
Query Rewriting for Semistructured Data

Yannis Papakonstantinou* Vasilis Vassalost
University of California, San Diego Stanford University

yannis@cs.ucsd.edu vassalos@cs.stanford.edu

Abstract

We address the problem of query rewriting for TSL, a lan-
guage for querying semistructured data. We develop and
present an algorithm that, given a semistructured query q
and a set, of semistructured views V, finds rew&i.ng queries,
i.e., queries that access the views ami produce the same re-
sult as q. Our algorithm is based on appropriately generaliz-
ing contal:nm.ent mappings, the chase, and query composition
- techniques t,hat were developed for structured, relational
data. We also develop an algorithm for equivalence checking
of TSL queries.

We show that the algorithm is sound and complete for
TSL, i.e., it always finds every non-trivial TSL rewriting
query of q, and we disduss its complexity. We extend
the rewriting algorithm to use some forms of structural
constraints (such as DTDs) and find more opportunities for
query rewriting.

1 Introduction

Recently, rnany sernistructlrred data models, query and
view definition languages have IMXI proposed (34, 131
and arc used for querying and rnanagernent of Web
data [ll, 1, 271, 1,iological databases [%I, integration
of heterogeneous data [15], etc.

Serriistrlrctlired rriodels are necessary becanse of the
flexible nature of non-database irrforrnation systems.
In particular, semistructured rnotlels are iiscfiil in tlic
context of Web-based sources; Web data very often

* Research partially supported by NSF grant IRJ-9712239,
Air Force contract F33615-93-1-1339, alltl equipment donations
by Intel Corporation.

tR,esearch partially supported by NSF grant IRI-96-31952,
Air Force contract F33615-93-1-1339 and the L. Voudouri
Foundation.

Copyright ACM 1999 l-581 13-084-8/99/05...$5.00

lravc irregular, partial or only irrrplicit structure-:. The
semistructured model XML [2] is erriergirrg as the new
standard for the rriodelirrg and exchange of Web data.

As it 11% been the case in the relational world,
rewriting of semistructured queries using views is a
fundarriental query processing and optirriization tool
for semistructured queries. In t,lris section we first
present an abstract, version of the rcwritinji problem
and corlseqiiently we descril)e its applications, incliidirig
a rewriter that was blrilt for the TSIMMIS system [15].

The Rewriting Problem At a sufficient level of ab-
straction the rewriting prol~lerri faced by the applica-
tions listed Mow is as follows: Given a qlicry q access-
ing a serrristructnrcd databasor D and a set, of views

v= {~,...,Vn..> over D, find r~ewritirrg qIrcries, where
a rewriting query of 4 given V is a query that accesses
at least one view of V arid returns the same result as

rl, 2 If the rewriting query iises views only (i.c., it, does
not access directly the clatal)ase D) then it is called a
total rewritlirrg qlrery.

Applications of Rewriting Algorithms Serrristruc-
tiiretl rriodels have been used by repositories that store
sernistriic:tliIcd data 1201 arid by rrrccliators that, intc-
grate heterogeneous information [Xl, 111. Tlrc irnpor-
tanco of rewriting algorithms ii1 mediators arid rcpos-
itories of relational systems, as dcsc:ril)(:d l)c!low, is a
witness to the rriany applications they will have in the
semistructured world.

1. Relat,ional query rewrit,ina algorithms are used for
answering queries using rrraterialized views [38] and
the qiiery (:a&: [19].

2. Views have l~eri used in rrrcdiator systorris to de-
scribe the solrrcc c:ontcnt,s [21]. Furtlrcrrrrore, the
diffcrerrt and lirriitcd qlicry c:apai)ilitic:s of the sources
are often describctl by “views” wlicrc: the c:orist,ants

lThe database may be distributed over multiple sites.
*We formalize the concept of “same result” and the definition

of a rewriting quer,y in Section 3.

455

are pararneterize~d. For example, the parameterized
view SELECT * FROM R WHERE R. A=$X, where R re-
sides at source S, declares that S can answer queries
that pi,ck all attributes of R and have R.A be bound
to a constant. Then a query over the source data
has to be rewritten to use correctly the contents and
capabilities of the sources, i.e., to correctly 11se the
available views [>!a, 17, 371. Indeed, in that case the
query has to access m.l?j views and hence we need a
total rewriting query.

The above points highlight the importance of rewriting
algorithms in relational databases and mediators. We
believe that rewritiqg algorithms will be equally irnpor-
tant for semistructured databases and mediators.

User/Application

Figure 1: The TSIMMIS integration architecture

Rewriting in the TSIMMIS System: Capability-
Based Rewriting .and Cached Queries A TSIM-
MIS mediator integrates semistructured data from rml-
tiple heterogeneous information sources into a virtnal
view V, -- not to be confused with the views iised by
the rewriting algorithm. The general integration archi-
tecture is shown in Figure 1.

, , Query

Mediator

Source-specific Query

Capabilit@a&% Candidate Plans
‘, <Rewriter :“_ +y

, ,; .”
I

- P,an COSt estimate

tiQuerie>

Figure 2: Mediator architecture

For example, a bibliographic rnediator may conlbine
the data of multiple bibliographic sources into a single

3Given the autonomy of the bibliographic sources and the
mediator, the rewriting query may deliver a stale result to the

5inion” view. At run time, given a user query, .the
mediator decomposes it into multiple queries which
refer to the source data. However, these bibliographic
sources are accessible through interfaces that, hi%Ve

varying query capabilities; the queries emitted by the
mediator mist conform to these capabilities. Let 11s

further illustrate this issue using an example.

The user query requests all “SIGMOD 07” pllblica-
tions. Therm the mediator will decompose the user query
into multiple “SIGMOD 97” queries where: each one of
them is source-specific, i.e., it refers to 011~: source only
(see Figure 2). To do the decomposition correctly and
efficiently the mediator must figure out,, llsing the ca-
pabilities of the underlying sources, how to extract the
necessary information from the sources. This decis.ion
is made by the Capability-Based Rewritu (CBR) rnod-
iile. In our running exarnplc, if one soiirce only siip-
ports queries on “year”, the CBR will decide that a
query that retrieves the ‘97” publications will be sent
to this source. The rest, i.e., filtering for “SIGMOD”,
will be done at, the mediator. After suc:h decisions .are
made, and the mediator formllatcs a qllc:r,y plan that re-
spects the query capabilities of the soIir(:es, each query
is sent to a wrapper, where it is translated into the na-
tive query language of the corresponding source. Then
the individual query results, namely the “SIGMOD 07”
publications each source contains, are c:ollect,ed, the in-
formation about, each of them is appropriately consoli-
dated into one entity by the mediator and t,he combined
result is presented to the user.

The TSIMMIS system loses parametrized views to
describe query capabilities. The mediator employs a
version of our rewriting algorithm to accomplish its
task [25]. Note that the! existcrm: of parameters in
the views does not seriously affect the cmnploxity of
the problem [37]. Tl le considerations introduced by
parameters are also addressed in [25]. For presentat:ion
clarity we work in this paper with plain semistructured
views - as opposed to parametrized ones.

Use of Rewriting in semistructured repositor.ies
Olir rewriting algorithm can be used to answer

queries using materialized views and c:ac:hc:d queries of
repositories for sernistriictiired data, such as Lore [2rj].

For example, if a ~acli~d qiiery reslilt, contains
all “SIGMOD” publicatiolls, olir mwritiug algorithm
can create a rewrit,ing query where: “SIGMOD 97”
publications are obtained by filtering the c:ac:hed query
for “1997” publications. The rewriting algorithm o1:11y
needs the query and the cached qllery staternents -. it
does not, need to examine the solm:e data. The cached
queries play in this case the role of views.3

456

Matc~rialized views and cached queries were the main
origiual rriotivatiori for relational query rewriting [38],
and we believe they are as iniportailt for sernistructurcd
databases. Indeed our algorithm is applicable to
repositories of Web data stored using the XML [2] data
model, which is very similar to our data 1node1. The
query language - TSL, for Tree Specification Language
- that we are working with is very similar to recent
proposals for an XML query language [S].

Use of Rewriting in Web site management
and structured Web search Recent work [l l]
has applied concepts from information integration to
tllc task of lmikhg co~nplex Wcl) sites that serve
information derived from rriultiple dat,a sources. In this
sccmario, a Web site is a declarativel,y-y-defiri~~~ de gm$7,
over the sernistructured data graph, of the contents of
the information sources. If we only have access to the
information through the Web she(s), queries asked over
the data graph need to 1~ rewril.teri as queries over
the Web site structure and corltcuts. The Web site
definitions are just view definitioiis over the data graph;
the necessary query rewriting can this be handled by
01ir algoritlirri.

Results WC: propose an algorithm that solves the
rewriting problem by outputting a finite set Q of
rewriting queries, i.c., queries equivalent to ‘1 t,liat have
at least one condition referring to one of tlic views.
Note that for every rewriting qllcry clr that does not
appear in Q there is a “trivial” 4: E & such that, every
view that is used by c& is also ilscd by qr. Under any
reasonable cost model, c& will 1~: at least as efficierit as
qr (it will be more efficient if it uses strictly fewer views)
and hence we do riot include qr in Q. We will say that
the algorithm rctmns all rewriting queries, though wc
actually ~ricari that it returns a set of rewriting qiic3ios
& with tlic above properties.

The rewriting algorithm rnakcs 11s~ of structm-al
constraints on the source data. In particular, WC:
consider constraints that can easily 1~: expressed by
standards such rrci the XML DTDs or the newly
proposed XML-Dat,a. The existence of such constraints
allows us find rewritings in cases where, in the ahence
of constraints, the algorithm wo~iltl fail.

The algorithm is based 011 extending containment
mappings, the chase, and cornposition from tlic rela-
tional to the semistructured world. In doing so, we hi-
efit froru a vast body of knowledge on relational query
rc-!writing. Furthermore, we obtain insight on how to ixi-

user. This result may still be very useful to the user. Furthermore,
if an update-propagation system is in place, it can account for the
“deltas” between the cache and the sources [39]. In this paper we
will not deal any further with these consistency issues. Instead
we focus on the rewriting algorithm.

Views”
“A. Gupta” “Constraint

“SIGMOD” 1993

Figure: 3: Exarrlplc OEM ol)jcc:ts

terface with the optimizer of the TSIMMIS system (see
Figure 2).

Contents The following section introdlms the OEM
data rriotlcl and our query langiiagc for semistructli-
red data. Section 3 states tlic: rewriting prolhn and
dcscrilm our algorithm Scc:tiori 4 prescrits an algo-
rithm for eqllivalencc: testing of TSL qlmries. Section 5
proves tlic u.mdmcss of our rcwritirlg algorithm for
TSL qllcries and views and tiismsscs the complexity of
t,lie rcwritirig prolhri. Finally, Scctiou G discusses rc-
latod work and Section 7 offers SOIIIC corduding rcrnarks
ad discusses future work.

2 The OEM Data Model and the
TSL Query Language

In the: OEM data 111odc:1, the data arc represented as
a rooted graph with lahled nodes (also called ob,jects)
that have unique object ids.

Figllrc 3 illllstratcs SOIIIC lddiograpllic: data rcpre-
scutetl ill OEM. Atorrric ol)jcc:ts have: all atomic: vallle
(c.K., SIGMOD) wldc tllc: valllc of tllc other ol)jec:ts
(called set ob,jects) is tl 1e set of ol,j~!c:ts (nut j11st oh-
ject ids) pointed to by the olltgoing edges. Notice that
this definition is inherently reuirsive, siiico the value of
an ol>ject is part of the d)jc:c:t: tlio value of a set object
o is essentially the OEM slhgrapll rooted at o.~ The
roots of tlic graph are illustrated a.s top level ol)jec:ts.
They are the starting points for qllcrying tllc sources.
Note that we ignore ol)jec:ts that arc not rcacllable from
tlic roots of the graph.

The: ol),joc:t ids arc typically atomic: data. Ill t11e
gcncral case thy arc: torrns from tllc Hcd~rard lmivc:rse
composed from

4Excluding o itself.

457

a set, of atomic: data, whidl includes hit, is not
necessarily codined to, the af.orni(: data appearing
as labels and values and

an arbitrary set of uninterpreted function synibols.
For example, f ($10, ashish) is a possible object
id, anti the function syrribol f “defhes” the terni.

Ol)jec:t, ids may 1~2 sy~rhols with no partiullar
rrleaning, or they rna,y have a sernantit: meaning. For
exaniple, if the ol)jec:t is a W& page then it is
typically a good idea to have the URL be the ol)jec:t, id.
Flu-thermore, meaningful term objec:t ids (:an facilitate
the integration tasks.

Even thollgh OEM can model (lab that c:an rlaturally
1~ represented as an arbitrary graph, we expect that in
rnany applica.t,ions, espehally those dealing with XML
data, clata will instead be naturally represented as a
directed ac:yclic graph, or as a tree.

A TSL qllery is a rule that dofines the query result
using rninirnal rno&:l semantics. A rule consists of a
h,ead followed 1,~ a : -. and a body, in the style of Datalog
[36]. Intuitively, tht: head describes the result 0l)jcc:ts
in the ur/,s~uer’ gmph., whereas the body descril)es one
or niore conditions that rriiist be satisfied 1)~ the soiir(:e
objec:ts. The heat1 and the body c,onditioris are hased
011 object patterns of the form <ob,ject-id label value>.
The uahe field can be either a tcrIn (variable, atomic
c:onstant, or function symbol followed 1)~ a terni list)
or a set vallie pattern which c:ontains zero or uiorc
objec:t patterns. T(:rrns that, appear in an objec:t, id
field in th h,ead of a TSL query rnllst ho Ilniqll(-:. This
rcstrihon forc:es TSL to produu: frc:sh ol),jcct ids for
the 01)jec:ts in the ‘query rosnlt. It, also forces TSL
to produce unswe~ trms instead of arbitrary graphs as
query results. We &cuss renioving this restrictiori (arid
the reslilting language) in Section 6.

Semantics and power of TSL WC: illustrate the
seniantics with the following exarrlple.

(Ql) <f (P> female {<f (X> Y Z>}> :-

<P person {<:G gender female> <X Y Z>}>@db

The semantics of the: above query are

l;f there is a tuplc of btindirqs p, 9, n:, y and .z for the
variables P, G, X, Y, and Z such that

l the d&a source db contains a person top-level

(root) ol)jec:t itlerhfied 1)~ p,
l the 1) ol)jec:t, has a gender slll)ol)jec:t with value
female anti ol)jec:t, id .9, and
0 the 31 0bject has a 71 subol)jcc:t, with value z and
object, id D:

%th,e object p may also h,ave 0th.w subob,jects
then the qllery rcslllt has

l a female oljject, with object id f(p),
l a ?j sul~ol~jec:t of the f(p) ol,jec:t, with value z and
object id f(z).

%th,e object f (1) J may h,ave subo bjects oth,w th,an 1.1

%because th,e ra.sult of arroth,w de vrayg lif~~,.se” ll/,OW

% subob,jects i&o the ob.ject f(p).

Note that z c:o~lltl 1~: a sul)graph of the data in
db. The answer to query (Ql) is an ol)jec:t with a
new, unique o\)jec:t id and t,lic strlictim~ clcnotetl by
tllc: query head. In gerlcral, a TSL q~lc!ry (:an c:onstrl.lct
answer 0l)jet:ts t>liat arc tree rc:striic:tlirings of sourc:e
data, hence we refer to tlicl: rcslilt of a TSL query as an
unsu~w tire. Because of the copying scmautics of TSL,
(e.g., z above could be a subgraph of the data), die
query result can ac:tilally 1,~ a graph: a c:onstructcd tree
with (perhaps c:yc:lic:) siibgraplis potentially hanging off
SOIIK harhes. Note finally that a TSL qllory may rc-:fer
to Inore t,lian one data sour(:c, c!.g., 011~) c:oudition may
rc:fer to dbl and a sec:outl one to db2.

Formally, for an OEM tlatal)ase D, ht PO be the set
of all siil)graplis5 of D, 0 1~: the sot of a11 ol,,jcc:t ids
ill D, and C he tllc: set of all lal~c:ls ant1 atoxrlic valuc-:s.
Let Vo 1)~ tlic: set, of all ol)jc:c:t, id varialh2 alid VC
he the set of all otlicr (label arid valiic) variables, with
VoflVc = 0. Let V = VoUVc 1~: the set of all variablles.
The rnearling of the query body is the: set, of assignments
19 : V 4 0 U C U PO that satisf,y all c:onditions in the
body. Each assignment rr~aps 0l)jcc:t id variables to 0,
iaiwi variables to c‘ aid vailic! variat)k!s to c u PD.

The rucanirlg of the qllcry hc:atl is as follows. ‘We
c:rc!at,c arltl laid the new Iiodcs of tlic: aiiswcr tree, and
make the top-level 0l)jcc:t pattern of tllc: query the root
of tlic: answer tree. III partiuilar, for c:ac:li ol)ju:t, pa.ttc.:rn
<f(Xl, . . , X,,,) L V>. iii t,hc! qlic:ry licatl, and for c!ac:li
a.ssigrlmcIlt i9 above:, crcatc: a iicw ol?jcc:t, with 0l)jcc:t it1
f(S(X,), . . ,19(x,)), label B(L) and vallie e(vj. If
instead of V, the 0bjec:t pattern above? has (01 . . . o.“,},
the value of the created 0l)jec:t is {Q(ol), . . . B(0,)).

Notice that when two assigrmcrlts prodlu the salne
torrrl as the ol)jec:t id of au ol),joc:t, tlit: sanle ol)j,ec:t
is “retiirnetl”, arid tlic vahic:s of tllc: two 0l)jec:ts are
‘LfllSCd”

TSL c:arl 1~ trarlslated to Datalog with fllnc:tion syn-
l)ols ant1 1irrlitt:d reuirsion ov(:r a fix& sc:lienla. It c:an
be shown to 1~: 1~s oxprossivc than StrllQL and thus
less cxpressivc than liucar datalog [ll]. TSL qlmies
cau 1~ corupiltcd in polylogaritlimic: p;brallcl t,inlc with
polynorrlially rrlany proczssors (i.t:., TSL c QNC).

III the rest of this paper, we only consider positive
TSL queries without cyclic: ol)jec:t patterns in the

5R.emember that the value of a set ol>ject is essentially the
OEM subgraph rooted at that object.

6ob,ject id variables are variables appearing in the object. id
field of object patterns.

458

body conditions (i.e., without ol>jcc:t patterns that look
for cycles in the OEM ciatabase). To sirnplify the
presentation, we focus on normal forrri queries, defined
next. Every TSL query can 1~ easily converted into
normal forrn, hence the focus on riorrrial forrri does ilot,
lirriit the power of the language.

Definition: Normal Form TSL Queries are the
TSL queries in whose body all sc%-valued llahre fields
contain at 7r~ost one oljject pattern. Additionally, a
norrrial forrn query with just one condition in its I)ody
is called a stirrgle path, qiiery. q

The query (Ql) can be easily transforIned into the
following riorrrlal fornl qiiery:

(Q2) <f (P> female {<f(X) Y Z>}> :-
<P person {<G gender female>}>@db AND
<P person {<X Y Z>}>Odb

Safe TSL queries A TSL query is safe if every
variable appearing in the query 1icil.d also appears in the
query body. Thus, the saIne sirnplc syntactic test that
is used 1)~ [X] to define safety of conjunctive queries
can 1~ used to clefhe safety in TSL. III the rernain~ler
of this paper we are only discussing safe TSL queries.

TSL views are dehed simply by TSL queries. Each
view defi~~es its own OEM database, with its own space
of unique ol)ject ids. That can easily 1~ accornplisllcd
for example by qualifying the ol)jec:t ids 1)~ tlic nalne of
the view.

It is important to point out that TSL llas featllres
essential for qiierying arid integrating serriistriictiired
data, riarriely the ability to query arid copy arbitrarily
nested sclierna-less data, the ability to restructure such
dat,a through the use of semantic: ol)jec:t ids, and the
ability to query the “structure” of the data through tlic?
use of label variables.

3 TSL Query Rewriting

Given a TSL query Q referring to an OEM datahe D
and conjunctive views Y = VI, . . , V,, also referring to
D, the rewriting problem is to find a TSL query Q’ such
that (i) Q’ refers to at least one of VI, . . , V, and (ii) for
all OEM datal)ases D, t,he result. of Q is equivalent to
the result of Q’. (See definition of cquivalerlce blow.)

We call Q’ tllc rcwritin,9 query. In general, there
nia,y he Inore than one rewriting queries. WC start
oiir discussion with a straightforward definition of
cqllivalencc of OEM databases.

Equivalence of two OEM databases D1 and Dz
Two OEM datahses D1 and Dz are equivalent if they
are iderrtica& i.e., they have the sarrle set of ol),jec:t ids
arid for every object id D: the two ol)jec:ts identified l)y

n: in D1 and Dz (i) 1 iavc: the sarrie label r! (ii) l)oth of
tliern have an atoniic valiie or both of thcrn have a set
value (iii) if they arc atomic: ol)jcc:ts thy llavc the saIrle
atoniic value 7) and (iv) if thy arc set, ol)jcc:ts they have:
identical sets of siihl),jcc:ts.

Apparently the above definition carries to equivalerlce
of query results and views. It is possilh to define OEM
database equivalence up to ol)jec:t id renaming. We
discuss this issiic in Section 6.

3.1 Rewriting of Queries with Single Path
Condition

WC iriforrnally present, an algoritlirri which decides
whether a query Q having one single path condition can
l)c rewritten using a siriglc view V that has one or more
path conditions. This slgorithrn, thigh a special case
of the: corriplete rcwritirig algorithni (see: Scctiuri 3.4),
illustrates the basic: steps of our tcchiquc. The: gerleral
algorithm is proven sour~f and colnplete for TSL and
its complexity is stiidied in Section 5.

Step 1: Find Candidate Queries We first find map-
pings from th: viow to tlic: condition and then wc
develop a carldidatc qllery for coach nlapping. Note
that for tlic special case of qiic:ries with a single path
condition tlierc Iriay l>c: at, rriost oiic rnappirig arid
coriscqiieritly at rriost, oxic caiidiclatc: query.

Step 1A: Find Mappings Fintl, if it exists, the
mappin from the hiy of V to tllc: l)ocly of Q.
Our mappings extend [7] to cope with o\)jcct
nesting. A forrrlal definition can 1~ found in
[31]. If a rriapping exists, tlicri we cari 1~ sure
that, if the is a varialh Ihiding that satisfies
the: hdy of Q, then there is also a lhiing that
satisfies the: body of V. HCIKO rnappirlgs arc
a necessary coilclitiori for tlio rclcvarice of tlic
view to tlic: qilcry condition. l3irtlierrnorc, the
rrlappirlg indicates whidl conditions of Q tie not
appear ii1 V; tlicsc: coiitlitioris will liavc: to 1)c
chocked l)y tllc: rnwritillg qllcry. Notice that there
cari 1~: at most one inapping from the: hdy of V
to the we sir& path conditiorl in the body of Q.
However, in the general cast: (Section 3.4) WC may
have rriiiltiple rnappinffs.

Example 3.1 Consider tllc! view (Vl), which
rc:struc:turc:s the person ol)jcc:ts, la.l~:led p, of db

into ol)jcc:ts that “group” tlicir lahls in property
siihl~jects, 1al)elcd pr (for hcvity) and their
values in value suhl)jec:ts, lal~c-:lotl v. Notice: that,
(Vl) %scs” iiiforrriatiori iii tlic sc:ns(-: that it only
shows the lalzls and values that, appear in db ht

tlio lahl-valiic: c:orrosporidcric:c lias tlisappearcd.
Qlleries sllc:h as (Q3), that ask whcthor the value

459

leland. appears in the database, can be answered
llsing the view (Vl) tm:amc: they do not need
information on the la\&value correspondence.
The example shows how our algoritlm finds a

rewriting query for (Q3).

(Vl) <g(P’) p {.:pp(P’,Y’) pr Y’>
.:h(X’) v Z’>)> :-

<P’ p {<X’ Y’ Z’>}>@db

(QS) <:E (P> Stamford yes> : -
<P p {<X Y leland>}>@db

The only rnappirlg from the body of (Vl) to the
body of (Q3) is (M2). Intuitively, (M2) indimtes
that the c:onditiou Z’ = leland must, 1.~ enforcctl
on the .view iri order to get ol),jec:ts relevant to the
query.

(M2) [P’ H P, X H X, Y’ c-) Y, Z’ +-+ lelandj

Step 1B: Generate Candidate Queries Apply
the rriappirig to v, resulting in an “instantiation”

of V, namely V’. Then build the rewriting query
Q’ as follows: Tl.le head of Q’ is identic:al to the
head of Q. The body of Q’ is the head of V’.

Example 3.1 continued Tile only cmdidatc
rewriting query (fQ4) is meated from the: lzacl of
(Q3) and the: result of applying (M2) to the hc:acl
of (Vl).

(Q4) <f (P) Stanford yes> :-

<g(P) p {<pp(P.Y> pr Y>
<h(X) v leland>}>@Vl

Step 2: Test Correctness of Candidate Query

Clleck wh&er the composition of V and Q’, tlcrlotccl
by V o Q’ is eqnivalmt to Q. SI (9~ 2 is acc:olnplishecl
iii two siibsteps:

Step 2A: Computation of Composition The
c:omposition V o ‘Q’ of the rewriting query with
the vic:w is c:ornplltcd. We c:ornpllte V o Q’ llsing

a qiiery-vic:w c:orripositiori algorithm lmsc!d 011 ex-
tciidirig rcsoliitioii and iiriific:atiori for scmistrm-
tared data.. This algorithm in csse~~:c tak(:s ex-
ponential t,itne in the siac of t,hc qllery. The corn-

position algorithm is illustrat,ad iisirig ail exarriplc
below. For a forrrlal presentation, see [3I].

Step 2B: Testing Equivalence of V o Q’, Q Tllc
general idea of eqiiivalericc tmtirig is to find (1) a
mapping that maps V oQ’ into Q, i.c:., (i) it rnitps

the liead of V o Q’ into the: llcad of Q and t:vc:ry
c:orldition of VoQ’ is rrlappc:tl into a c:ondition of Q

ant1 (2) a mapping that rnaps Q into V o Q’. Noto
that the V o Q’ and Q llavc: to 1)~ in normal form
in order to test eqiiivaleric:e as clesc:ribetl a1,0ve.~

Example 3.1 continued WC tc:st whc:tlm (Q4)
is a valid rcwritiriff qimy by first transforming
it illt,o tllc: normal forrn (Q4),, t,hc:ll c:orrlposing
it with (Vl), arid finally c:omparing tlic: rc:siiltirlg
qllc:ry (Vl)o(Q4), to (Q3). Iutlcotl, (Vl)o(Q4),,, i,s
c:~uivalerlt to (QS) 1)m’aus(: (i) tllc: lrmppirlg (MS)
maps (Vl)o(Q4), to (Q3) ant1 (ii) tllc: mapping (M4)
maps (QS) to (Vl)o(Q4),,).

(Q4)n, <f (P> Stanford yes> :-

<g(P) p {<pp(P,Y> pr Y>}> AND
<g(P) p {<h(X) v leland>}>

(Vl)o(Q4), <f(P) stanf ord yes> : -
<P p {<X’ Y Z’>}> AND
<P p {<Xl’ Y” leland>}>

(MS) [P H P, X’ H X, Y ++ Y, Z’ H leland,
x” H x, Y” H Yl

(M4) [P H P, x H X”, Y t+ Y”]

Set Mappings The rewriting quc:ry may have to
apply a %iil~ol~ject trierrilmsliip” condition on a value

varial&:. To llallcllc this (:a~(:, oilr iriappirigs arc

c:xtmded to map a variat)l(: to a sc:t pattmi.

Example 3.2 Consider tllc: ~ucry (Q5) aud tilt vic:w
(Vl). It, is c:lcar tliat Z’ iriiist l)iitcl to sc:t valiics
that c:orltain a <Z last stanford> slll)ol)j(:c:t. The:
algorithm c:itptlirc:s this iiltliitioil by d(:vc:lopiiig the:
mapping (MS) from t,lic: hotly of (Vl) to tllcr body

of (Q5). Notic:c that Z’ is rr~appul to {<Z last
stanf ord>}>.

(QS) <f (P> stanf ord yes> :-
<P p {<X Y {<Z last stanford>}>}>@db

(MS) [P’ H P, X’ ++ x, Y’ H Y,
Z’ H {<Z last stanf ord>} 1

(Q(i) <f(P) Stanford yes> :-

<g(P) p {<pp(P,Y> pr Y>
<h(X) v {<Z last stanford>}>}>@V1

(QS) is tllc c:auclidatc: query c:rcatc!d fro111 tllc: 1lc:acl of
(Q5) and the: rc:sult of applying (MS) t,o the head of
(Vl). 0

7The general equivalence testing algoprithm is actually more
intricate, because of the existence of object ids. For a full
description of the equivalence testing algorithm for TSL see
Section 4.

460

Mappings are necessary lmt, not sufficient, for the
existence of a rewriting query as tile following c!xarnple
illustrate-:s. That is why a c:ont,ainrrmlt test is r~eecled,
as in Step 2B of the algoritllm.

Example 3.3 Consider query (Q7) and view (Vl).

(Q7) <f (P> Stanford yes> :-
<P p {<X name {<Z last stanford>}>}>@db

Intuitively, there is no rewriting query for (Q7)
because the view %WS” the correspondence l&ween
labels and values. Hence, if the clatalmse contains
a name attribute and a value 7) containing tlic: <last
stanf ord> sul)ol)jcc:t it is irripossil)lc for the rewriting
query to discover whether there is a name ol)jcc:t with
value 7) or name and 7) appear in cliffererlt ol)jec:ts of
tile database. Notice that despite the: non-existence of
a rewriting query there is the mapping (MS). Based
on this mapping tllc algorithm derives the candidate
rewriting query (Q8). H owever, tllc: composition of the
candidat,c rewriting query with tllc: view reslilts in the
query (Q9) 1 :l w II< I 1s not c-:qiiivalerlt to the original query
(Q7). Notice tl la name is the label of the ol)jcc:t X’ while t
<last stanf ord> is a slll)ol)jc:c:t of anotllcr ol)jcc:t X”.

(M6) [P’ I---+ P, X’ M X, Y’ H name,
Z’ H {<Z last st anf ord>} 1

(Q8) <f (P> Stanford yes> :-

<g(P) p {<pp(P,Y> pr name>
<h(X) v {<Z last stanford>}>}>@V1

(Q9) <f (P> Stanford yes> : -
<P p {<X’ name Z’>}>@db AND
<P p {<X” Y” {<Z last stanford>}>}>@db

0

As rrleutioned earlier, a formal treatment of mappings
can 1)~ folml in [31]. T11c following sll1)sec:tic.m c:xtc:r~tls
the c:lia.sc: for set varial)les, which, as will see, is
necessary to tlcal with the key depc:r~der~c:y on ol~jcct id.
Sill)sec:t,ioil 3.3 disclisses how the al~orit,lm cm exploit
struct~lral constraints, suc:h as DTDs, that arc: known
almiit soiirce data. 3 1 , 11)sec:tiori 3.4 presents a gcrieral
algorithm for query rewriting.

3.2 Extending the chase for set variables

0l)jec:t identity introduces a fimctional clcper~der~c:y in
OEM (key dcper~dcm:y from tllc: ol),jcc:t id to the: lal)el
and valm). Morcovcr, stru:tural constraints introdllce
fimctiorial tlcpend(:Ilc:ies, as wc will see in tlio ilcxt
slil~sc!c:tiorl. Tllc rcwritirlg algorithm 11s~ the: chase
tcclmique [3ci] t 0 tlcal with tllcse tl(:pc:lltleilc:ic:s. Tllc:
tcc1miqiiC: has to be cxterltlcd for tlic case of variables
t,liat can bind to sets. III what follows, wc rriotivatc:
the ueed for and present our exterlsiorl to tlic: cliase,

presentecl for the cast: of key dcpc~~dcncics 011 ol)jec:t
id. T11c cxt,ension applies in gcmcral to any fllrlctiorlal
depcudcmcy wit11 valiie varial)lcs ii1 tlic: right llarltl side.

Example 3.4 Comidcr q”c:ric:s (QlO) mtl (Qll).

(QlO) <f(P) Stan-student {<X Y Z>}> :-
CP p {CU university stanford>}>@db
AND <P p {<X Y Z>}>@db

(Qll) <f (P> Stan-student V> :-
<P p {<U university stanford>}>@db
AND <P p V>@db

HJ$Jll,)r is c?quivalcnt to (QlO), since: V is a set variable.
I > , ollr algorithm, as dcscrilml so far, will

c:rrorlc:ollsly riot cliscovcr a rewriting qlicry lm:a.~isc: thcrc
is no mapping from the coutlitiull of (QlO) to tllc: sc:c:ond
cmtlitiuu of (Qll), Using t,llc: key ~lcp~:~~dcI~cy OII ol),jd
id, wc car1 iufcr that V is a set variable imtl trailsforrn
(Qll) to (QlO). Noticc: 110~ tllo “set” varial)le is
transforrncd into a set pattern. 0

Recall that TSL qucrics arc not allowed to corltain cyclic
ol),jcc:t patttmls. This is ~~c:c:c:ssa.ry for the: tlcscrilml
simple cxteiisioii to the cliasc: to tcmriiiiatc:.

Chase extension for dependency on object id
Let ol, 02 1~: ol)jcc:t pattc-:rus of a. query ‘1 with tlic
saim turn in tlic: vl)jc:c:t it1 fiieltl.

If 01 aud 02 Iiavc Ll, VI w.id Lz, Vz iii tlicir lal)c:l
aild value: ficltl rcspcctivcly, tlicii WC: rcplacc! all
occIirrcu:(:s of L2, Vz ill (1 with Ll, VI rcspcctivcly.

If 01 has ol)jcc:t patt,cms {oi., . . , 0.i) in its value field
and 02 has V2, thcii rcplacc: all occlirrciices of V2 iii q
with {<X Y Z >}, wlim: X, Y, 2 arc varial)les not
appearing in q.

If 01 llas {oi., . . .) 0.f } iii its valid: ficlcl al~tl 02 has
{CA;, , cm}, rc:plac:c: tl l(‘ v2 ll(! fiC!l(lS of 11otl1 01 md c 1
02 with {oi, ,o,i, CS, , c:,,,}.

If OllC of 01) 02 have: a c:oIlstir.llt ii1 0110 of tl1o fields,
and the other lias a variable, rcplacc all ocmrrcnccs
of tliat variable in ‘1 with tllc cmstaiit,.

If lwtli o1 and 02 ham: constants ii1 0i1c of tlic fields,
tlieu, if t,lic corlstailts arc tliffcrcilt, halt with an
error (this query c:miiot 1~: clii~sccl to ail cqliivalmt
query sat,isfying the: ol)jc:c:t, it1 key tl~:pc:r~dcI~c:y). If
the: coiistaiits arc: the saiuc, tlo uotliiiig for this field.

If 02 is itlcntical to 01, tlrop 02 from 9.

111 or&r to L’(AliL!+(!” fllllCt~iOllil1 tl~:pc:iltl(:Ilc:ir:s that cl0
iiot iiivolvc: va.1~ varial)lcs, WC! cm list tlic: “rcglllar”
cliasc: rlilc.

461

3.3 Using structural constraints As illustrated in the previous example, we identify two

Semistriictiirecl data are often accompanied by cori- cases where information can easily be inferred from a

strairits that partially define the: structiire of objects. structural description, such as a DTD, or an XML-Data

Such structura.l constraints can be axpressed as a DTD, ‘Lsclieiiia” :

a DataGuide [IG] or ;an XML-Data “schema”. For in-
stance, wc: co&l know that the data in source db in the
previous examples conform to the following DTD:*

label inference Given a “path cxprcssion” of lab&
a. ? . c, if the st,nic:tiiral constraint specifies that the
only sill)object, of an a object with a c siil)ol)ject is

<!ELEMENT p (name, phone, address*)> a b subol)ject, we can infer that ? = b.

<!ELEMENT name (last, first, middle?, alias?)>
functional dependency If the! structllral constraint

<!ELEMENT alias (last, first)>
<!ELEMENT address CDATA>
<!ELEMENT phone CDATA>
<!ELEMENT last CDATA>
<!ELEMENT first CDATA>
<!ELEMENT middle CDATA>

specifies that ol)jcc:ts 1al)cletl n llavc: oiily one
siil)ol)jec:t 1al)elccl b, wc can infer that given a pattern

This DTD describes in a flexible way the structure of
tllc source data. For example, it, specifies that ol)jec:ts
labeled p (as in person) have exactly one siil>ol)ject each
with labels name and phone, and zero or more address
subobjects. It also specifies that sulmbject,s phone and
address are atwnic. Given such a DTD, we can infer
inforrriatior~ in the form of dependeiicies bet,weeri labels
or object ids, that will allow the rewriting algorithm
to discover rewritings iii cases where it would have
otherwise failed.

Example 3.5 Given the above DTD, we can infer
automatically that in Idb the only sllbobject, of a p object
with a last sulmbject. is a name ol)jec:t. Therefore Y”
of (Q9) (in Example 3.3) llas to 1~: name. Moreover,
there exists a “lal~&:cl” fiinctional dcpeiideiicy from
ol),jec:t, it1 P with lal)el p to object id X with label name,
since according to the: DTD a p ol)jcc:t has exactly one
name subol)ject. This implies that X” has to be X’ (1)~
application of the ch,ase rule). Therefore (Q9) cm be
rewritten as

(Ql2) <f(P) stanford yes> :-
<P p (<X' name Z'>}>@db AND
<P p {<Xl name {<Z last stanford>}>}>@db

Finally, we chase the clepentlency on P using the chase
extension tlescril~ecl previously to derive (Q13). It
slm~ltl be ol)vious that (Q13) is cqi~ivalent to (Q7), arlcl
therefore a valid rewriting qiicry.

(Q13) <f(P) stanford yes> :-
<:P p {x:X' name {<Z last stanford>

<A B C>}>}>Qdb

0

'Since OEM does not-support order, we ignore the order in
the DTD description as well.

the fiiri(;tiorial depmdericy X, + Yb holds.

The rewriting algoritlm takes advantage of this
information 1)~ perforiiiiiig label iiifcrencc and the chase
011 the query, tlic views and t,lic: canclidatc qileries, again
as illnstrattted ill Exarnplc 3.5. It is straightforward
to show that applying lal)cl iiiferciice aiid the cliasc
always terminates in tirric polynomial t,o tllc: lcngtli of
tllc: qlmies and tllc constraints clcscription. Moreover,
it is easy to show that lal)t:l irifererice and tlic chase Cl0
riot affect tlic soiiridmss of t,lie rewriting al~oritlim.

In the presence of striictural constraints, there is
clearly rriore opport,iiiiity for qiicry siriiplification and
qllcry rewriting. This is the slll),jc!(:t, of flltllre work.

3.4 Rewriting Algorithm

Wc iiow give the algorithm for tlic: gcncral case of the
qiiery rewriting prol)lcrri. In what follows, the l~oclies
of tllc: qllcry Q ad the views irl V arc c:onvc:rtc-:d into
rrorrrrd form ant1 lnl~cl illfcrcim: a.iid tlic! c:liasc: are
applied before wc apply tlic al~oritlm.

Input: A TSL query Q wit,11 k sir&: path conditions
in the body arid a set of TSL views V = {VI,. . . , Vn,}

Output: A set of rewriting queries.
Step IA: Find the mappings Hi,, from the body of

c:ac:h Vi E I/ to the: body of Q using a mapping
tlisc:ovt:ry algorithm [31].

Step 1B: Construct cautlidatc: rc-:writixlR qncries Q’
l h,ead(Q’) is h,cad(Q)
l bod?/(Q’) is any cox~jlmction of (! conclitions,
1 < r! < k, wlicre each condition is oitlicr a vic:w
“instantiation” Oii (h,ead(K;)) or a c:olldit,ion of Q.
If the resultinff query is iiiisafc, then umt~iiiiie with
next candidate.

Step 1C: Perform label inference and chase Q’.
Step 2: Test whether each c:onstruc:tc:d Q’ is correct.

l Corlstruct the composition Q’(Vl, . . . , Vn) of Q’
with V,, . , V,,. See [31] for the: clctails of the

462

cornposition algorithi.
l Perform lahl inference and chase Q’(Vl, . . , V,,,).
l IfQ’(V,, . , I&) is eqllivalent to Q
(see Section 4) then include Q’ in tllc outp~lt;
else continue with the next cantlitlate.

Notice that, the above algorith coustructs and tests
all candidate queries (in Step 1B). The efficiency of the
algorithm can be siibstantially hproved with the use
of simple heuristics. A particularly effective heuristic is
the following:

l keep track of which conditions of the query body
each instantiated view 19i,~ (head(rriaps into.
Those-: are the conditions that are ‘hverod” 1)~
!9&32d(~)).

l only corlstruct candidate queries Q’ sllch that, the
views and conditions in the body of Q’ “cover” all
the contlitions in the hly of Q.

A variation of the above heuristic: is irrlplernented in
the capability-based rewriting module of the TSIMMIS
system [25].

The next sllbsection descrihs the eqllivalence test for
TSL queries, which is an essential part of Stop 2 of t,lle
above algoritlirri.

4 Equivalence of TSL queries

Two qllcries Q1, Qz arc equivalent if arrd orthg if for all
OEM databases D, their results Ql(O) and Qz(D) are
equivaht. In this sectiou, we will tlevelop a cornpile-
time tc:st of equivalence of TSL qlleries, hsed on an
extension of coritairinient, rriappings [7]. We assiinie that,
the chase has already hen applied to the queries.

The problem of TSL equivalence is uunplicatcd
hcallse of the restructuring capabilities of TSL: query
1ic:ads c:onstruct arbitrary answer graphs and tliffercnt,
rules cari coiltrihte different parts of tlic sanle answer
graph. Hum we riced to rnakc sure that all the
colriponents of the result graph arc tlic sarnc. The
required dccornposit,ion is in the salrie spirit as norrrial
forrri dccornposition for qiiery hcties (see Section 2),
ht it llas to go 011e step fluther l)!, tlecornposing a TSL
qiiery into finer-grain nilcs. In [31] WC show that norrrial
forIn dccornposition does rrot allow us to det,crrriirie
equivalence of TSL qlleries.

We deco~npose a TSL query into paph, corrrporrerrt

qiieries that, correspond to tlic: coniporients of tlic result
graph: CC&, IK&S anal foot, i.c:. , top-he1 ol,jcc:ts.g
Every TSL rule Q is d~:c:ornposctl into t,llrc:e types of
finer grain riilcs:

gR.ecall that OEM graphs are rooted.

One top rule corrcsporiding to the top love1 condition
of the: head of Q (this query correspontls to the root

of the OEM graph c:onstnlc:tc:d by the: head of Q)

as nlany member rlh as thcro arc ul)j(:(:t-sllbol)jc:c:t
rc:lationships iu the heat1 of Q (those! qllc:ric:s corrc-
spontl to tllc edges of the OEM graph constrllctcd
by the heat1 of Q, and specify their st,art and end
objects) arid

one object type ribs as ul),jc:c:t cuilditions in the
query head of Q (: ,Lp (or ros ondirlg to the objects of
the OEM graph c:onstrllc:tcd 1)~ t,llc: had of Q and
doscrihig tlicir lahls and valiics).

The tlecorrlposition is illllstratul 1)~ t,llc: folhwing cx-
arrlplo. The rc:dlu:d rllles arc: (:ss(:utially TSL: sot val-
1~:s are allowed in the ol)jc:c:t “pr(:&:at(!s”. Noto that
member and top “pr&cat(:s” depart, froul TSL syntax
t,o cnlphasize the connection to Datalog [28].

Example 4.1 Corlsicler the following qllcry:

(Q14) cl(x) 1 {cf W m {<n(Z) n V>}>}> :-
<X a {<Y b {<Z c V>}>}>

Its dccornpositioii ill graph cornpoilcnt qiicrics is as
foll0ws:

top(l(X)) :- <X a {<Y b {<Z c V>}>}>

member(l(X),f(Y)) :- <X a {<Y b {<Z c V>}>}>
member(f(Y>,n(Z>> :- <X a {<Y b {<Z c V>}>}>
<l(X) 1 {}> :- CX a {<Y b {<Z c V>}>}>

<f (Y> m {}> :- <X a {<Y b {<Z c V>}>}>
<n(Z) n V> :- <X a {<Y b {<Z c V>}>}>

Cl

The condition for cqllivalcrlu: of t,llc: r(:sllltiup graph
corriporient qilcrics is easily dcrivod:

Theorem 4.2 Two s&s 5’1 = {PI, . , P,,> anti Sz =
{Tl , . . , Tm} of graph c:oriiponc:nt qiic:rics arc cqiiivalent
if and oiily if for c:ac:li R; t,lic:ro csxists ib rrrn.p@/.g to it
frorri souic Ti and for cacli T, thrc: exists a. rriappiiig to
it frorri sornc <i.

Tllc: proof of Theorun 4.2 is a gcneralixatiorl of the
contairirnerit tlicorern for iiriioiis of relational con,jlinc-
tive qlleries with ol)jec:t ids [33, 181. Mor<:over, the fol-
lowirig tlicorern liol~ls:

Theorem 4.3 (TSL query equivalence) Two TSL
qiieries arc cqiiivalent if ant1 only if tllc:ir th:orripositioris
iiito graph cornponciit qiicric!s arc c:qilival(:ut.

From tllc ahvc:, it is straightforward to thivc: a sirnplo
c:qllivalcrlcc: test for TSL qll(!ric:s.

463

5 Completeness and Complexity

The soundness of the algorithm dcscrilml in Section 3.4
is estaldislled by its sword step, that checks the correct-

ness of the rewriting. We will nuw prove the coxnplete-
ness of the algoritliin, i.e., we will show that it always
finds a rewriting query if me exists. For this proof,
we assiirne that there are no strlictliral constraints, and
therefore no functional clepencler~cic:s except the key de-
peidmc:ic:s on ol)ject id. III t,hc preseilce of arbitrary
functional dependencies, such as the ones t,hat, call 1~
inferred from structural coustraints, it is c:asy to show
t,hat our rewriting algorithm is not complete (see [lo]
for a simple coiintert:xainple for the case of relational
qllery rewriting).

To prove the completeness of thr: algorithm, we first
observe that if there is no mapping from a view body
to the query htly, then the view is not ‘Lrdevailt” to
the qiicry.

Lemma 5.1 Let Q ad V be TSL queries. There is a
rewriting query Q’ of Q using view V ouly if t,llere is a
mapping from the tmly of V to the Idy of Q.

Moreover, we can hmd both t,he rumher of codi-

tions and the variables appearing in the rewriting.

Lemma 5.2 Let Q 1)~ a TSL qmry and V 1~ a set of
TSL views. If there exists a rewriting of Q using V, tltcn
there exists such a rewriting consisting of at most k: view
heads, where k: is the n~uiil~er of .sl;rrgle #7, conditions
in the body of the qii,ery.”

Lemma 5.3 If the exists a rewriting of qllery Q using
the: set of views V, tlml t,here exists a rewriting of Q
using V that doesn’t I use variables that don’t exist in Q.

The above lemmata dcmorlstratct that the theory of
relatioilal query rewriting, preseilted in [20], can be
generalized for TSL. Notice that Lcmrnata 5.2 and 5.3
hold in the presence of the: key clc~pendenc:ies on ol)jec:t
id. Irittiitivel,y, our algorithin is cumplete lmaiist: no
additional functional depeideiicics can be inferred from
the ot)jec:t-id key dependencies. By using disjoint sc:ts
of ol)jec:t id and othr variables, if. coiditiori such as
<X Y {<Y Z W>}>, wllicli implies t,he extra fi~uctional
tlependei~c:y from X to Z aid W, is disallowed.

The fvllowillg lcmrrla just,ifiies why c:ornplctcxess is
not c:orr~pro:mised by only coilstructiilg rewriting q1icrics
Q’ that lmv~ve a hmrl identical to the had of the
query Q. Notice, t,llis is an issue that is particular t,o
serriistructured aid ricsted riiodels while it is trivial in
tllc relational irioclel (Q’ must havtr a head identical, iip
to variable renaming, t,o the heat1 of Q).

“Notice that, since view heads do not have to be single path,
the number of single paths in the rewriting can, be greater than
k.

Lemma 5.4 If there exists a valid rewriting query
Q” such that h,ead(Q”) is not the sariic as had(Q),
then there exists a valid rewriting query Q’ s11ch that
h,ea.d(Q’) = h,md(Q).

To see that Lemma 5.4 ldds, notice? that if the exists
sl~ch a query Q”, then we (:itIl always apply our rewriting
algorithm t,o it, to derive a qllery Q’ cql~ivalent, to Q”
(and thefore to Q) whose\ hcad is identical to the head
of Q.

Theorem 5.5 Tllc: rcwritiug algorith of slllmction 3.4
is soiiid aid corilplctc.

Proof: (Sketch,) The algorit,lm is ohiously sowd,
lmalise its last step is a correctness test. It is
complete 1)ec:aiise of the ahvc! lcmnata, lmaiise the
qllery conlposition algorithm is correct [28], and finally
because the rewriting algorithm c:xliaiistivel,y searches
the space of rc:writ,iilgs tlcfinccl 1)~ the il.l~ov~-! lomriiata.
0

5.1 Complexity of TSL rewriting

The algorith dcscrilml in S&h 3.4 takes oxponen-
Cal time:. First, Stq 1 cm goncratc a.11 cxponcutial in
the sixc of the view ldics mrrhcr of mappings. Then
Step 2 can gcrierate ail exponential niiirhc:r of card-
date rewritings. Finally, it is provm in [Yl] that the
construction of Q’(Vl, . . . , Vn,) using a query cornposi-

tion algorithm takes exponential time.

6 Related work
TSL is clcrivcd from the: Mctliator Spc:c:ificatioll Lan-
gllagc (MSL) [2o]. MSL is a mm gcncral larlgnage
that allows arl)itrary rcstrllctllrings of sc~m:(: data. Be-
(::ulsc of its additioml rc:stmlc:t,~lriiig powc:r, MSL (iW

well its StrllQL, which llas t,hc: SRXK: rc:str~lc:turi~~g m-
pabilitics) is uot closctl under query cornpositiou. This
significantly rcdlicc:s the applicability of the rewritiilg

algorithm.
The prolhm of qllcry rewriting for col~j~mctive

relational views is cliscusscd, airioilg otllcrs, in (20, II:)]
aid for reciirsivc: qiic:ric:s (hit liot rccimivc: views) i.11

[9]. The p ro) em 1 1 of qiicry c:quivalciic:c: for relational
lailguages with ol)jcc:t ids lias h:(:il stiicliecl in [El.
Our notion of query q1iivahc:c: corrcziponds, in tllc!
tcm~~hology of [18], t o e:pxsed cquimlert ce.

The: TSL rewriting probloru cmnot 1~ rc:duc:c:d to tlw
well-lmdcrstood rclatioiial c:o~~,jliilc:tivc: qlcry rewriting
prolhm. Given a rcdiic:tion of sc~iriist,riic:tiircd data to
relations, SIK:~I as th me presentd in [28], TSL qllcries
and views arc rcduccd to Datalog with function syr~hols
ad with a limited form of rccursion,ll 1~11ce making
inapplicable the coiljiirictivc? qiicry rc:writ,ing results.

I1 As described in detail in [28].

464

The special form of the restricted recursion in TSL
leads to decidability and complexity reslilts which
are known not to hold for general recursive Datalog
programs [CJ].

There is little work on the prolhn of rewriting
sernistriictured queries using views [14, 51. 111 [14],
the related problem of qnery c:or1tainrnent in StmQL
(a sernistruct11red language similar to TSL and MSL)
is addressed. The paper deals wit11 queries and views
containing “wildcards” and reglilar path expressions,
hit it does not deal with the restructuring capabilities
of the StmQL language. Recently, [s] proposcl:d a11
elegant solution to the problem of rewriting a regular
expression in tcrrns of other regular expressions. The
prol~lcm is closely related to tlic problcrri of rewriting
serriistruct1ired qlieries using views, ht the sollltion is
applicable to a narrow class of qiieries and views, the
ones that consist of only 011~: reg11lar path expression
arid return its “endpoints”.

Our work is also related to the problem of object,
oriented query rewriting. Previons work 011 the prolhm
of co11tain1ne1it arid eqiiivalencc of ol)ject oriented
queries [6, 231 relics on the existciice of a stat,ic class
hierarchy. Work on the prolhn of co11tai1ment of
queries on co~riplcx objects has lmm presented recently
in [24].

Finally, the has bee11 scme rcumt work 011 11sing
str11c:tiiral i1iforriiation ahut a sc:r1iist,riic:tlirccl soiiru:
(slicli as graph sclicrrias [3] or DTDs) i11 quc!ry processing

pa, 321.

OEM variants and rewriting A popular variant
of the original OEM clata model (11sed in this paper)
that has he11 proposed in the literature [26] makes
labels a property of the edges iilstead of the riodes
of the graph (sc:e Figure 3). The: techniques and
algoritli11is dcscrihd in this paper apply with little
change to t,liis version of the clata inodel; small cliangcs
arc: also necessary to the language syntax, of coiirsc.
One riotewortliy diffcreric:c: is that tlic: 01ily implicit
flmctional depenclency present in this variant of OEM
is ob,ject id to mlue of a11 ol)jec:t.

Isomorphism In the OEM data model every node of
the seriiistr1ic:tlired graph has an object identity - un-
like [4] and [24]. Furtht:rrnorc, WC mqllirc that, the orig-
inal and the rewritten queries compiitc: identical graphs
(i.e., sa1nc ol)jec:t ids) as opposed to graphs equivalent
1111&r l~isirnulation [4] or isomorphis1n. Following the:
isornorpl1isrn approach, two OEM databases D1 ;tud Dz
wo11ld 1~: eq11ivalent if for every ol)jec:t .zl of D1 WC ~a.11
find a11 ol),jcc:t 22 of 02 such that 21 ant1 22 ham: th:
same label, sa11ic valiic: if atoriiic:, or c:q11ivahrit (i.e. iso-
rnorpliic) sets of subol)jec:ts if they have set valiies. In
this approach, we only care for tlic: ol)jec:t-s~il,ol),jc-:c:t rc-

lationships the: ol),jcc:t itls crcatc:. For cxarnplc, the: URL
names arc riot important; it is tlie 1iypc:rtext striictiire
created 1)~ the links that is irnporta11t.

From the: point of view of th: rewriting algorithm
it is not irnportarlt whcthcr the: rcwritiug ql1c:ry Q’
procluccs rcsnlts itlmtical to th origillal q11c:ry Q or
it produces isomorphic: rcs11lts. The reason is that we
conjecture that if thcro is 110 rcwritiug query Q’ with
a result identical to Q then the is no rewriting query
Q” returr1hg a result isomorphic to Q.

7 Conclusions and Future Work

WC prcseritcd a11 algoritli11i that givcm a sc1riistriict1ired
q11ery 9 cxprcssed in co11j1111c:tivc: TSL autl a set, of
serriistriic:t1ircd views V, hds mmi,tti1/.,9 qIi(:rics, i.c.,
qiicrics that access tlic! views ant1 au: cq11ivalmt to 9.
Our algoritli111 is l)asc:d 011 appropriately gcncralizing
corrtairrrrrerrt rrrappti~~qs, tlic: chmse, am1 conrposi,tl:on.
The first, step uses contai1mc11t 111appings to produce
candidate rewriting qucrics. The: secontl step corr~poses
each candidate rewriting query with the views arid
checks whether the cornposition is cq11ivalent to the
original q11c:ry. Tho11gh the algoritlm1 is similar to
tlic 01~: for tlic: rcwritirig of coi1jimc:tivc: qiicrics, there
are many c:liallc1igcs stc:1111ning fro111 the sc:111istrllctllred
11aturc of the data and the q11oric:s. For cxarnple, the
coriipositiori of tlic: rewriting qlicry a1id tlic views is
liardcr (from a complexity point of view) bccaiisc: of
the lack uf scl1c:ma ant1 of th rcstrllct11riug capabilities
of TSL views. Morcovcr, WC cxtmd the: algoritlm1 to
11s~ striictural constraints to discuvcr rewritings in cases
wlicre, in tlic aherm: of c:onstrair1ts, the wollltl 1X 110
rewritings.

WC mrrmtly incorporate olir algoritlirn into the
TSIMMIS systc111 for 11s~ as a c:spal)ility lmsctl rcwritcr.
WC will soon adapt its intcrfaccs to tl1c: TSIMMIS sys-
tcm so that it will 1~5 alh to also scrvc as a rewriter of
qucrics using cached views. Furthcrrnorc:, WC arc: work-
ing 011 cxtcnsioris to tlic algorithm so that it can 11a11dlc
cxtensicms to TSL, ~11~11 as regular pa.tl1 cxprcssions in
the q11cry hly. Notice: that in the prc:sc:nc:e of rc:gl1-
lar path expressious, the opportlmitics (ant1 difficliltics)
pmseuted by the existence of strlictiiral constrahts such
as DTDs are more significant,.

We are also ciirrcritly clcvclopirlg rewriting algoritlirris
that, instead of gciieratiug cq11ivalmt rewriting qIicri(:s,
will gencratc: rrrazirrrall~~ cor/,ta,irred lowrithg qnorics, in
the spirit of [lo, 91.

Acknowledgements

WC arc grateful to .Jc:ff Ull111m md Victor Via.1111 for
their c:o11iir1c:rits itlit sliggostioris 011 a11 ciulicr tlraft of

465

this papc:r. We would also like to thank Dan Such md
Ramma Yerneni for fruitful discussions and ummlents.

References

PI

PI

[31

[41

[51

PI

[71

PI

PI

PO1

[111

[=I

P31

El41

D51

Ll61

Ll71

P81

1191

S. Abiteboul and V. Vianu. Queries and computation on the
Web. In Proc. ICDT Conf., 1997.

T. Bra.y, J. Paoli, and C. Sperberg-McQueen. Extensible
Markup Language (XML) 1.0. W3C R.ecommendation.
Latest version avail:dble at http: //wua. ~3. org. TR/REC-xml.

P. Buneman, S. Davidson, M. Fernandez, and D. Suciu.
Adding structure to unstructured data. In Proc. ICDT
Cmf., 1.997.

P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu.
A query language and optimization techniques for unstruc-
tured data. In Proc. ACM SIGMOD, 1996.

D. Calvanese, G. D. Giacomo, M. I,enzerini, and M. Vardi.
R.ewriting of regular expressions and regular path queries. In
Proc. PODS Conf., 1999.

E. Ghan. Containment and minimization of positive
coll,junctive queries :m OODB’s. In Proc. PODS Con.f., 1992.

A. Chandra and P. Merlin. Optimal implementation of
conjunctive queries in relational databases. In Proceedmys
o,f th.e Ninth Amual ACM Sym.posi~m. on, Theoyy of
Co~m.p~ulln,g, pages 77-90, 1977.

A. Deutch, M. Fernandez, D. Florescu, A. Levy,
and D. Suciu. XML-QL: A query language fox
XML. Submission to W3C. Latest version available at
http://www.w3.org,‘TR/NOTE-xml-ql.

0. Duschka. and M. Genesereth. Answering queries using
recursive views. In Proc. PODS Co~~,f., 1997.

0. Duschka and A. Levy. Recursive plans for information
gathering. In Proceedimgs o,f the FQ?een,th In.temut;ron~el
Join,t Coqferen,ce on Artificiuil In.tell%gence, 1997.

M. Fernandez, D. Florescu, A. Levy, and D. Suciu. A query
language and processor for a web-site management system.
In Workshop on, Murmgem.en,t o,f Se~mktruckured Data, ACM
SIGMOD Con:f., 19!37.

M. Fernandez and D. Suciu. Optimizing regular path
expressions using graph schema. In Proc. ICDE Co,nf.,
1998.

D. Florescu, A. Levy, and A. Mendelzon. Database
techniques for the \Vorld-Wide Web: A survey. SIGMOD
Record, 27(3), 1998.

D. Florescu, A. Lev:y, and D. Suciu. Query containment for
conjunctive queries with regular expressions. In Proc. PODS
Con.f., 1998.

H. Garcia-Molina et al. The TSIMMIS approach to medi-
ation: data models and languages. Journnd 0.f In.telligen,t
In.,formuiion System.s, 8:117-132, 1997.

R.. Goldman and J. Widom. Dataguides: Enabling query
formulbon and optimization in semistructured databases.
In Proc. VLDB Conf., 1997.

L. Haas, D. Kossman, E. Wimmers, and J. Yang. Optimizing
queries across diverse data sources. In Proc. VLDB, 1997.

R.. Hull and M. Yoshikawa. On the equivalence of data
restructurings involving object idelltifiers. In Proc. PODS
Con.ference, 1991.

A. Keller and J. Basu. A predicate-based caching scheme
for client-server database architectures. The VLDB Joumu1,
5:35-47, Jan. 1996.

PO1

WI

P‘4

[231

[241

1251

P61

[271

P81

WI

[301

I311

[321

[331

[341

[351

[361

[371

[381

[391

A. Levy, A. Mendelzon, Y. Sagiv, and D. Srivastwm.
Answering queries using views. In Proc. PODS Con!f., pages
95-104, 1995.

A. Lev,y, A. R.ajaraman, and J. Ordille. Querying hetero-
geneous information sources using source descriptions. In
Proc. VLDB, pages 251-262, 1996.

A. Levy, A. R.a,jaraman, and J. Ullman. Answering queries
using limited external processors. In Proc. PODS, pages
227-37, 1996.

A. Levy and M.-C. R.ousset. CARIN: a representation la-
guage integrating rules and description logics. In Proceed-
ings o,f the Europecm Conferenxe on Arf.~1$biu1 In.telhpn.ce,
Budapest, Hungary, 1996.

A. Levy and D. Suciu. Deciding containment for queries with
complex objects. In Proc. PODS Conf., 1.997.

C. Li, R.. Yerneni, V. Vassalos, H. Garcia-Molina, a.nd
Y. Papakonstantinou. Capability based mediation in TSIM-
MIS. In PTOC. SIGMOD Con,,f., 1998.

J. McHugh, S. Abiteboul, R.. Goldman, D. Quass, a.nd
J. Widom. Lore: A database management system foI
semistructured data. SIGMOD Record, 26(3):54-66, 199:‘.

A. Mendelzon and T. Milo. Formal models of the Web. In
Proc. PODS Con.f., 1997.

Y. Papakonstantinou. Query processing in heterogeneous
information sources.
Technical report, Stanford University Thesis, 1997. Avail-
able from www.db.ucsd.edu/people/.yannis.litm.

Y. Papakonstantinou, H. Garcia-Molina, and J. Ullman.
Medmaker: A mediation system based on declarative
specifications. In Proc. ICDE Coni., pages 132-41, 1996.

Y. Papakonstantinou, H. Garcia-Molina, and J. Widom.
Object exchange across heterogeneous information sources.
In Proc. ICDE Con.f., pages 251-60, 1995.

Y. Papakonstantinou and V. Vassalos. Query rewriting
for semistructured data (extended version). Available as
www-db.stanford.edu/pub/papers/tslcont-ext.ps.

Y. Papakonstantinou and P. Velikhov. Enhaucing semistruc-
tured data mediators with document type definitions. In
PYOC. ICDE Co,n<f.> 1999.

S. Sagiv and M. Yannakakis. Equivalences among relat.ional
expressions with the union and difference operators. JACK,
27:633-55, 1980.

D. Suciu. Semistructured data and XML. In Proc. FOLIO
Con.f., 1998.

1. Thierry-Mieg and R.. Durbin. Syntactic definitions for
the acedb data base manager. Technical Report MRC-LMB
xX.92, MRC Laboratory for Molecular Biology, 1992.

J. Ullman. P+wples o,f Dotabose un,d Kn.owledge-Bme
System.s, Vol. I & II. Computer Science Press, New York,
NY, 1988.

V. Vassalos and Y. Papakonstantinou. Expressive cap&il-
it.ies description languages and query rewrit.ing algorithms,
1998. Accepted for publication, Journal of Logic Program-
ming.

H. 2. Yang and P. Larson. Query transformation for PSJ-
queries. In Proc. VLDB Con!f., pages 245-254, 1987.

Y. Zhuge, H. Garcia-Molina, 3. Hammer, and J. Wido:m.
View maintenance in a warehousing environment. In Proc.
SIGMOD Con.feren,ce, pages 316-327, 1995.

466

