weights) on different
element tvpes actually improve the retrieval en‘ectiveness
because different element types have their own pragmatic
values for retrieval.

There are a number of issues to be addressed in the near
.

various probabilities and to assign weights to element types,
exploiting semantic and pragmatic information obtainable from
various sources. We also plan on comparing the usual passage
retrieval against the case of using SGML tags for passage
identification. Additional experiments must be done for the
purpose of understanding what inlluences different belief
calculation methods will have on retrieval effectiveness.

References

PI

121

[31

[41

151

(61

171

PI

191

Egan, D. E. et al. “Formative design-evaluation of
SuperBook”, ACM Transactions on Information Systems, 7
(l), January, 1989, pp 30-57.

Lalmas, M., “Dempster-Shafer’s theory evidence applied
to structured documents: modeling uncertainty,” Proc. of
ACM SZGZR ‘97, Philadelphia, pp 110-l 18, 1997.

Volz, M., Aberer, K., & Bohrn, K., “Applying a flexible
GODBMS-IRS-coupling to structured document
handling,” Pnx. of lIh International Conference on Data
Engineering, New Orleans, 1996.

Kaszkiel, M & Zobel, Justin “Passage retrieval revisited’,
Prac. of the 20” ACM-SIGIR ‘97, Philadelphia, 1997.

Van Herwijnen, E., Practical SG.UL, 2”* ed., Klu\vt~

Academic Publishers, Boston, 1994.

Turtle, H. t Croft, B. W., “Evaluation of an inference
network-based retrieval model,” .X%1 Transactions an
Injkmation Systems, 9 (3), pp 187-222, 1991.

Ribeiro, B. k Muntz, R., “‘A belief network model for IR:“
Prac. of ACM SIGIR ‘96, Zurich, pp 253-260, 1996.

Navaro, G. L Baeza-Yates, R., “A language for queries on
structure and contents of textual databases,” Pnx. af ACM
SZGZR’95, Seattle, ~~93-101, 1995.

Shafer, A., .4 Mathematical Theory r$Evidence, Princetan
Universiv Press, 1976.

[lO]Wilkinson, R., “Effective retrieval of structured
documents,” Pnx. c$ACM SIGIR ‘94, pp 3 11-3 17, Dublin
City, 1994.

[1 l] Lee, Y., Yoo, S., Yoo, K., L Berra, B., “Index structure
for structured documents,” Prac. af Digital Libraries ‘96,
Bethesda, pp 91-99, 1996.

[12] Salton, G., Fox, E,, & Wu, H., “Extended Boolean
information retrieval,” Communications afACM, 26 (12),
pp1022-1036,1983.

future. Most notably, we are currently m the process ot
extending the current model to handle more complicated
queries including such constraints as attribute values, pure
structures, and hypertest links. We also plan to run more
estensive esperiments to figure out better ways to estimate

