Interactive Higher Order Theorem Proving on the Web

Chad E. Brown

cebrown@ps.uni-sb.de

Universität des Saarlandes

Motivation

Want an Interactive Theorem Prover...

- Requiring No Installation.
- Supporting Simple Type Theory/Higher Order Logic.
- That's Easy to Learn and Easy to Use.
- Students can Use to do Proofs.

JavaScript Interactive Higher Order Theorem Prover

- Runs in a Web Browser
- Grammar for Language fits on One Page

A Simple Propositional Example

Three Propositional Constants: x, z, and u. Assume two clauses: $\neg x \lor z$ and $x \lor u$. Prove $z \lor u$.

Specification of the problem in the prover:

```
const x z u:B
axiom ~x|z
axiom x|u
claim z|u
```

Prove

This is the only open branch. Import Axiom or Lemma

Special Symbols and ASCII equivalents: $\neg (\sim) \lor (l) \land (\&) \rightarrow (->) \lor (<->) \lor (!) \exists (?) \lambda (!) \neq (!=) \underline{Grammar Help Page}$

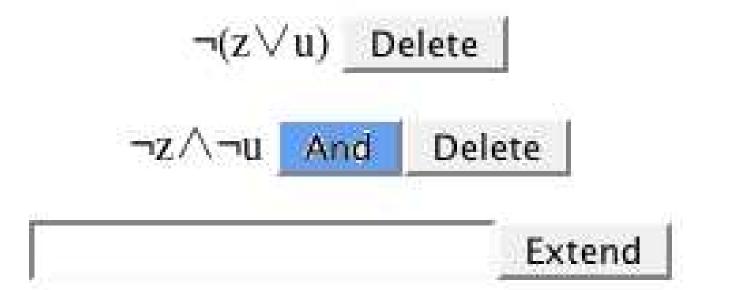
¬(z∨u)	Negation Normalize	DeMorgan	Delete
		Extend	1

This is the only open branch. Import Axiom or Lemma

Special Symbols and ASCII equivalents: $\neg (\sim) \lor (l) \land (\&) \rightarrow (->) \lor (<->) \lor (!) \exists (?) \lambda (!) \neq (!=) \underline{Grammar Help Page}$

¬(z∨u)	Negation Normalize	DeMorgan	Delete
		Extend]

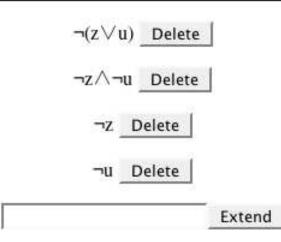
$$\neg(z \lor u)$$
 Delete
 $\neg z \land \neg u$ And Delete



Extend

This is the only open branch. Import Axiom or Lemma Undo

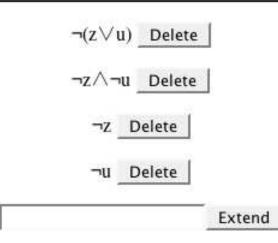
Special Symbols and ASCII equivalents: $\neg (\sim) \lor (l) \land (\&) \rightarrow (->) \leftrightarrow (<->) \lor (!) \exists (?) \lambda (!) \neq (!=) Grammar Help Page$



This is the only open branch.

Import Axiom or Lemma Undo

Special Symbols and ASCII equivalents: $\neg (\sim) \lor (l) \land (\&) \rightarrow (->) \leftrightarrow (<->) \lor (!) \exists (?) \lambda () \neq (!=) Grammar Help Page$



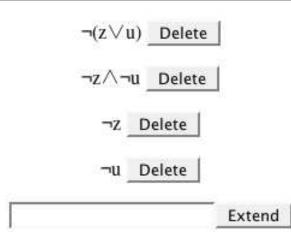
This is the only open branch.

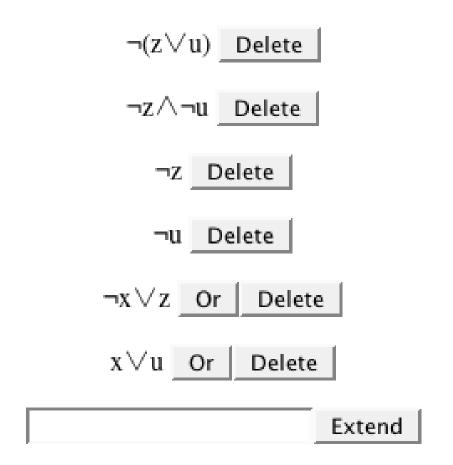
Axiom 1 $\neg x \lor z$

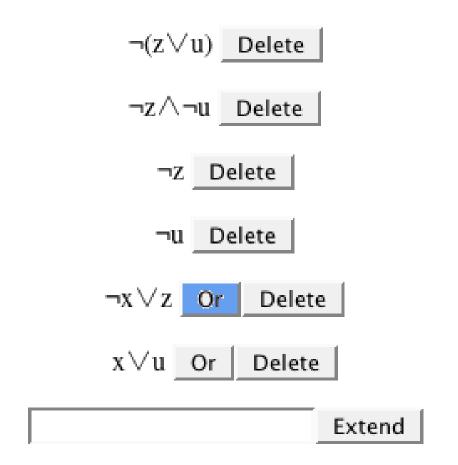
Axiom 2 $|x \vee u|$

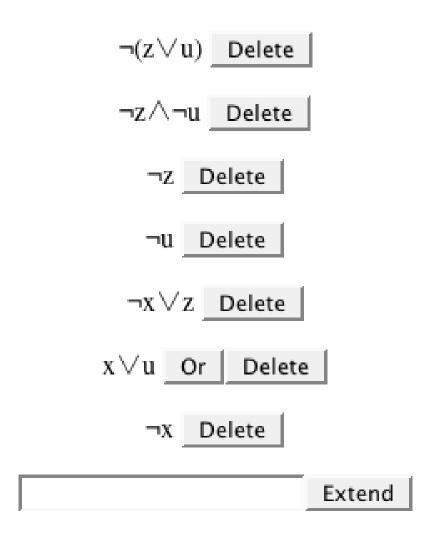
Undo

Special Symbols and ASCII equivalents: $\neg (\sim) \lor (I) \land (\&) \rightarrow (->) \leftrightarrow (<->) \lor (!) \exists (?) \lambda () \neq (!=) Grammar Help Page$











Complete Proof!

 $\neg(z \lor u)$ ¬z∧¬u $\neg Z$ ¬u $\neg x \lor z$ $\mathbf{x} \lor \mathbf{u}$ $\neg X$ Z Х u

Demo Teaser

Demo Will Show a Higher Order Example

Let's set it up now...

Closure Operators

Source: Chapter 1 of Someone's Dissertation.

Closure Operators

Source: Chapter 1 of Someone's Dissertation.

Definition 1.1 Let M be an arbitrary set. A function $\mathfrak{cl} : \mathcal{P}(M) \to \mathcal{P}(M)$ will be called CLOSURE OPERATOR on M if it is

- 1. EXTENSIVE, *i.e.*, $A \subseteq \mathfrak{cl}(A)$ for all $A \subseteq M$,
- 2. MONOTONE, i.e., $A \subseteq B \Rightarrow \mathfrak{cl}(A) \subseteq \mathfrak{cl}(B)$ for all $A, B \subseteq M$, and

3. IDEMPOTENT, *i.e.*, $\mathfrak{cl}(\mathfrak{cl}(A)) = \mathfrak{cl}(A)$ for all $A \subseteq M$.

A set $A \subseteq M$ will be called CLOSED (or cl-CLOSED in case of ambiguity), if cl(A) = A. The set of all closed sets $\{A \mid A = cl(A) \subseteq M\}$ will be called CLOSURE SYSTEM.

It is easy to show that for an arbitrary closure system \mathcal{S} , the corresponding closure operator \mathfrak{cl} can be reconstructed by

$$\mathfrak{cl}(A) = \bigcap_{B \in \mathcal{S}, A \subseteq B} B.$$

Definition 1.1 Let M be an arbitrary set. A function $\mathfrak{cl} : \mathcal{P}(M) \to \mathcal{P}(M)$ will be called CLOSURE OPERATOR on M if it is

sort M

```
const cl:(M B) M B
```

The type (M B) is the type of functions from M to Booleans - characteristic functions of sets in $\mathcal{P}(M)$.

Definition 1.1 Let M be an arbitrary set. A function $\mathfrak{cl} : \mathcal{P}(M) \to \mathcal{P}(M)$ will be called CLOSURE OPERATOR on M if it is

sort M

```
const cl:(M B) M B
```

The type (M B) is the type of functions from M to Booleans - characteristic functions of sets in $\mathcal{P}(M)$.

```
var x:M
var A B:M B
term subseteq=(\A B.!x.A x -> B x)
```

```
infix subseteq 40 40
```

be called closure operator on M if it is

- 1. EXTENSIVE, *i.e.*, $A \subseteq \mathfrak{cl}(A)$ for all $A \subseteq M$,
- 2. MONOTONE, *i.e.*, $A \subseteq B \Rightarrow \mathfrak{cl}(A) \subseteq \mathfrak{cl}(B)$ for all $A, B \subseteq M$, and
- 3. IDEMPOTENT, *i.e.*, $\mathfrak{cl}(\mathfrak{cl}(A)) = \mathfrak{cl}(A)$ for all $A \subseteq M$.

be called closure operator on M if it is

- 1. EXTENSIVE, *i.e.*, $A \subseteq \mathfrak{cl}(A)$ for all $A \subseteq M$,
- 2. MONOTONE, *i.e.*, $A \subseteq B \Rightarrow \mathfrak{cl}(A) \subseteq \mathfrak{cl}(B)$ for all $A, B \subseteq M$, and
- 3. IDEMPOTENT, *i.e.*, $\mathfrak{cl}(\mathfrak{cl}(A)) = \mathfrak{cl}(A)$ for all $A \subseteq M$.

axiom extensive: !A.A subseteq (cl A)

be called closure operator on M if it is

- 1. EXTENSIVE, *i.e.*, $A \subseteq \mathfrak{cl}(A)$ for all $A \subseteq M$,
- 2. MONOTONE, *i.e.*, $A \subseteq B \Rightarrow \mathfrak{cl}(A) \subseteq \mathfrak{cl}(B)$ for all $A, B \subseteq M$, and
- 3. IDEMPOTENT, *i.e.*, $\mathfrak{cl}(\mathfrak{cl}(A)) = \mathfrak{cl}(A)$ for all $A \subseteq M$.

be called closure operator on M if it is

- 1. EXTENSIVE, *i.e.*, $A \subseteq \mathfrak{cl}(A)$ for all $A \subseteq M$,
- 2. MONOTONE, *i.e.*, $A \subseteq B \Rightarrow \mathfrak{cl}(A) \subseteq \mathfrak{cl}(B)$ for all $A, B \subseteq M$, and
- 3. IDEMPOTENT, *i.e.*, $\mathfrak{cl}(\mathfrak{cl}(A)) = \mathfrak{cl}(A)$ for all $A \subseteq M$.

axiom idempotent: !A. (cl (cl A)) = (cl A)

A set $A \subseteq M$ will be called CLOSED (or cl-CLOSED in case of ambiguity), if cl(A) = A.

term closed=(A.A = cl A)

$\mathfrak{cl}(A) = \bigcap_{B \in \mathcal{S}, A \subseteq B} B.$

$\mathfrak{cl}(A) = \bigcap_{B \in \mathcal{S}, A \subseteq B} B.$

var D:(M B) B

term setintersect=($D x.!B.D B \rightarrow B x$)

$$\mathfrak{cl}(A) = \bigcap_{B \in \mathcal{S}, A \subseteq B} B.$$

```
var D:(M B) B
```

```
term setintersect=(D x.!B.D B \rightarrow B x)
```

```
claim !A.(cl A) =
  (setintersect (\B.closed B & A subseteq B))
```

This is what I will prove in the demo...

Source for Closure Operators Example



Source for Closure Operators Example

RELATIONAL EXPLORATION

Combining Description Logics and

FORMAL CONCEPT ANALYSIS FOR

KNOWLEDGE SPECIFICATION

Sebastian Rudolph Institute for Algebra Faculty of Mathematics and Natural Sciences TU Dresden Conclusion

Try it Online:

http://ps.uni-sb.de/jitpro/ See You At The Demo