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Abstract In traditional information retrieval (IR) systems, a 
document as a whole is the target for a query. With increasing 
interests in structured documents like SGML documents, there 
is a growing need to build an LR system that can retrieve parts 
of documents, which satisfy not only content-based but also 
structure-based requirements. In this paper, we describe an 
inference-net-based approach to this problem. The model is 
capable of retrieving elements at any level in a principled way, 
satisfying certain containment constraints in a quety. Moreover, 
lvhile the model is general enough to reproduce the ranking 
strategy adopted by conventional document retrieval systems 
by making use of document and collection level statistics such 
as TF and IDF, its flexibility allows for incorporation of a 
variety of pragmatic and semantic information associated with 
document structures. We implemented the model and ran a 
series of experiments to show that, in addition to the added 
functionality, the use of the structural information embedded in 
SGML documents can improve the effectiveness of document 
retrieval, compared to the case where no such information is 

used. We also show that giving a pragmatic preference to a 
certain element tape of the SGML documents can enhance 
retrieval effectiveness. 

1 Introduction 

III traditional intbrmation retrieval (IR) systems, a document as 
a whole is the tarSet for a query. Since documents are the basic 
unit for retrieval regardless of their lengths and their internal 
structures, users are limited to a single access point and are not 
allowed to take advantage of the structural information (e.g. 
titles, chapters, sections, paragraphs) in expressing their 
information needs. Structural information may have a meaning 
only when users browse through individual documents. Even 
\vhen structural information is used in conjunction with 
retrieval results to help users narrow down to smaller units of 
text ([I]), the granularity for statistical information is usually at 
the document or collection level. There are only a few 
exceptions: one is the recent research on passage retrieval, and 
the other is the effort to retrieve text units smaller than a 
document from structured documents ([2], [3]). In passage 
retrieval, a document is decomposed into a set passages, and its 
retrieval is based on the similarity of each passage to the query 
(see [4] for comparisons among different approaches). 
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This paper introduces a new approach to retrieval of* 
structured documents, especially SGML (Structured 
Generalized Markup Language) documents[S]. With SGML, 
the logical structure of a document can be expressed by 
defining a coherent unit of text as an element that can be 
embedded in another element or include other smaller elements. 
In addition, SGML documents can contain the relationship 
between units of a document using a link and the antihutes of 
individual elements. While our research scope covers all the 
three aspects of SGML documents, we locus on the first aspect 
in this paper. More specifically we are interested in: 

0 how a retrieval system can provide users with a variety 
of access points to documents in response to queries that 
express both the content and the structure requirements, 
and 

0 how the structural (sometimes discourse-level) 
information embedded in documents can be exploited to 
enhance effectiveness of document-level retrieval. 

It should be noted that while the latter is related to the 
motivation of the recent research on passage retrieval, the 
former addresses the issue of providing new mnctionality to IR 
systems, 

This paper introduces a new IR model that is derived from 
the inference net model developed for document-level retrieval 
[6,7]. The main thrust of our model is to represent all the 
SGML elements of various granularities in a network so that 
their structural and semantic interdependency can be expressed. 
This model allows the users to specify structural constraints in 
their queries. The basic retrieval scheme is to calculate the 
degree to which an element at any level supports the query by 
considering what elements are contained in it. This scheme 
makes it possible to systematically calculate the expected 
relevance of an element at any level, taking into account its 
relationship with other elements in the network, 

Our model is distinguished from the “proximal nodes” 
model [8] that focuses on the set-oriented query language 
capable of expressing both content and structural requirements. 
Not only can our model both represent .structured documents 
and process various query types, but also elements at any level 
can be in the model. Recent work on retrieval of- structured 
document using a logic-based model [2] is also difIerent from 
ours. The emphasis is on the logical framework within which 
various document objects (i.e. elements) are represented. The 
framework provides a specific method of calculating the 
relevance of composite objects with limited expressiveness of 
queries. Besides, there is no report on its implementation. In 
contrast, we have implemented our model that is flexible 
enough to accommodate a variety of queries, belief calculation 
methods, and some pragmatic aspects of element types and 
queries. 
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Figure 1. An inference net for a structured document and a query 

There are several issues to be addressed in order to 
implement the model. First of all, since the original Bayesian 
inference net model requires expensive calculations of belief 
values, it is important to emp1oy.a more efIicient calculation 
method that approximates the origmal. In fact, we take a stance 
that we can use a variety of belief calculation methods under 
the same representational framework as long as they do not 
violate basic probabilistic principles. We elaborate on this in 
the next .section together with the description of the model 

Other implementation details are explained in Section 3, 
with an emphasis on the index structure and the belief 
calculation method that is applied at the time of indexing. As a 
way to make this model practical while complying with the 
inference net framework as faithfully as possible, we attempted 
to pre-calculate probability values at the time indices are 
created so that we can avoid calculating them at retrieval time. 

In Section 4, we report on our ex%ments whose purpose 
was to demonstrate that the implemented model is capable of 
handling a variety of queries by exploiting additional 
information extracted from documents. In addition, we show 
how the structural information and pragmatic biases given to 
the text structure can enhance the quality of document retrieval. 

2 A model for structured documents 

From the outset of the research, we set up the following criteria 
with which we designed our model: 

0 provision of new retrieval functions for satisfying both 
content and structural information needs, 

0 improvement of retrieval effectiveness for document 
retrieval by using the s&uctural information, 

0 flexibility in incorporating various interpretation and 
modulation of structural and semantic information 
embedded in structured documents, and 

0 possibility of developing a practical system with the 
model. 

This section describes how these criteria can be addressed in 
our model. Other capabilities such as utilizing links and 

attributes and answering pure structural queries are left out as 
future works. 

2.1 The Inference net model for IR 

An inference net consists of nodes and directional links, 
representing random variables and relationships between the 
two linked nodes, respectively. It is otten assumed that random 
variables take on values from {true, false}, allowing for a 
natural interpretation of a node as a proposition. A link from a 
parent to a child node represents a causal relationship, and a 
conditional probability is assigned to express the strength of 
the relationship. All dependencies are directly represented in 
the network, and no link between two nodes indicates that the 
nodes exist independently of each other and have no direct 
relationship between them. As long as there is a path between 
nodes, the belief that a node causes the other can be calculated 
by employing a mechanism that combines probabilities in a 
principled way. 

When this framework is used for document retrieval as in 
[6], a node is created at least for each of document 
representations, index terms, query terms, and queries. The 
strength value on the link between a document and an index 
term, for example, can he interpreted as the degree of belief 
that the document supports for the term or vice versa, 
depending on which way the probabilities are propagated. 
Given all the probability values on the links as well as on the 
root nodes representing documents, the relevance of a 
document is determined by computing the degree to which a 
query is supported by a document. The readers are referred to 
[6] for details. 

2.2 Representation of structured documents 

In terms of topology, our model adopts the basic scheme of 
connecting two kinds of sub-nets, one for a set of documents 
and the other for a query. A unique aspect of our approach lies 
in its representation of structure information in documents. As 
in Fig. 1 that depicts a representation of a document instance 
and a query connected to it, a node and a link in the document 
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net represents an element and a hierarchical or containment 
relationship between two elements, respectively. This reflects 
the logical structure of SGML documents, expressing the fact 
that a child element (e.g. a section) is nested within a parent 
element (e.g. a chapter). 

In the document sub-net in Fig. 1, the document consists of 
ho chapters (cl and c,), and the first chapter contains a title 
(t,& and three sections (sii, s,*, s,~). Although there are only 
three levels shown in this instance, the number of layers can 
vary depending on the document type. It should be obvious that 
only leaf nodes (titles and sections in this case) contain actual 
text, and that each leaf node has a number of term nodes that 
are omitted here. 

The query sub-net connected to the document sub-net 
represents the following query containing both content and 
structural restrictions: 

“FIND a document that INCLUDES a chapter whose title 
CONTAINS the term hypeflevr AND whose section 
CONTAINS the tern blowsing.” 

This is an example of a rnk~ qnely that consists of the 
structure-based part, signified by the INCLUDES clause, and 
the content-hased pmt, signified by the CONTAINS clause. 
The structural requirements are shown in the network by the 
links connecting the terms and the leaf nodes and those among 
intermediate nodes, For example, if there were no connection 
from “hypertext” node to t,,, under c,, the chapter would not 
appear in this figure. In other words, the figure represents those 
parts of the document, which are relevant to the query. 

In order to show how a variety of query types are handled, 
\ve make a distinction among document nodes. Nodes 
participating in belief calculations can be labeled as a context, 
retrieval, or path element. A context element is defined to be 
the unit of text where a term is sought after, While the context 
elements in the example are the title and section elements that 
are also leaf elements, a query may specify a non-leaf element 
as a context element as in “Find a document where a chapter 
CONTAINS the term hyperkrt.‘” 

A retrieval element is the type of an element the user wants 
to retrieve and can be a leaf or non-leaf element. In traditional 
IR, documents are the retrieval element by default even when 
passage retrieval is performed. In the example query, the 
retrieval element specified by the FIND clause also happens to 
he a document. Users, however, may want to find sections or 
titles satisfying a certain requirement. It should he noted that a 
node can he both a context and retrieval element at the Same 
time as in the case of traditional IR. Between a context element 
and a retrieval element, there may he one or more path 
elements that are used to compute the f-mal probability value 
behveen a retrieval element and a leaf element. Path elements 
are explicit or implicit depending on whether they are specified 
in a quq. In the example query, the chapter node is an explicit 
path element because it is specified in the INCLUDES clause. 

2.3 Element retrieval with sub-net instantiation 

Given the representation of a structured document, there should 
he a mechanism hv which the belief value of a retrieval 
element (more precisely, the degree of belief that a retrieval 
element supports a qum;) is computed in a principled way. 
Conceptually, a query consisting of terms and operators (e.g. 
Boolean or vector) instantiates a part of the net composed of 

the nodes and h&s participating in the computation. The 
overall process consists of four steps: 

mark all the candidate retrieval elements and the leaf 
nodes containing at least one of the query terms as well 
as the path elements, 
compute the degree of belief that each retrieval element 
supports the leaf node via path elements, 
compute the degree of belief that a query term node is 
supported by a set of leaf nodes connected to itself, and 
compute the degree of belief that the query as a whole is 
supported by each of the retrieval elements by 
combining the evidence from all of the query term 
nodes based on the query operator. 

It should be noted that after the first step, the computation 
process is described for a single retrieval element. When the 
computations are done for all the candidate retrieval elements, 
their rank order must be determined. 

We currently assume there is no query that is purely 
structure-based without any content-based requirements. 
Therefore the process always starts with a leaf node, lvhich 
may or may not be a context element, and works its way up to 
a retrieval element. This assumption of bottom-up calculation 
is motivated by an implementational need described in the next 
section. 

2.4 Bayesian computation of belief 

Given the instantiation process, we still need to specify how to 
compute the degree of belief at each of the steps 2 through 4. 
The degree of belief B for a node is expressed in principle by a 
conditional probability. Let C be a child node and F a set of 
parent nodes linked to the child node. Then, 

B(C) = Z F P (Cl F) X P(F) (1) 

where the sum is over the power set (2 IF1 ) of the parent 
elements that are random variables taking values on { 0, I } The 
probability function P(CIF), expressed as a link matrix in [6], 
leads to various specifications for computing B(C) in general 
and for ranking strategies in particular. The summation is 
weighted by the probability P(F) that is either a priori 
probability associated with the node or a degree of belief 
calculated using the formula (1) recursively. 

For the sake of simplicity, we use the net in Fig. 2 in 
explaining some variations of calculations. It shows a net with 
two section elements as the parent nodes of a term node T and 
as child nodes of the element C. 

Figure 2. A simple network 

The degree of belief for T given the network topology can 
he computed as follows: 

&TIC) = P(TI-S,, -Sj *8(-S,) * Bc-SJ 
+P(Tj-S,,SJ *B(-SJ *B(s,, 
+P(T/S,.-5.3 *B(s,, *B(-SJ 
+P(TIS,.St) *Bls3 *BlsJ (2) 



The degree of belief for the section elements can be computed 
in a similar way: 

BlsJ = P(& 1 C) *P(C) + P(S, 1 -C) l P(-C) 
B(-Si) = P( -S, 1 C) *P(C) + P(-Si 1 -C) * P(-C) 

= (I - P(S, I C)) * P(C) + (I - P(s ) -C)) * P(-c) 

(3) 

(4) 

This computation yields an exponential time complexity with 
respect to the number of parent nodes, because it allows for an 
arbitrary link matrix or an arbitrary set of coefficients. It is only 
natural to consider different ways to calculate the degree of 
belief for an arbitrary node, which hopefully approximate the 
above formula. 

2.5 A practical calculation method 

In devising a method for belief calculations in our model, we 
attempted to enforce three criteria: computational tractability, 
consistency with the case of document retrieval (as opposed to 
element retrieval), and flexibility in exploiting semantics 
embedded in document structures and pragmatics users may 
want to specify in their queries. The first criterion is essential 
because strict adherence to the Bayesian method makes our 
system impractical. The second one ensures that if no structural 
information is used in addition to the usual TF, IDF, and length 
information, the bottom-up evalution of a document similarib 
as described in Section 2.3 produce the same result as that of 
ignoring the document structure. In a sense, it makes the 
simplified calculation method sound. Finally, by allowing for 
the flexibility added to the basic framework, our model has a 
potential to take into account a variety of discourse level 
semantics and pragmatics for or against certain SGML 
elements of a document type. 

The first criterion can be met by adopting a simplified 
formula that does not sacrifice the fundamental characteristics 
of the inference net. We opted for the following: 

BfljC) = P(TlS,) * Pn’J + PflISd *P&J 
= PITIS * P(s,IC’) *P(c) + P(TI&J * P(s*IC) *P(c) (5) 

which considers onl! positive events. This is somewhat in line 
with Dempster-Shafer theory [9] where interactions among 
propositions (hypotheses) are not handled by listing all 
combinations of conditional probabilities, but by manipulating 
sets of propositions. The diflerence, though, is that we only 
deal with singleton sets of propositions (i.e. S,‘s in (5)). The 
forumula can be easily generalized for cases with more than 
two parents. 

The second criterion ensures that the similarity of a 
document to a given query be the same regardless of whether 
the document is considered as a structured document or as a 
flat text without any structural elements. Since one of our goals 
is to enhance retrieval effectiveness by exploiting the semantics 
implicit in structured documents, this restriction makes sense 
only when no additional information other than usual statistical 
parameters such as TF, IDF, and lengths of element. is used in 
evaluations. In other words, we want to make sure that 
identical terms in a document have the equal contributions 
toward the document similarity regardless of their positions, as 
long as no additional information about individual elements 
participates in belief calculations. 

Fig. 3 depicts the situation where two identical terms 
occur in two different elements. Since the distance between 
S,, and D is greater than that between S,, and D, there are 

more multiplication operations involved with S,, than with 
S, in computing B(rlD) as in: 

MV’) =PfTk.J *&Y&L, J * * J’CS,,I~U’ * P(s,,,IDJ 
* PcV + P(TI.%J * PF,.#d *PO (6) 

where S,J is for i_th element at the i-th level. We contend that in 
this situation, the influence from the two terms occurring in the 
two elements must be the same, provided that no information 
other than the usual statistical parameters and the topology 
comes into play. 

- 
D 

5, S, & ST ST 

_..- . 
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Figure 3. A term occurring at different levels 

A natural way of enforcing the restriction is to make 
conditional probabilities proportional to the length of the child 
element and ensure the sum of the conditional probabilities on 
the links branching out of a parent node to be equal to 1, In 
other words, we must assign probability values in such a \\a> 
that: 

c, P(s,jlSi.,,3 = I (7) 

where kl is the number of children for S,_,,k for any k, and 

where IS,1 for a leaf node is the number of index terms 
occurring in the element. If S,J is a non-leaf node, IS,jl is the 
sum of the sizes of its children. 

In Fig. 3, for instance, P(s,,,(D) would be significantl!, 
larger than P@,,,ID) if the sizes of the text associated with leaf 
elements are about the same. While the distance (i.e. the 
number conditional probabilities to be multiplied) to the root 
node makes the influence of T in S, , weak, the same term T in 
S,,, has a small impact on D as well; because of the small value 
of the conditional probability P(s,,,ID). 

2.6 Belief calculation with biases 

The restrictions described so far provide our model nith 
computational tractability and consistency of the belief 
calculation mechanism. Although it serves the purpose ot 
calculating the similarity of any element at any level (hence 
retrieval of elements), it would have no impact on improving 
efIectiveness of document retrieval. In order to take advantage 
of the effect of passage retrieval where the similarities of 
passages are used to retrieve documents, we should be able to 
discriminate among different elements depending on their 
contents and types. [lo] has demonstrated by, experiments that 
certain elements are more usefid in retneving structured 



documents than others. 
The content and type of elements can be utilized by 

reflecting them on the process of estimating conditional 
probabilities ltith the formula (5), which starts from the leaf 
element and all the way up to the retrieval element. A 
conditional probability in this context can be interpreted as the 
representativeness of the child node for the parent node or as 
the degree to which the parent node supports the child element. 
The type of an element can serve as a good indicator for the 
representativeness of the element. For example, we can assume 
that a title element is in general more central to the topic of the 
document (hence more representative) than a figure caption 
element and reflect it on probability calculations. 

While there can be a number of different ways of 
estimating the conditional probabilities based on the contents 
of participating elements, which require further research, we 
consider two intuitive methods. One is to use the well-known 
vector similarity measure between the parent element and each 
of its children elements. Assuming that element vectors are 
constructed with the usual TF and IDF values, a child element 
with a large number of unique terms whose lDF values are high 
would have a high value for representativeness. That means, a 
term in an element with important terms makes a stronger 
contribution to the similarity of the retrieval element than a 
term in an element with many weak terms. 

Given a set of children elements Si and their parent C, 
represented as S, = ~si,, siB . . . . sin:; and C = -:c,. c,. . . . . en:;, 
respectively, where n is the number of index terms and sy and ci 
are calculated with lDF and TF, the probability can be 
estimated as follows: 

P (qc:, = ,$zi+ (S, 0 C) (9) 

where 1, is a weight of the particular element type, representing 
its overall importance relative to other types of elements 
sharing the same parent. This computation incorporates both 
the content and the type of elements. The value of 1, can be 
fixed a priori or changed with the history of system opemtions. 
As in the equation (7), the parameter should be set in such a 
way that the sum of all the probabilities conditioned by the 
same parent is 1: 

X,2+* (Si SC) = I (10) 

The other method is based on our notion of coherency of 
an element, which is assumed to be the degree to which the 
content of the element is similar to those of sibling elements. If 
the content of an element is a complete digression from the rest 
of the elements under the same parent, it is determined to have 
low coherency relative to its siblings and hence low 
representativeness. On the other hand, if the average similarity 
between the element and the rest of the elements under the 
same parent is high, it is deemed to have high coherency. More 
specifically, coherency of S, with respect to its parent C can be 
computed as follows: 

Coherency(SJ = Z; S, l 5’) whew j #i (11) 

It should be noted that bl is the number of children for S,‘s 
parent. 

3 Implementation Issues 

There are three main issues we explore in this section. The first 

is how the probabilities are estimated in indexing, and the 
second is how the indexing results are organized and stored for 
retrieval tasks. Finally we describe how elements at any level 
can be efficiently retrieved using the index structure. In the 
current implementation, it is assumed that content-based 
retrieval can be done before structural constrains are satisfied 
in processing queries that contain both content and structure 
specifications.. 

3.1 Indexing 

The probabilities to be estimated directly from documents are 
basically P(TIS,J, P(s,IC), and P(C) as in formula (5) As 
indicated in the previous section, we make use of more or less 
conventional statistical techniques using TF and IDF values 
and the vector similarity measure in estimating various 
probabilities. The probability P(rl SJ of observing a term T 
given an element Si (or the degree of belief that S, supports 7’) 
can be estimated with: 

P(rlSJ =” IDF, * TF; si (12) 

Here IDF, and TF,, s, are normalized as in [TCol]. The 
probability P(SJC) of observing Si given C (or the degree of 
belief that C supports SJ can be calculated as a similarity 
between the two vectors as follows: 

P(s,IC) zs,. c (13) 

P(C) is the probability of observing C assuming that C is 
the root node (i.e., document) in the inference net. One feasible 
way of estimating this is to use the history of the svstem. The 
more often a document (element) has been retrieved and 
judged to be relevant, the higher the value. In our current 
implementation, however, it is set to 1 as is the case in other 
work [6]. 

It should be noted that all the probability values can be 
calculated off-line, i.e., at the time of indexing. The only 
calculations to be done at the retrieval time are the 
multiplication operations of probability values from the leaf 
nodes all the way up to the retrieval node. As explained in the 
next sub-section, all the necessary information for the 
multiplication operations can be found in a single inverted 
index. 

3.2 Index structure 

Since an IR system that supports structured documents must 
exploit additional information embedded in the structure, it is 
natural that additional space is required for an index. ln order 
to minimize the space as well as time complexity, hovvever, we 
used the following design decisions. 

0 Since processing a structure-based query is likely to be 
expensive, we process the content-based retrieval first to 
result in a smaller search space and then filter out those 
that are not satisfied with attribute and/or structure 
constraints. 

0 In order to process pure structure-based and attribute- 
based queries, there should be separate index structures, 

0 Considering a huge number of composite elements in 
which other elements are nested, indexing should be 
done only with the leaf elements so that the storage 
overhead is minimized. 
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Figure 4. Structure of Inverted Lists 

0 Since conditional probabilities between parents and 
children are used several times to calculate the similarity 
value of an arbitrary element to a given query, these 
probabilities should be accessible efficiently. 

Considering the design decisions and our retrieval model 
where the belief value is calculated in a bottom-up fashion 
from the leaf node toward the retrieval element, we designed 
and implemented an inverted index structure shown in Fig. 4. 
The main thrust of this structure is that an inverted index list 
consists of not only the list of leaf elements containing the path 
but also the path information associated with each of the leaf. 
The path information specifies \\hat elements exist between the 
leaf element and the root element, together with a set of the 
conditional probabilities between each pair of a parent and a 
child along the path. 

As shown in Fig. 4, an inverted list consists of one or more 
segments, each of which corresponds to a complete path 
starting from a leaf node to the root node. A segment is divided 
into two parts. The first part contains a document ID, a unique 
element ID, an element type (TID), and a probability value. 
The pair of a DID (document ID) and a UlD uniquely identities 
an element in the entire collection even if there are more than 
one document tvpes, hence more than one DID’s, The second 
part contains a list of <element type, probability> pairs, each of 
which specifies the type of an element along the path and the 
associated probability that the parent node supports the child 
node. 

It should be noted that the TID’s are stored for both leaf 
nodes and the path nodes in order to deal the specifications as 
to the context, explicit path, and retrieval elements in queries. 
That is, not all the leaf nodes containing a query term can lead 
to the final set of retrieval elements. The types of elements in 
the path are checked against the context and/or explicit path 
element type in the query so that the leaf nodes not satisfying 
the structural constraints can be eliminated at an early stage. 
On the other hand the element ID for each pair in the second 
part is not stored because it can be calculated dynamically by 
using the leaf element lD as in [ 111, The basic idea is that when 
a unique ID is assigned to each element (node), a complete tree 
with a branching factor k is assumed. Since unique IDS are 
assigned to virtual nodes as well as the actual nodes, it is not 
hard to compute the ID for the parent of a node. 

At first glance, the inverted index structure seems to take 
up an enormous amount of storage because the number 
elements in a document can be large. When there are t index 
terms and e elements per document on average, however, the 
total number of element ID’s in the entire index (i.e. the sum of 

the number of elements in all the inverted lists) is not as many 
as e times the number of documents. This is because each 
element contains a significantly less number of terms than a 
document does, and hence an element ID does not occur in as 
many inverted index as a document. In other words, the term- 
element matrix is sparser than the term-document sparse 
although the number of columns in the term-element matrix is 
e times the number of columns in the term-document matrix 

3.3 Retrieval process 

As described in 2.3., the actual retrieval process is performed 
in a bottom-up fashion, mainly due to the use of an inverted 
index that drives the retrieval process to be triggered by a term 
in a query as in other conventional systems. The other reason 
for the bottom-up query evaluation is because of the way 
documents are represented in an inference net: no elements 
other than leaf elements contain actual text, and the retrieval 
process must start with where the text containing a query term 
is. 

Our design of the inverted index structure as described in 
the previous sub-section makes it possible to minimize the time 
required for the bottom-up retrieval process. Since a large 
portion of belief calculations is done off-line, retrieval 
decisions can be made fairly efficiently. In addition, an inverted 
list contains all the necessary information to determine whether 
traversing the path toward the root node will lead to a success. 
By scanning the inverted list associated with a query term, the 
retrieval module can easily find out whether there is a segment 
with the type of element specified as the retrieval element in 
the query. If a segment does not have such element in the path 
it is not a candidate for retrieval although the leaf element 
contains the query term. If a segment contains an element of 
the specified tvpe, however, the belief calculation begins. 

Our system currently implements the p-norm model [ 121 
for query processing so that it can process both the Boolean 
and vector space query model. Once the evidence that a 
retrieval element supports a query term is calculated, it can be 
combined with the evidence calculated for another quq term. 
The result can be combined with a still new query term, and so 
on, until all of the query terms are taken into account. 

4 Experiments 

Since there was no suitable test collection available, lvhich 
consists of SGML documents, a set of queries with structural 
constraints, and associated relevance judgments, it was not 
possible to test how effectively a variety of element-level 



queries (as opposed to document-level queries) can be handled. 
As a result, the goal in our experiments is limited to 
demonstrate the following three aspects. 

The first was to see if the implemented system could 
process arbitrary queries that specify not only a retrieval 
element at any level in SGML documents but also some 
containment constraints (i.e., explicit path and context 
elements) in themselves. The purpose was to validate the 
model in a qualitative sense and see if the retrieval results are 
reasonable. Since it is a test for new functionality supported by 
the proposed model and the system, we won’t discuss it further 
in this section. The second was to show that our use of the 
structural information embedded in the SGML documents can 
actually, improve the effectiveness of document retrieval, in 
comparison with the case where no such information is used. 
This is an indirect way of validating the model for its passage 
retrieval function. Finally, we were interested in finding out 
whether the idea of giving a bias (i.e. semantic and prapatic 
preference) to an element type actually improves retrieval 
effectiveness. This is also a way of indirectly testing the 
hypothesis that certain element types have their inherent values 
in satisfying queries. 

~..~.. &..@.. & 

a : with significant text 

0 : without significant text 

Figure 5. A typical structure of a patent document 

We used the patent data and a subset of topics 51 through 
150 in the TREC collection. The main reason for our choice 
was because the patent documents are fairly long and, more 
importantly, contain nested element type tags. Most patent 
document trees have at least four levels. Fig. 5 shows the 
structure of a typical patent document. We used 32 queries 
because other queries in the collection have no relevant 
documents in the patent collection. By selecting 234 relevant 
documents for the queries and 766 irrelevant ones randomly 
selected from the rest of the original patent collection, we built 
a collection of 1,000 documents (about 40MB). 

The baseline was the flat document case where all the tags 
were removed. We employed the typical TF*IDF weighting 
scheme, IDF weights on query terms, and the vector cosign 
similarity measure for ranking. In order to test the value of 
using structural information embedded in the documents, the 
baseline was compared with the “pure” model case where the 
belief calculation model described in sub-section 2.5 was 
employed without any weighting biases against individual 
element types. That is, the conditional probabilities were 
computed using (12) and (13) in subsection 3.1 with the 
constraints imposed by (7) in sub-section 2.5. 

Table 1 shows the comparison between a baseline that 
ignores all the structural information (i.e. flat documents) and 

the test case where evidence from leaf nodes are combined in a 
bottom-up fashion. The overall results indirectly demonstrates 
the feasibility of using our model for structured documents and 
directly shows that the use of structures in SGML documents 
indeed improves the retrieval effectiveness, especially 
precision, contiig previous results that the use of passages 
is generally helpful. The major difference is that instead of 
using artifacts such as the use of best scores, we used the 
notion of the representativeness of elements and our belief 
calculation method in the inference net representation of 
SGML documents. 

Recall 
Baseline Use of 

Level 
(Flat Structured 

% 

Documents) Documents 
Charge 

0.00 0.2826 0.4027 42 
0.10 0.2603 0.3864 48 
0.20 0.2383 0.3295 38 
0.30 0.2204 0.2710 23 
0.40 0.1897 0.2304 21 
0.50 0.1766 0.2156 22 
0.60 0.1345 0.1433 6 
0.70 0.1291 0.1224 -5 
0.80 0.1117 0.0956 -14 
0.90 0.0808 0.0872 8 
1.00 0.0550 0.0795 45 

Average 0.1563 0.2030 30 

Table 1, Comparison between a case with flat documents and a 
case with structured documents 

For the third aspect of our experimental goal, we first 
investigated on whether ditferent element types in the patent 
document make different contributions to retrieval of whole 
documents. Each of the non-trivial element types (i.e. those 
containing some content-bearing terms) was used as the only 
indexable region and tested for their effectiveness in document 
retrieval. The experimental results are shown in Table 2. It 
should be clear that when the <TEXT> element type and the 
<BSUM> element tvpe, a child of <TEXT>, were used alone, 
respectively, the retrieval results outperform the case where all 
the element types were used. 

Table 2. Retrieval results with individual element types 

Having observed element types vary in their inherent 
values for retrieval, we tested the idea of assigning weights on 
element types as described in sub-section 2.6. Since the 
immediate children of the <TEXT> element are most 
interesting in their individual contributions to retrieval 
effectiveness as in Table 2, we ran the system with different 
biases given to <BSUM>, <ABST>, <CLMS>, <DETD>, and 
<DRWD>. Table 3 shows some prominent parts of the 



experimental results. The first row is the pure model case 
without any biases at all, whereas the other rows shows the 
cases with different weights given to the element types. It is 
clear that the strategy of giving biases to individual element 
types is worth further investigation. 

0.9 - 
(+20 %) 

Table 3. Results with biases given to element types 

5 Conclusions 

We have defined and implemented an inference-net-based 
model for retrieval of structured documents, which can handle 
queries based on both the content and the structure of SGML 
documents, The main thrust of the model lies in its capability 
of retrieving elements at any level in a principled way, 
satisfying certain containment constraints in a queiy Moreover, 
while the model is general enough to reproduce the ranking 
strategv adopted by conventional document retrieval systems 
by making use of document and collection level statistics such 
as IDF and TF, its flexibility allows for incorporation of a 
variety of pragmatic and semantic information associated with 
document structures. 

We implemented the model and described some of 
the details to show how the complex-looking model can be 
realized as a practical system. In our current implementation, a 
large portion of probability calculations are done off-line, and 
the results are stored an inverted index so that retrieval can be 
done efficiently. With the system, we conducted some 
experiments to demonstrate: 

that the model can be used to etfectively process queries 
that specify not only a retrieval element at any level in 
SGML documents but also some containment constraints 
in themselves, 
that our use of the structural information embedded in the 
SGML documents can improve the effectiveness of 
document retrieval, compared to the case where no such 
information is used, and 
that careful assignment of biases (weights) on different 
element tvpes actually improve the retrieval en‘ectiveness 
because different element types have their own pragmatic 
values for retrieval. 

There are a number of issues to be addressed in the near 
. 

various probabilities and to assign weights to element types, 
exploiting semantic and pragmatic information obtainable from 
various sources. We also plan on comparing the usual passage 
retrieval against the case of using SGML tags for passage 
identification. Additional experiments must be done for the 
purpose of understanding what inlluences different belief 
calculation methods will have on retrieval effectiveness. 
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future. Most notably, we are currently m the process ot 
extending the current model to handle more complicated 
queries including such constraints as attribute values, pure 
structures, and hypertest links. We also plan to run more 
estensive esperiments to figure out better ways to estimate 


