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Abstract 

We address the problem of query rewriting for TSL, a lan- 
guage for querying semistructured data. We develop and 
present an algorithm that, given a semistructured query q 
and a set, of semistructured views V, finds rew&i.ng queries, 
i.e., queries that access the views ami produce the same re- 
sult as q. Our algorithm is based on appropriately generaliz- 
ing contal:nm.ent mappings, the chase, and query composition 
- techniques t,hat were developed for structured, relational 
data. We also develop an algorithm for equivalence checking 
of TSL queries. 

We show that the algorithm is sound and complete for 
TSL, i.e., it always finds every non-trivial TSL rewriting 
query of q, and we disduss its complexity. We extend 
the rewriting algorithm to use some forms of structural 
constraints (such as DTDs) and find more opportunities for 
query rewriting. 

1 Introduction 

Recently, rnany sernistructlrred data models, query and 
view definition languages have IMXI proposed (34, 131 
and arc used for querying and rnanagernent of Web 
data [ll, 1, 271, 1,iological databases [%I, integration 
of heterogeneous data [15], etc. 

Serriistrlrctlired rriodels are necessary becanse of the 
flexible nature of non-database irrforrnation systems. 
In particular, semistructured rnotlels are iiscfiil in tlic 
context of Web-based sources; Web data very often 
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lravc irregular, partial or only irrrplicit structure-:. The 
semistructured model XML [2] is erriergirrg as the new 
standard for the rriodelirrg and exchange of Web data. 

As it 11% been the case in the relational world, 
rewriting of semistructured queries using views is a 
fundarriental query processing and optirriization tool 
for semistructured queries. In t,lris section we first 
present an abstract, version of the rcwritinji problem 
and corlseqiiently we descril)e its applications, incliidirig 
a rewriter that was blrilt for the TSIMMIS system [15]. 

The Rewriting Problem At a sufficient level of ab- 
straction the rewriting prol~lerri faced by the applica- 
tions listed Mow is as follows: Given a qlicry q access- 
ing a serrristructnrcd databasor D and a set, of views 

v= {~,...,Vn..> over D, find r~ewritirrg qIrcries, where 
a rewriting query of 4 given V is a query that accesses 
at least one view of V arid returns the same result as 

rl, 2 If the rewriting query iises views only (i.c., it, does 
not access directly the clatal)ase D) then it is called a 
total rewritlirrg qlrery. 

Applications of Rewriting Algorithms Serrristruc- 
tiiretl rriodels have been used by repositories that store 
sernistriic:tliIcd data 1201 arid by rrrccliators that, intc- 
grate heterogeneous information [Xl, 111. Tlrc irnpor- 
tanco of rewriting algorithms ii1 mediators arid rcpos- 
itories of relational systems, as dcsc:ril)(:d l)c!low, is a 
witness to the rriany applications they will have in the 
semistructured world. 

1. Relat,ional query rewrit,ina algorithms are used for 
answering queries using rrraterialized views [38] and 
the qiiery (:a&: [19]. 

2. Views have l~eri used in rrrcdiator systorris to de- 
scribe the solrrcc c:ontcnt,s [21]. Furtlrcrrrrore, the 
diffcrerrt and lirriitcd qlicry c:apai)ilitic:s of the sources 
are often describctl by “views” wlicrc: the c:orist,ants 

lThe database may be distributed over multiple sites. 
*We formalize the concept of “same result” and the definition 

of a rewriting quer,y in Section 3. 
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are pararneterize~d. For example, the parameterized 
view SELECT * FROM R WHERE R. A=$X, where R re- 
sides at source S, declares that S can answer queries 
that pi,ck all attributes of R and have R.A be bound 
to a constant. Then a query over the source data 
has to be rewritten to use correctly the contents and 
capabilities of the sources, i.e., to correctly 11se the 
available views [>!a, 17, 371. Indeed, in that case the 
query has to access m.l?j views and hence we need a 
total rewriting query. 

The above points highlight the importance of rewriting 
algorithms in relational databases and mediators. We 
believe that rewritiqg algorithms will be equally irnpor- 
tant for semistructured databases and mediators. 

User/Application 

Figure 1: The TSIMMIS integration architecture 

Rewriting in the TSIMMIS System: Capability- 
Based Rewriting .and Cached Queries A TSIM- 
MIS mediator integrates semistructured data from rml- 
tiple heterogeneous information sources into a virtnal 
view V, -- not to be confused with the views iised by 
the rewriting algorithm. The general integration archi- 
tecture is shown in Figure 1. 
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Figure 2: Mediator architecture 

For example, a bibliographic rnediator may conlbine 
the data of multiple bibliographic sources into a single 

3Given the autonomy of the bibliographic sources and the 
mediator, the rewriting query may deliver a stale result to the 

5inion” view. At run time, given a user query, .the 
mediator decomposes it into multiple queries which 
refer to the source data. However, these bibliographic 
sources are accessible through interfaces that, hi%Ve 

varying query capabilities; the queries emitted by the 
mediator mist conform to these capabilities. Let 11s 

further illustrate this issue using an example. 

The user query requests all “SIGMOD 07” pllblica- 
tions. Therm the mediator will decompose the user query 
into multiple “SIGMOD 97” queries where: each one of 
them is source-specific, i.e., it refers to 011~: source only 
(see Figure 2). To do the decomposition correctly and 
efficiently the mediator must figure out,, llsing the ca- 
pabilities of the underlying sources, how to extract the 
necessary information from the sources. This decis.ion 
is made by the Capability-Based Rewritu (CBR) rnod- 
iile. In our running exarnplc, if one soiirce only siip- 
ports queries on “year”, the CBR will decide that a 
query that retrieves the ‘97” publications will be sent 
to this source. The rest, i.e., filtering for “SIGMOD”, 
will be done at, the mediator. After suc:h decisions .are 
made, and the mediator formllatcs a qllc:r,y plan that re- 
spects the query capabilities of the soIir(:es, each query 
is sent to a wrapper, where it is translated into the na- 
tive query language of the corresponding source. Then 
the individual query results, namely the “SIGMOD 07” 
publications each source contains, are c:ollect,ed, the in- 
formation about, each of them is appropriately consoli- 
dated into one entity by the mediator and t,he combined 
result is presented to the user. 

The TSIMMIS system loses parametrized views to 
describe query capabilities. The mediator employs a 
version of our rewriting algorithm to accomplish its 
task [25]. Note that the! existcrm: of parameters in 
the views does not seriously affect the cmnploxity of 
the problem [37]. Tl le considerations introduced by 
parameters are also addressed in [25]. For presentat:ion 
clarity we work in this paper with plain semistructured 
views - as opposed to parametrized ones. 

Use of Rewriting in semistructured repositor.ies 
Olir rewriting algorithm can be used to answer 

queries using materialized views and c:ac:hc:d queries of 
repositories for sernistriictiired data, such as Lore [2rj]. 

For example, if a ~acli~d qiiery reslilt, contains 
all “SIGMOD” publicatiolls, olir mwritiug algorithm 
can create a rewrit,ing query where: “SIGMOD 97” 
publications are obtained by filtering the c:ac:hed query 
for “1997” publications. The rewriting algorithm o1:11y 
needs the query and the cached qllery staternents -. it 
does not, need to examine the solm:e data. The cached 
queries play in this case the role of views.3 
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Matc~rialized views and cached queries were the main 
origiual rriotivatiori for relational query rewriting [38], 
and we believe they are as iniportailt for sernistructurcd 
databases. Indeed our algorithm is applicable to 
repositories of Web data stored using the XML [2] data 
model, which is very similar to our data 1node1. The 
query language - TSL, for Tree Specification Language 
- that we are working with is very similar to recent 
proposals for an XML query language [S]. 

Use of Rewriting in Web site management 
and structured Web search Recent work [l l] 
has applied concepts from information integration to 
tllc task of lmikhg co~nplex Wcl) sites that serve 
information derived from rriultiple dat,a sources. In this 
sccmario, a Web site is a declarativel,y-y-defiri~~~ de gm$7, 
over the sernistructured data graph, of the contents of 
the information sources. If we only have access to the 
information through the Web she(s), queries asked over 
the data graph need to 1~ rewril.teri as queries over 
the Web site structure and corltcuts. The Web site 
definitions are just view definitioiis over the data graph; 
the necessary query rewriting can this be handled by 
01ir algoritlirri. 

Results WC: propose an algorithm that solves the 
rewriting problem by outputting a finite set Q of 
rewriting queries, i.c., queries equivalent to ‘1 t,liat have 
at least one condition referring to one of tlic views. 
Note that for every rewriting qllcry clr that does not 
appear in Q there is a “trivial” 4: E & such that, every 
view that is used by c& is also ilscd by qr. Under any 
reasonable cost model, c& will 1~: at least as efficierit as 
qr (it will be more efficient if it uses strictly fewer views) 
and hence we do riot include qr in Q. We will say that 
the algorithm rctmns all rewriting queries, though wc 
actually ~ricari that it returns a set of rewriting qiic3ios 
& with tlic above properties. 

The rewriting algorithm rnakcs 11s~ of structm-al 
constraints on the source data. In particular, WC: 
consider constraints that can easily 1~: expressed by 
standards such rrci the XML DTDs or the newly 
proposed XML-Dat,a. The existence of such constraints 
allows us find rewritings in cases where, in the ahence 
of constraints, the algorithm wo~iltl fail. 

The algorithm is based 011 extending containment 
mappings, the chase, and cornposition from tlic rela- 
tional to the semistructured world. In doing so, we hi- 
efit froru a vast body of knowledge on relational query 
rc-!writing. Furthermore, we obtain insight on how to ixi- 

user. This result may still be very useful to the user. Furthermore, 
if an update-propagation system is in place, it can account for the 
“deltas” between the cache and the sources [39]. In this paper we 
will not deal any further with these consistency issues. Instead 
we focus on the rewriting algorithm. 

Views” 
“A. Gupta” “Constraint 

“SIGMOD” 1993 

Figure: 3: Exarrlplc OEM ol)jcc:ts 

terface with the optimizer of the TSIMMIS system (see 
Figure 2). 

Contents The following section introdlms the OEM 
data rriotlcl and our query langiiagc for semistructli- 
red data. Section 3 states tlic: rewriting prolhn and 
dcscrilm our algorithm Scc:tiori 4 prescrits an algo- 
rithm for eqllivalencc: testing of TSL qlmries. Section 5 
proves tlic u.mdmcss of our rcwritirlg algorithm for 
TSL qllcries and views and tiismsscs the complexity of 
t,lie rcwritirig prolhri. Finally, Scctiou G discusses rc- 
latod work and Section 7 offers SOIIIC corduding rcrnarks 
ad discusses future work. 

2 The OEM Data Model and the 
TSL Query Language 

In the: OEM data 111odc:1, the data arc represented as 
a rooted graph with lahled nodes (also called ob,jects) 
that have unique object ids. 

Figllrc 3 illllstratcs SOIIIC lddiograpllic: data rcpre- 
scutetl ill OEM. Atorrric ol)jcc:ts have: all atomic: vallle 
(c.K., SIGMOD) wldc tllc: valllc of tllc other ol)jec:ts 
(called set ob,jects) is tl 1e set of ol,j~!c:ts (nut j11st oh- 
ject ids) pointed to by the olltgoing edges. Notice that 
this definition is inherently reuirsive, siiico the value of 
an ol>ject is part of the d)jc:c:t: tlio value of a set object 
o is essentially the OEM slhgrapll rooted at o.~ The 
roots of tlic graph are illustrated a.s top level ol)jec:ts. 
They are the starting points for qllcrying tllc sources. 
Note that we ignore ol)jec:ts that arc not rcacllable from 
tlic roots of the graph. 

The: ol),joc:t ids arc typically atomic: data. Ill t11e 
gcncral case thy arc: torrns from tllc Hcd~rard lmivc:rse 
composed from 

4Excluding o itself. 
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a set, of atomic: data, whidl includes hit, is not 
necessarily codined to, the af.orni(: data appearing 
as labels and values and 

an arbitrary set of uninterpreted function synibols. 
For example, f ($10, ashish) is a possible object 
id, anti the function syrribol f “defhes” the terni. 

Ol)jec:t, ids may 1~2 sy~rhols with no partiullar 
rrleaning, or they rna,y have a sernantit: meaning. For 
exaniple, if the ol)jec:t is a W& page then it is 
typically a good idea to have the URL be the ol)jec:t, id. 
Flu-thermore, meaningful term objec:t ids (:an facilitate 
the integration tasks. 

Even thollgh OEM can model (lab that c:an rlaturally 
1~ represented as an arbitrary graph, we expect that in 
rnany applica.t,ions, espehally those dealing with XML 
data, clata will instead be naturally represented as a 
directed ac:yclic graph, or as a tree. 

A TSL qllery is a rule that dofines the query result 
using rninirnal rno&:l semantics. A rule consists of a 
h,ead followed 1,~ a : -. and a body, in the style of Datalog 
[36]. Intuitively, tht: head describes the result 0l)jcc:ts 
in the ur/,s~uer’ gmph., whereas the body descril)es one 
or niore conditions that rriiist be satisfied 1)~ the soiir(:e 
objec:ts. The heat1 and the body c,onditioris are hased 
011 object patterns of the form <ob,ject-id label value>. 
The uahe field can be either a tcrIn (variable, atomic 
c:onstant, or function symbol followed 1)~ a terni list) 
or a set vallie pattern which c:ontains zero or uiorc 
objec:t patterns. T(:rrns that, appear in an objec:t, id 
field in th h,ead of a TSL query rnllst ho Ilniqll(-:. This 
rcstrihon forc:es TSL to produu: frc:sh ol),jcct ids for 
the 01)jec:ts in the ‘query rosnlt. It, also forces TSL 
to produce unswe~ trms instead of arbitrary graphs as 
query results. We &cuss renioving this restrictiori (arid 
the reslilting language) in Section 6. 

Semantics and power of TSL WC: illustrate the 
seniantics with the following exarrlple. 

(Ql) <f (P> female {<f (X> Y Z>}> :- 

<P person {<:G gender female> <X Y Z>}>@db 

The semantics of the: above query are 

l;f there is a tuplc of btindirqs p, 9, n:, y and .z for the 
variables P, G, X, Y, and Z such that 

l the d&a source db contains a person top-level 

(root) ol)jec:t itlerhfied 1)~ p, 
l the 1) ol)jec:t, has a gender slll)ol)jec:t with value 
female anti ol)jec:t, id .9, and 
0 the 31 0bject has a 71 subol)jcc:t, with value z and 
object, id D: 

%th,e object p may also h,ave 0th.w subob,jects 
then the qllery rcslllt has 

l a female oljject, with object id f(p), 
l a ?j sul~ol~jec:t of the f(p) ol,jec:t, with value z and 
object id f(z). 

%th,e object f (1) J may h,ave subo bjects oth,w th,an 1.1 

%because th,e ra.sult of arroth,w de vrayg lif~~,.se” ll/,OW 

% subob,jects i&o the ob.ject f(p). 

Note that z c:o~lltl 1~: a sul)graph of the data in 
db. The answer to query (Ql) is an ol)jec:t with a 
new, unique o\)jec:t id and t,lic strlictim~ clcnotetl by 
tllc: query head. In gerlcral, a TSL q~lc!ry (:an c:onstrl.lct 
answer 0l)jet:ts t>liat arc tree rc:striic:tlirings of sourc:e 
data, hence we refer to tlicl: rcslilt of a TSL query as an 
unsu~w tire. Because of the copying scmautics of TSL, 
(e.g., z above could be a subgraph of the data), die 
query result can ac:tilally 1,~ a graph: a c:onstructcd tree 
with (perhaps c:yc:lic:) siibgraplis potentially hanging off 
SOIIK harhes. Note finally that a TSL qllory may rc-:fer 
to Inore t,lian one data sour(:c, c!.g., 011~) c:oudition may 
rc:fer to dbl and a sec:outl one to db2. 

Formally, for an OEM tlatal)ase D, ht PO be the set 
of all siil)graplis5 of D, 0 1~: the sot of a11 ol,,jcc:t ids 
ill D, and C he tllc: set of all lal~c:ls ant1 atoxrlic valuc-:s. 
Let Vo 1)~ tlic: set, of all ol)jc:c:t, id varialh2 alid VC 
he the set of all otlicr (label arid valiic) variables, with 
VoflVc = 0. Let V = VoUVc 1~: the set of all variablles. 
The rnearling of the query body is the: set, of assignments 
19 : V 4 0 U C U PO that satisf,y all c:onditions in the 
body. Each assignment rr~aps 0l)jcc:t id variables to 0, 
iaiwi variables to c‘ aid vailic! variat)k!s to c u PD. 

The rucanirlg of the qllcry hc:atl is as follows. ‘We 
c:rc!at,c arltl laid the new Iiodcs of tlic: aiiswcr tree, and 
make the top-level 0l)jcc:t pattern of tllc: query the root 
of tlic: answer tree. III partiuilar, for c:ac:li ol)ju:t, pa.ttc.:rn 
<f(Xl, . . , X,,,) L V>. iii t,hc! qlic:ry licatl, and for c!ac:li 
a.ssigrlmcIlt i9 above:, crcatc: a iicw ol?jcc:t, with 0l)jcc:t it1 
f(S(X,), . . ,19(x,)), label B(L) and vallie e(vj. If 
instead of V, the 0bjec:t pattern above? has (01 . . . o.“,}, 
the value of the created 0l)jec:t is {Q(ol), . . . B(0,)). 

Notice that when two assigrmcrlts prodlu the salne 
torrrl as the ol)jec:t id of au ol),joc:t, tlit: sanle ol)j,ec:t 
is “retiirnetl”, arid tlic vahic:s of tllc: two 0l)jec:ts are 
‘LfllSCd” 

TSL c:arl 1~ trarlslated to Datalog with fllnc:tion syn- 
l)ols ant1 1irrlitt:d reuirsion ov(:r a fix& sc:lienla. It c:an 
be shown to 1~: 1~s oxprossivc than StrllQL and thus 
less cxpressivc than liucar datalog [ll]. TSL qlmies 
cau 1~ corupiltcd in polylogaritlimic: p;brallcl t,inlc with 
polynorrlially rrlany proczssors (i.t:., TSL c QNC). 

III the rest of this paper, we only consider positive 
TSL queries without cyclic: ol)jec:t patterns in the 

5R.emember that the value of a set ol>ject is essentially the 
OEM subgraph rooted at that object. 

6ob,ject id variables are variables appearing in the object. id 
field of object patterns. 
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body conditions (i.e., without ol>jcc:t patterns that look 
for cycles in the OEM ciatabase). To sirnplify the 
presentation, we focus on normal forrri queries, defined 
next. Every TSL query can 1~ easily converted into 
normal forrn, hence the focus on riorrrial forrri does ilot, 
lirriit the power of the language. 

Definition: Normal Form TSL Queries are the 
TSL queries in whose body all sc%-valued llahre fields 
contain at 7r~ost one oljject pattern. Additionally, a 
norrrial forrn query with just one condition in its I)ody 
is called a stirrgle path, qiiery. q 

The query (Ql) can be easily transforIned into the 
following riorrrlal fornl qiiery: 

(Q2) <f (P> female {<f(X) Y Z>}> :- 
<P person {<G gender female>}>@db AND 
<P person {<X Y Z>}>Odb 

Safe TSL queries A TSL query is safe if every 
variable appearing in the query 1icil.d also appears in the 
query body. Thus, the saIne sirnplc syntactic test that 
is used 1)~ [X] to define safety of conjunctive queries 
can 1~ used to clefhe safety in TSL. III the rernain~ler 
of this paper we are only discussing safe TSL queries. 

TSL views are dehed simply by TSL queries. Each 
view defi~~es its own OEM database, with its own space 
of unique ol)ject ids. That can easily 1~ accornplisllcd 
for example by qualifying the ol)jec:t ids 1)~ tlic nalne of 
the view. 

It is important to point out that TSL llas featllres 
essential for qiierying arid integrating serriistriictiired 
data, riarriely the ability to query arid copy arbitrarily 
nested sclierna-less data, the ability to restructure such 
dat,a through the use of semantic: ol)jec:t ids, and the 
ability to query the “structure” of the data through tlic? 
use of label variables. 

3 TSL Query Rewriting 

Given a TSL query Q referring to an OEM datahe D 
and conjunctive views Y = VI, . . , V,, also referring to 
D, the rewriting problem is to find a TSL query Q’ such 
that (i) Q’ refers to at least one of VI, . . , V, and (ii) for 
all OEM datal)ases D, t,he result. of Q is equivalent to 
the result of Q’. (See definition of cquivalerlce blow.) 

We call Q’ tllc rcwritin,9 query. In general, there 
nia,y he Inore than one rewriting queries. WC start 
oiir discussion with a straightforward definition of 
cqllivalencc of OEM databases. 

Equivalence of two OEM databases D1 and Dz 
Two OEM datahses D1 and Dz are equivalent if they 
are iderrtica& i.e., they have the sarrle set of ol),jec:t ids 
arid for every object id D: the two ol)jec:ts identified l)y 

n: in D1 and Dz (i) 1 iavc: the sarrie label r! (ii) l)oth of 
tliern have an atoniic valiie or both of thcrn have a set 
value (iii) if they arc atomic: ol)jcc:ts thy llavc the saIrle 
atoniic value 7) and (iv) if thy arc set, ol)jcc:ts they have: 
identical sets of siihl),jcc:ts. 

Apparently the above definition carries to equivalerlce 
of query results and views. It is possilh to define OEM 
database equivalence up to ol)jec:t id renaming. We 
discuss this issiic in Section 6. 

3.1 Rewriting of Queries with Single Path 
Condition 

WC iriforrnally present, an algoritlirri which decides 
whether a query Q having one single path condition can 
l)c rewritten using a siriglc view V that has one or more 
path conditions. This slgorithrn, thigh a special case 
of the: corriplete rcwritirig algorithni (see: Scctiuri 3.4), 
illustrates the basic: steps of our tcchiquc. The: gerleral 
algorithm is proven sour~f and colnplete for TSL and 
its complexity is stiidied in Section 5. 

Step 1: Find Candidate Queries We first find map- 
pings from th: viow to tlic: condition and then wc 
develop a carldidatc qllery for coach nlapping. Note 
that for tlic special case of qiic:ries with a single path 
condition tlierc Iriay l>c: at, rriost oiic rnappirig arid 
coriscqiieritly at rriost, oxic caiidiclatc: query. 

Step 1A: Find Mappings Fintl, if it exists, the 
mappin from the hiy of V to tllc: l)ocly of Q. 
Our mappings extend [7] to cope with o\)jcct 
nesting. A forrrlal definition can 1~ found in 
[31]. If a rriapping exists, tlicri we cari 1~ sure 
that, if the is a varialh Ihiding that satisfies 
the: hdy of Q, then there is also a lhiing that 
satisfies the: body of V. HCIKO rnappirlgs arc 
a necessary coilclitiori for tlio rclcvarice of tlic 
view to tlic: qilcry condition. l3irtlierrnorc, the 
rrlappirlg indicates whidl conditions of Q tie not 
appear ii1 V; tlicsc: coiitlitioris will liavc: to 1)c 
chocked l)y tllc: rnwritillg qllcry. Notice that there 
cari 1~: at most one inapping from the: hdy of V 
to the we sir& path conditiorl in the body of Q. 
However, in the general cast: (Section 3.4) WC may 
have rriiiltiple rnappinffs. 

Example 3.1 Consider tllc! view (Vl), which 
rc:struc:turc:s the person ol)jcc:ts, la.l~:led p, of db 

into ol)jcc:ts that “group” tlicir lahls in property 
siihl~jects, 1al)elcd pr (for hcvity) and their 
values in value suhl)jec:ts, lal~c-:lotl v. Notice: that, 
(Vl) %scs” iiiforrriatiori iii tlic sc:ns(-: that it only 
shows the lalzls and values that, appear in db ht 

tlio lahl-valiic: c:orrosporidcric:c lias tlisappearcd. 
Qlleries sllc:h as (Q3), that ask whcthor the value 
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leland. appears in the database, can be answered 
llsing the view (Vl) tm:amc: they do not need 
information on the la\&value correspondence. 
The example shows how our algoritlm finds a 

rewriting query for (Q3). 

(Vl) <g(P’) p {.:pp(P’,Y’) pr Y’> 
.:h(X’) v Z’>)> :- 

<P’ p {<X’ Y’ Z’>}>@db 

(QS) <:E (P> Stamford yes> : - 
<P p {<X Y leland>}>@db 

The only rnappirlg from the body of (Vl) to the 
body of (Q3) is (M2). Intuitively, (M2) indimtes 
that the c:onditiou Z’ = leland must, 1.~ enforcctl 
on the .view iri order to get ol),jec:ts relevant to the 
query. 

(M2) [P’ H P, X H X, Y’ c-) Y, Z’ +-+ lelandj 

Step 1B: Generate Candidate Queries Apply 
the rriappirig to v, resulting in an “instantiation” 

of V, namely V’. Then build the rewriting query 
Q’ as follows: Tl.le head of Q’ is identic:al to the 
head of Q. The body of Q’ is the head of V’. 

Example 3.1 continued Tile only cmdidatc 
rewriting query (fQ4) is meated from the: lzacl of 
(Q3) and the: result of applying (M2) to the hc:acl 
of (Vl). 

(Q4) <f (P) Stanford yes> :- 

<g(P) p {<pp(P.Y> pr Y> 
<h(X) v leland>}>@Vl 

Step 2: Test Correctness of Candidate Query 

Clleck wh&er the composition of V and Q’, tlcrlotccl 
by V o Q’ is eqnivalmt to Q. SI (9~ 2 is acc:olnplishecl 
iii two siibsteps: 

Step 2A: Computation of Composition The 
c:omposition V o ‘Q’ of the rewriting query with 
the vic:w is c:ornplltcd. We c:ornpllte V o Q’ llsing 

a qiiery-vic:w c:orripositiori algorithm lmsc!d 011 ex- 
tciidirig rcsoliitioii and iiriific:atiori for scmistrm- 
tared data.. This algorithm in csse~~:c tak(:s ex- 
ponential t,itne in the siac of t,hc qllery. The corn- 

position algorithm is illustrat,ad iisirig ail exarriplc 
below. For a forrrlal presentation, see [3I]. 

Step 2B: Testing Equivalence of V o Q’, Q Tllc 
general idea of eqiiivalericc tmtirig is to find (1) a 
mapping that maps V oQ’ into Q, i.c:., (i) it rnitps 

the liead of V o Q’ into the: llcad of Q and t:vc:ry 
c:orldition of VoQ’ is rrlappc:tl into a c:ondition of Q 

ant1 (2) a mapping that rnaps Q into V o Q’. Noto 
that the V o Q’ and Q llavc: to 1)~ in normal form 
in order to test eqiiivaleric:e as clesc:ribetl a1,0ve.~ 

Example 3.1 continued WC tc:st whc:tlm (Q4) 
is a valid rcwritiriff qimy by first transforming 
it illt,o tllc: normal forrn (Q4),, t,hc:ll c:orrlposing 
it with (Vl), arid finally c:omparing tlic: rc:siiltirlg 
qllc:ry (Vl)o(Q4), to (Q3). Iutlcotl, (Vl)o(Q4),,, i,s 
c:~uivalerlt to (QS) 1 )m’aus(: (i) tllc: lrmppirlg (MS) 
maps (Vl)o(Q4), to (Q3) ant1 (ii) tllc: mapping (M4) 
maps (QS) to (Vl)o(Q4),,). 

(Q4)n, <f (P> Stanford yes> :- 

<g(P) p {<pp(P,Y> pr Y>}> AND 
<g(P) p {<h(X) v leland>}> 

(Vl)o(Q4), <f(P) stanf ord yes> : - 
<P p {<X’ Y Z’>}> AND 
<P p {<Xl’ Y” leland>}> 

(MS) [P H P, X’ H X, Y ++ Y, Z’ H leland, 
x” H x, Y” H Yl 

(M4) [P H P, x H X”, Y t+ Y”] 

Set Mappings The rewriting quc:ry may have to 
apply a %iil~ol~ject trierrilmsliip” condition on a value 

varial&:. To llallcllc this (:a~(:, oilr iriappirigs arc 

c:xtmded to map a variat)l(: to a sc:t pattmi. 

Example 3.2 Consider tllc: ~ucry (Q5) aud tilt vic:w 
(Vl). It, is c:lcar tliat Z’ iriiist l)iitcl to sc:t valiics 
that c:orltain a <Z last stanford> slll)ol)j(:c:t. The: 
algorithm c:itptlirc:s this iiltliitioil by d(:vc:lopiiig the: 
mapping (MS) from t,lic: hotly of (Vl) to tllcr body 

of (Q5). Notic:c that Z’ is rr~appul to {<Z last 
stanf ord>}>. 

(QS) <f (P> stanf ord yes> :- 
<P p {<X Y {<Z last stanford>}>}>@db 

(MS) [P’ H P, X’ ++ x, Y’ H Y, 
Z’ H {<Z last stanf ord>} 1 

(Q(i) <f(P) Stanford yes> :- 

<g(P) p {<pp(P,Y> pr Y> 
<h(X) v {<Z last stanford>}>}>@V1 

(QS) is tllc c:auclidatc: query c:rcatc!d fro111 tllc: 1lc:acl of 
(Q5) and the: rc:sult of applying (MS) t,o the head of 
(Vl). 0 

7The general equivalence testing algoprithm is actually more 
intricate, because of the existence of object ids. For a full 
description of the equivalence testing algorithm for TSL see 
Section 4. 
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Mappings are necessary lmt, not sufficient, for the 
existence of a rewriting query as tile following c!xarnple 
illustrate-:s. That is why a c:ont,ainrrmlt test is r~eecled, 
as in Step 2B of the algoritllm. 

Example 3.3 Consider query (Q7) and view (Vl). 

(Q7) <f (P> Stanford yes> :- 
<P p {<X name {<Z last stanford>}>}>@db 

Intuitively, there is no rewriting query for (Q7) 
because the view %WS” the correspondence l&ween 
labels and values. Hence, if the clatalmse contains 
a name attribute and a value 7) containing tlic: <last 
stanf ord> sul)ol)jcc:t it is irripossil)lc for the rewriting 
query to discover whether there is a name ol)jcc:t with 
value 7) or name and 7) appear in cliffererlt ol)jec:ts of 
tile database. Notice that despite the: non-existence of 
a rewriting query there is the mapping (MS). Based 
on this mapping tllc algorithm derives the candidate 
rewriting query (Q8). H owever, tllc: composition of the 
candidat,c rewriting query with tllc: view reslilts in the 
query (Q9) 1 :l w II< I 1s not c-:qiiivalerlt to the original query 
(Q7). Notice tl la name is the label of the ol)jcc:t X’ while t 
<last stanf ord> is a slll)ol)jc:c:t of anotllcr ol)jcc:t X”. 

(M6) [P’ I---+ P, X’ M X, Y’ H name, 
Z’ H {<Z last st anf ord>} 1 

(Q8) <f (P> Stanford yes> :- 

<g(P) p {<pp(P,Y> pr name> 
<h(X) v {<Z last stanford>}>}>@V1 

(Q9) <f (P> Stanford yes> : - 
<P p {<X’ name Z’>}>@db AND 
<P p {<X” Y” {<Z last stanford>}>}>@db 

0 

As rrleutioned earlier, a formal treatment of mappings 
can 1)~ folml in [31]. T11c following sll1)sec:tic.m c:xtc:r~tls 
the c:lia.sc: for set varial)les, which, as will see, is 
necessary to tlcal with the key depc:r~der~c:y on ol~jcct id. 
Sill)sec:t,ioil 3.3 disclisses how the al~orit,lm cm exploit 
struct~lral constraints, suc:h as DTDs, that arc: known 
almiit soiirce data. 3 1 , 11 )sec:tiori 3.4 presents a gcrieral 
algorithm for query rewriting. 

3.2 Extending the chase for set variables 

0l)jec:t identity introduces a fimctional clcper~der~c:y in 
OEM (key dcper~dcm:y from tllc: ol),jcc:t id to the: lal)el 
and valm). Morcovcr, stru:tural constraints introdllce 
fimctiorial tlcpend(:Ilc:ies, as wc will see in tlio ilcxt 
slil~sc!c:tiorl. Tllc rcwritirlg algorithm 11s~ the: chase 
tcclmique [3ci] t 0 tlcal with tllcse tl(:pc:lltleilc:ic:s. Tllc: 
tcc1miqiiC: has to be cxterltlcd for tlic case of variables 
t,liat can bind to sets. III what follows, wc rriotivatc: 
the ueed for and present our exterlsiorl to tlic: cliase, 

presentecl for the cast: of key dcpc~~dcncics 011 ol)jec:t 
id. T11c cxt,ension applies in gcmcral to any fllrlctiorlal 
depcudcmcy wit11 valiie varial)lcs ii1 tlic: right llarltl side. 

Example 3.4 Comidcr q”c:ric:s (QlO) mtl (Qll). 

(QlO) <f(P) Stan-student {<X Y Z>}> :- 
CP p {CU university stanford>}>@db 
AND <P p {<X Y Z>}>@db 

(Qll) <f (P> Stan-student V> :- 
<P p {<U university stanford>}>@db 
AND <P p V>@db 

HJ$Jll,)r is c?quivalcnt to (QlO), since: V is a set variable. 
I > , ollr algorithm, as dcscrilml so far, will 

c:rrorlc:ollsly riot cliscovcr a rewriting qlicry lm:a.~isc: thcrc 
is no mapping from the coutlitiull of (QlO) to tllc: sc:c:ond 
cmtlitiuu of (Qll), Using t,llc: key ~lcp~:~~dcI~cy OII ol),jd 
id, wc car1 iufcr that V is a set variable imtl trailsforrn 
(Qll) to (QlO). Noticc: 110~ tllo “set” varial)le is 
transforrncd into a set pattern. 0 

Recall that TSL qucrics arc not allowed to corltain cyclic 
ol),jcc:t patttmls. This is ~~c:c:c:ssa.ry for the: tlcscrilml 
simple cxteiisioii to the cliasc: to tcmriiiiatc:. 

Chase extension for dependency on object id 
Let ol, 02 1~: ol)jcc:t pattc-:rus of a. query ‘1 with tlic 
saim turn in tlic: vl)jc:c:t it1 fiieltl. 

If 01 aud 02 Iiavc Ll, VI w.id Lz, Vz iii tlicir lal)c:l 
aild value: ficltl rcspcctivcly, tlicii WC: rcplacc! all 
occIirrcu:(:s of L2, Vz ill (1 with Ll, VI rcspcctivcly. 

If 01 has ol)jcc:t patt,cms {oi., . . , 0.i) in its value field 
and 02 has V2, thcii rcplacc: all occlirrciices of V2 iii q 
with {<X Y Z >}, wlim: X, Y, 2 arc varial)les not 
appearing in q. 

If 01 llas {oi., . . .) 0.f } iii its valid: ficlcl al~tl 02 has 
{CA;, , cm}, rc:plac:c: tl l(‘ v2 ll(! fiC!l(lS of 11otl1 01 md c 1 
02 with {oi, ,o,i, CS, , c:,,,}. 

If OllC of 01) 02 have: a c:oIlstir.llt ii1 0110 of tl1o fields, 
and the other lias a variable, rcplacc all ocmrrcnccs 
of tliat variable in ‘1 with tllc cmstaiit,. 

If lwtli o1 and 02 ham: constants ii1 0i1c of tlic fields, 
tlieu, if t,lic corlstailts arc tliffcrcilt, halt with an 
error (this query c:miiot 1~: clii~sccl to ail cqliivalmt 
query sat,isfying the: ol)jc:c:t, it1 key tl~:pc:r~dcI~c:y). If 
the: coiistaiits arc: the saiuc, tlo uotliiiig for this field. 

If 02 is itlcntical to 01, tlrop 02 from 9. 

111 or&r to L’(AliL!+(!” fllllCt~iOllil1 tl~:pc:iltl(:Ilc:ir:s that cl0 
iiot iiivolvc: va.1~ varial)lcs, WC! cm list tlic: “rcglllar” 
cliasc: rlilc. 
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3.3 Using structural constraints As illustrated in the previous example, we identify two 

Semistriictiirecl data are often accompanied by cori- cases where information can easily be inferred from a 

strairits that partially define the: structiire of objects. structural description, such as a DTD, or an XML-Data 

Such structura.l constraints can be axpressed as a DTD, ‘Lsclieiiia” : 

a DataGuide [IG] or ;an XML-Data “schema”. For in- 
stance, wc: co&l know that the data in source db in the 
previous examples conform to the following DTD:* 

label inference Given a “path cxprcssion” of lab& 
a. ? . c, if the st,nic:tiiral constraint specifies that the 
only sill)object, of an a object with a c siil)ol)ject is 

<!ELEMENT p (name, phone, address*)> a b subol)ject, we can infer that ? = b. 

<!ELEMENT name (last, first, middle?, alias?)> 
functional dependency If the! structllral constraint 

<!ELEMENT alias (last, first)> 
<!ELEMENT address CDATA> 
<!ELEMENT phone CDATA> 
<!ELEMENT last CDATA> 
<!ELEMENT first CDATA> 
<!ELEMENT middle CDATA> 

specifies that ol)jcc:ts 1al)cletl n llavc: oiily one 
siil)ol)jec:t 1al)elccl b, wc can infer that given a pattern 

This DTD describes in a flexible way the structure of 
tllc source data. For example, it, specifies that ol)jec:ts 
labeled p (as in person) have exactly one siil>ol)ject each 
with labels name and phone, and zero or more address 
subobjects. It also specifies that sulmbject,s phone and 
address are atwnic. Given such a DTD, we can infer 
inforrriatior~ in the form of dependeiicies bet,weeri labels 
or object ids, that will allow the rewriting algorithm 
to discover rewritings iii cases where it would have 
otherwise failed. 

Example 3.5 Given the above DTD, we can infer 
automatically that in Idb the only sllbobject, of a p object 
with a last sulmbject. is a name ol)jec:t. Therefore Y” 
of (Q9) (in Example 3.3) llas to 1~: name. Moreover, 
there exists a “lal~&:cl” fiinctional dcpeiideiicy from 
ol),jec:t, it1 P with lal)el p to object id X with label name, 
since according to the: DTD a p ol)jcc:t has exactly one 
name subol)ject. This implies that X” has to be X’ (1)~ 
application of the ch,ase rule). Therefore (Q9) cm be 
rewritten as 

(Ql2) <f(P) stanford yes> :- 
<P p (<X' name Z'>}>@db AND 
<P p {<Xl name {<Z last stanford>}>}>@db 

Finally, we chase the clepentlency on P using the chase 
extension tlescril~ecl previously to derive (Q13). It 
slm~ltl be ol)vious that (Q13) is cqi~ivalent to (Q7), arlcl 
therefore a valid rewriting qiicry. 

(Q13) <f(P) stanford yes> :- 
<:P p {x:X' name {<Z last stanford> 

<A B C>}>}>Qdb 

0 

'Since OEM does not-support order, we ignore the order in 
the DTD description as well. 

the fiiri(;tiorial depmdericy X, + Yb holds. 

The rewriting algoritlm takes advantage of this 
information 1)~ perforiiiiiig label iiifcrencc and the chase 
011 the query, tlic views and t,lic: canclidatc qileries, again 
as illnstrattted ill Exarnplc 3.5. It is straightforward 
to show that applying lal)cl iiiferciice aiid the cliasc 
always terminates in tirric polynomial t,o tllc: lcngtli of 
tllc: qlmies and tllc constraints clcscription. Moreover, 
it is easy to show that lal)t:l irifererice and tlic chase Cl0 
riot affect tlic soiiridmss of t,lie rewriting al~oritlim. 

In the presence of striictural constraints, there is 
clearly rriore opport,iiiiity for qiicry siriiplification and 
qllcry rewriting. This is the slll),jc!(:t, of flltllre work. 

3.4 Rewriting Algorithm 

Wc iiow give the algorithm for tlic: gcncral case of the 
qiiery rewriting prol)lcrri. In what follows, the l~oclies 
of tllc: qllcry Q ad the views irl V arc c:onvc:rtc-:d into 
rrorrrrd form ant1 lnl~cl illfcrcim: a.iid tlic! c:liasc: are 
applied before wc apply tlic al~oritlm. 

Input: A TSL query Q wit,11 k sir&: path conditions 
in the body arid a set of TSL views V = {VI,. . . , Vn,} 

Output: A set of rewriting queries. 
Step IA: Find the mappings Hi,, from the body of 

c:ac:h Vi E I/ to the: body of Q using a mapping 
tlisc:ovt:ry algorithm [31]. 

Step 1B: Construct cautlidatc: rc-:writixlR qncries Q’ 
l h,ead(Q’) is h,cad(Q) 
l bod?/(Q’) is any cox~jlmction of (! conclitions, 
1 < r! < k, wlicre each condition is oitlicr a vic:w 
“instantiation” Oii (h,ead(K;)) or a c:olldit,ion of Q. 
If the resultinff query is iiiisafc, then umt~iiiiie with 
next candidate. 

Step 1C: Perform label inference and chase Q’. 
Step 2: Test whether each c:onstruc:tc:d Q’ is correct. 

l Corlstruct the composition Q’(Vl, . . . , Vn) of Q’ 
with V,, . , V,,. See [31] for the: clctails of the 
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cornposition algorithi. 
l Perform lahl inference and chase Q’(Vl, . . , V,,,). 
l IfQ’(V,, . , I&) is eqllivalent to Q 
(see Section 4) then include Q’ in tllc outp~lt; 
else continue with the next cantlitlate. 

Notice that, the above algorith coustructs and tests 
all candidate queries (in Step 1B). The efficiency of the 
algorithm can be siibstantially hproved with the use 
of simple heuristics. A particularly effective heuristic is 
the following: 

l keep track of which conditions of the query body 
each instantiated view 19i,~ (head( rriaps into. 
Those-: are the conditions that are ‘hverod” 1)~ 
!9&32d(~)). 

l only corlstruct candidate queries Q’ sllch that, the 
views and conditions in the body of Q’ “cover” all 
the contlitions in the hly of Q. 

A variation of the above heuristic: is irrlplernented in 
the capability-based rewriting module of the TSIMMIS 
system [25]. 

The next sllbsection descrihs the eqllivalence test for 
TSL queries, which is an essential part of Stop 2 of t,lle 
above algoritlirri. 

4 Equivalence of TSL queries 

Two qllcries Q1, Qz arc equivalent if arrd orthg if for all 
OEM databases D, their results Ql(O) and Qz(D) are 
equivaht. In this sectiou, we will tlevelop a cornpile- 
time tc:st of equivalence of TSL qlleries, hsed on an 
extension of coritairinient, rriappings [7]. We assiinie that, 
the chase has already hen applied to the queries. 

The problem of TSL equivalence is uunplicatcd 
hcallse of the restructuring capabilities of TSL: query 
1ic:ads c:onstruct arbitrary answer graphs and tliffercnt, 
rules cari coiltrihte different parts of tlic sanle answer 
graph. Hum we riced to rnakc sure that all the 
colriponents of the result graph arc tlic sarnc. The 
required dccornposit,ion is in the salrie spirit as norrrial 
forrri dccornposition for qiiery hcties (see Section 2), 
ht it llas to go 011e step fluther l)!, tlecornposing a TSL 
qiiery into finer-grain nilcs. In [31] WC show that norrrial 
forIn dccornposition does rrot allow us to det,crrriirie 
equivalence of TSL qlleries. 

We deco~npose a TSL query into paph, corrrporrerrt 

qiieries that, correspond to tlic: coniporients of tlic result 
graph: CC&, IK&S anal foot, i.c:. , top-he1 ol,jcc:ts.g 
Every TSL rule Q is d~:c:ornposctl into t,llrc:e types of 
finer grain riilcs: 

gR.ecall that OEM graphs are rooted. 

One top rule corrcsporiding to the top love1 condition 
of the: head of Q (this query correspontls to the root 

of the OEM graph c:onstnlc:tc:d by the: head of Q) 

as nlany member rlh as thcro arc ul)j(:(:t-sllbol)jc:c:t 
rc:lationships iu the heat1 of Q (those! qllc:ric:s corrc- 
spontl to tllc edges of the OEM graph constrllctcd 
by the heat1 of Q, and specify their st,art and end 
objects) arid 

one object type ribs as ul),jc:c:t cuilditions in the 
query head of Q ( : ,Lp ( or ros ondirlg to the objects of 
the OEM graph c:onstrllc:tcd 1)~ t,llc: had of Q and 
doscrihig tlicir lahls and valiics). 

The tlecorrlposition is illllstratul 1)~ t,llc: folhwing cx- 
arrlplo. The rc:dlu:d rllles arc: (:ss(:utially TSL: sot val- 
1~:s are allowed in the ol)jc:c:t “pr(:&:at(!s”. Noto that 
member and top “pr&cat(:s” depart, froul TSL syntax 
t,o cnlphasize the connection to Datalog [28]. 

Example 4.1 Corlsicler the following qllcry: 

(Q14) cl(x) 1 {cf W m {<n(Z) n V>}>}> :- 
<X a {<Y b {<Z c V>}>}> 

Its dccornpositioii ill graph cornpoilcnt qiicrics is as 
foll0ws: 

top(l(X)) :- <X a {<Y b {<Z c V>}>}> 

member(l(X),f(Y)) :- <X a {<Y b {<Z c V>}>}> 
member(f(Y>,n(Z>> :- <X a {<Y b {<Z c V>}>}> 
<l(X) 1 {}> :- CX a {<Y b {<Z c V>}>}> 

<f (Y> m {}> :- <X a {<Y b {<Z c V>}>}> 
<n(Z) n V> :- <X a {<Y b {<Z c V>}>}> 

Cl 

The condition for cqllivalcrlu: of t,llc: r(:sllltiup graph 
corriporient qilcrics is easily dcrivod: 

Theorem 4.2 Two s&s 5’1 = {PI, . , P,,> anti Sz = 
{Tl , . . , Tm} of graph c:oriiponc:nt qiic:rics arc cqiiivalent 
if and oiily if for c:ac:li R; t,lic:ro csxists ib rrrn.p@/.g to it 
frorri souic Ti and for cacli T, thrc: exists a. rriappiiig to 
it frorri sornc <i. 

Tllc: proof of Theorun 4.2 is a gcneralixatiorl of the 
contairirnerit tlicorern for iiriioiis of relational con,jlinc- 
tive qlleries with ol)jec:t ids [33, 181. Mor<:over, the fol- 
lowirig tlicorern liol~ls: 

Theorem 4.3 (TSL query equivalence) Two TSL 
qiieries arc cqiiivalent if ant1 only if tllc:ir th:orripositioris 
iiito graph cornponciit qiicric!s arc c:qilival(:ut. 

From tllc ahvc:, it is straightforward to thivc: a sirnplo 
c:qllivalcrlcc: test for TSL qll(!ric:s. 
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5 Completeness and Complexity 

The soundness of the algorithm dcscrilml in Section 3.4 
is estaldislled by its sword step, that checks the correct- 

ness of the rewriting. We will nuw prove the coxnplete- 
ness of the algoritliin, i.e., we will show that it always 
finds a rewriting query if me exists. For this proof, 
we assiirne that there are no strlictliral constraints, and 
therefore no functional clepencler~cic:s except the key de- 
peidmc:ic:s on ol)ject id. III t,hc preseilce of arbitrary 
functional dependencies, such as the ones t,hat, call 1~ 
inferred from structural coustraints, it is c:asy to show 
t,hat our rewriting algorithm is not complete (see [lo] 
for a simple coiintert:xainple for the case of relational 
qllery rewriting). 

To prove the completeness of thr: algorithm, we first 
observe that if there is no mapping from a view body 
to the query htly, then the view is not ‘Lrdevailt” to 
the qiicry. 

Lemma 5.1 Let Q ad V be TSL queries. There is a 
rewriting query Q’ of Q using view V ouly if t,llere is a 
mapping from the tmly of V to the Idy of Q. 

Moreover, we can hmd both t,he rumher of codi- 

tions and the variables appearing in the rewriting. 

Lemma 5.2 Let Q 1)~ a TSL qmry and V 1~ a set of 
TSL views. If there exists a rewriting of Q using V, tltcn 
there exists such a rewriting consisting of at most k: view 
heads, where k: is the n~uiil~er of .sl;rrgle #7, conditions 
in the body of the qii,ery.” 

Lemma 5.3 If the exists a rewriting of qllery Q using 
the: set of views V, tlml t,here exists a rewriting of Q 
using V that doesn’t I use variables that don’t exist in Q. 

The above lemmata dcmorlstratct that the theory of 
relatioilal query rewriting, preseilted in [20], can be 
generalized for TSL. Notice that Lcmrnata 5.2 and 5.3 
hold in the presence of the: key clc~pendenc:ies on ol)jec:t 
id. Irittiitivel,y, our algorithin is cumplete lmaiist: no 
additional functional depeideiicics can be inferred from 
the ot)jec:t-id key dependencies. By using disjoint sc:ts 
of ol)jec:t id and othr variables, if. coiditiori such as 
<X Y {<Y Z W>}>, wllicli implies t,he extra fi~uctional 
tlependei~c:y from X to Z aid W, is disallowed. 

The fvllowillg lcmrrla just,ifiies why c:ornplctcxess is 
not c:orr~pro:mised by only coilstructiilg rewriting q1icrics 
Q’ that lmv~ve a hmrl identical to the had of the 
query Q. Notice, t,llis is an issue that is particular t,o 
serriistructured aid ricsted riiodels while it is trivial in 
tllc relational irioclel (Q’ must havtr a head identical, iip 
to variable renaming, t,o the heat1 of Q). 

“Notice that, since view heads do not have to be single path, 
the number of single paths in the rewriting can, be greater than 
k. 

Lemma 5.4 If there exists a valid rewriting query 
Q” such that h,ead(Q”) is not the sariic as had(Q), 
then there exists a valid rewriting query Q’ s11ch that 
h,ea.d(Q’) = h,md(Q). 

To see that Lemma 5.4 ldds, notice? that if the exists 
sl~ch a query Q”, then we (:itIl always apply our rewriting 
algorithm t,o it, to derive a qllery Q’ cql~ivalent, to Q” 
(and thefore to Q) whose\ hcad is identical to the head 
of Q. 

Theorem 5.5 Tllc: rcwritiug algorith of slllmction 3.4 
is soiiid aid corilplctc. 

Proof: (Sketch,) The algorit,lm is ohiously sowd, 
lmalise its last step is a correctness test. It is 
complete 1)ec:aiise of the ahvc! lcmnata, lmaiise the 
qllery conlposition algorithm is correct [28], and finally 
because the rewriting algorithm c:xliaiistivel,y searches 
the space of rc:writ,iilgs tlcfinccl 1)~ the il.l~ov~-! lomriiata. 
0 

5.1 Complexity of TSL rewriting 

The algorith dcscrilml in S&h 3.4 takes oxponen- 
Cal time:. First, Stq 1 cm goncratc a.11 cxponcutial in 
the sixc of the view ldics mrrhcr of mappings. Then 
Step 2 can gcrierate ail exponential niiirhc:r of card- 
date rewritings. Finally, it is provm in [Yl] that the 
construction of Q’(Vl, . . . , Vn,) using a query cornposi- 

tion algorithm takes exponential time. 

6 Related work 
TSL is clcrivcd from the: Mctliator Spc:c:ificatioll Lan- 
gllagc (MSL) [2o]. MSL is a mm gcncral larlgnage 
that allows arl)itrary rcstrllctllrings of sc~m:(: data. Be- 
(::ulsc of its additioml rc:stmlc:t,~lriiig powc:r, MSL (iW 

well its StrllQL, which llas t,hc: SRXK: rc:str~lc:turi~~g m- 
pabilitics) is uot closctl under query cornpositiou. This 
significantly rcdlicc:s the applicability of the rewritiilg 

algorithm. 
The prolhm of qllcry rewriting for col~j~mctive 

relational views is cliscusscd, airioilg otllcrs, in (20, II:)] 
aid for reciirsivc: qiic:ric:s (hit liot rccimivc: views) i.11 

[9]. The p ro ) em 1 1 of qiicry c:quivalciic:c: for relational 
lailguages with ol)jcc:t ids lias h:(:il stiicliecl in [El. 
Our notion of query q1iivahc:c: corrcziponds, in tllc! 
tcm~~hology of [18], t o e:pxsed cquimlert ce. 

The: TSL rewriting probloru cmnot 1~ rc:duc:c:d to tlw 
well-lmdcrstood rclatioiial c:o~~,jliilc:tivc: qlcry rewriting 
prolhm. Given a rcdiic:tion of sc~iriist,riic:tiircd data to 
relations, SIK:~I as th me presentd in [28], TSL qllcries 
and views arc rcduccd to Datalog with function syr~hols 
ad with a limited form of rccursion,ll 1~11ce making 
inapplicable the coiljiirictivc? qiicry rc:writ,ing results. 

I1 As described in detail in [28]. 
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The special form of the restricted recursion in TSL 
leads to decidability and complexity reslilts which 
are known not to hold for general recursive Datalog 
programs [CJ]. 

There is little work on the prolhn of rewriting 
sernistriictured queries using views [14, 51. 111 [14], 
the related problem of qnery c:or1tainrnent in StmQL 
(a sernistruct11red language similar to TSL and MSL) 
is addressed. The paper deals wit11 queries and views 
containing “wildcards” and reglilar path expressions, 
hit it does not deal with the restructuring capabilities 
of the StmQL language. Recently, [s] proposcl:d a11 
elegant solution to the problem of rewriting a regular 
expression in tcrrns of other regular expressions. The 
prol~lcm is closely related to tlic problcrri of rewriting 
serriistruct1ired qlieries using views, ht the sollltion is 
applicable to a narrow class of qiieries and views, the 
ones that consist of only 011~: reg11lar path expression 
arid return its “endpoints”. 

Our work is also related to the problem of object, 
oriented query rewriting. Previons work 011 the prolhm 
of co11tain1ne1it arid eqiiivalencc of ol)ject oriented 
queries [6, 231 relics on the existciice of a stat,ic class 
hierarchy. Work on the prolhn of co11tai1ment of 
queries on co~riplcx objects has lmm presented recently 
in [24]. 

Finally, the has bee11 scme rcumt work 011 11sing 
str11c:tiiral i1iforriiation ahut a sc:r1iist,riic:tlirccl soiiru: 
(slicli as graph sclicrrias [3] or DTDs) i11 quc!ry processing 

pa, 321. 

OEM variants and rewriting A popular variant 
of the original OEM clata model (11sed in this paper) 
that has he11 proposed in the literature [26] makes 
labels a property of the edges iilstead of the riodes 
of the graph (sc:e Figure 3). The: techniques and 
algoritli11is dcscrihd in this paper apply with little 
change to t,liis version of the clata inodel; small cliangcs 
arc: also necessary to the language syntax, of coiirsc. 
One riotewortliy diffcreric:c: is that tlic: 01ily implicit 
flmctional depenclency present in this variant of OEM 
is ob,ject id to mlue of a11 ol)jec:t. 

Isomorphism In the OEM data model every node of 
the seriiistr1ic:tlired graph has an object identity - un- 
like [4] and [24]. Furtht:rrnorc, WC mqllirc that, the orig- 
inal and the rewritten queries compiitc: identical graphs 
(i.e., sa1nc ol)jec:t ids) as opposed to graphs equivalent 
1111&r l~isirnulation [4] or isomorphis1n. Following the: 
isornorpl1isrn approach, two OEM databases D1 ;tud Dz 
wo11ld 1~: eq11ivalent if for every ol)jec:t .zl of D1 WC ~a.11 
find a11 ol),jcc:t 22 of 02 such that 21 ant1 22 ham: th: 
same label, sa11ic valiic: if atoriiic:, or c:q11ivahrit (i.e. iso- 
rnorpliic) sets of subol)jec:ts if they have set valiies. In 
this approach, we only care for tlic: ol)jec:t-s~il,ol),jc-:c:t rc- 

lationships the: ol),jcc:t itls crcatc:. For cxarnplc, the: URL 
names arc riot important; it is tlie 1iypc:rtext striictiire 
created 1)~ the links that is irnporta11t. 

From the: point of view of th: rewriting algorithm 
it is not irnportarlt whcthcr the: rcwritiug ql1c:ry Q’ 
procluccs rcsnlts itlmtical to th origillal q11c:ry Q or 
it produces isomorphic: rcs11lts. The reason is that we 
conjecture that if thcro is 110 rcwritiug query Q’ with 
a result identical to Q then the is no rewriting query 
Q” returr1hg a result isomorphic to Q. 

7 Conclusions and Future Work 

WC prcseritcd a11 algoritli11i that givcm a sc1riistriict1ired 
q11ery 9 cxprcssed in co11j1111c:tivc: TSL autl a set, of 
serriistriic:t1ircd views V, hds mmi,tti1/.,9 qIi(:rics, i.c., 
qiicrics that access tlic! views ant1 au: cq11ivalmt to 9. 
Our algoritli111 is l)asc:d 011 appropriately gcncralizing 
corrtairrrrrerrt rrrappti~~qs, tlic: chmse, am1 conrposi,tl:on. 
The first, step uses contai1mc11t 111appings to produce 
candidate rewriting qucrics. The: secontl step corr~poses 
each candidate rewriting query with the views arid 
checks whether the cornposition is cq11ivalent to the 
original q11c:ry. Tho11gh the algoritlm1 is similar to 
tlic 01~: for tlic: rcwritirig of coi1jimc:tivc: qiicrics, there 
are many c:liallc1igcs stc:1111ning fro111 the sc:111istrllctllred 
11aturc of the data and the q11oric:s. For cxarnple, the 
coriipositiori of tlic: rewriting qlicry a1id tlic views is 
liardcr (from a complexity point of view) bccaiisc: of 
the lack uf scl1c:ma ant1 of th rcstrllct11riug capabilities 
of TSL views. Morcovcr, WC cxtmd the: algoritlm1 to 
11s~ striictural constraints to discuvcr rewritings in cases 
wlicre, in tlic aherm: of c:onstrair1ts, the wollltl 1X 110 
rewritings. 

WC mrrmtly incorporate olir algoritlirn into the 
TSIMMIS systc111 for 11s~ as a c:spal)ility lmsctl rcwritcr. 
WC will soon adapt its intcrfaccs to tl1c: TSIMMIS sys- 
tcm so that it will 1~5 alh to also scrvc as a rewriter of 
qucrics using cached views. Furthcrrnorc:, WC arc: work- 
ing 011 cxtcnsioris to tlic algorithm so that it can 11a11dlc 
cxtensicms to TSL, ~11~11 as regular pa.tl1 cxprcssions in 
the q11cry hly. Notice: that in the prc:sc:nc:e of rc:gl1- 
lar path expressious, the opportlmitics (ant1 difficliltics) 
pmseuted by the existence of strlictiiral constrahts such 
as DTDs are more significant,. 

We are also ciirrcritly clcvclopirlg rewriting algoritlirris 
that, instead of gciieratiug cq11ivalmt rewriting qIicri(:s, 
will gencratc: rrrazirrrall~~ cor/,ta,irred lowrithg qnorics, in 
the spirit of [lo, 91. 
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