

Assertion Level Proof Verification in $$\Omega{\rm MEGA}$$

Dominik Dietrich, joint work with the $\Omega\mathrm{MEGA}$ group

March 17th, 2008

Joint Annual Meeting of the German Interest Group on Deduction Systems

Dominik Dietrich, joint work with the $\Omega mega$ group Assertion Level Proof Verification in $\Omega mega$

Saarland University

イロト 人間 とくほとくほと

Motivation...

Mathematical Assistance System $\Omega\mathrm{MEGA}$ is used in different application szenarios:

researcher

tutorial dialog

イロト イヨト イヨト イヨト

Dominik Dietrich, joint work with the Ω mega group Assertion Level Proof Verification in Ω mega

Saarland University

Task and Problems

Assertion Level Proofs

- Proofs are conducted at or above the assertion level
 - Application of lemmata, definitions, theorems, and axioms
- Task: Verify and search such proofs

Problems

- Gap between human proof steps and classical calculi
- Some information underspecified
 - requires white box verification (e.g. underspecified subgoals)
 - leads to ambiguities

Idea

Perform proof search directly at the assertion level

Dominik Dietrich, joint work with the Ω mega group Assertion Level Proof Verification in Ω mega Saarland University

・ロト ・回ト ・ヨト

Assertion Level Proofs

Example derivation:

 $a_1 \in V$

► Transform domain knowledge into proof operators [AD06] $\begin{bmatrix} x \in U \end{bmatrix}$ $\frac{\vdots}{x \in V} \quad \frac{x \in U \quad U \subset V}{U \subset V}$

Allow for deep inference

Dominik Dietrich, joint work with the Ω mega group Assertion Level Proof Verification in Ω mega Saarland University

San

メロト メポト メミト メミト 一日

Verification Algorithm [DB07]

Algorithm

- Perform a depth limited BFS
- e Filter consistent successor states
- Collect missing subgoals
- Prune unused nodes

Exercise

$$(R \circ S)^{-1} = S^{-1} \circ R^{-1}$$

Student Utterance let $(x, y) \in (R \circ S)^{-1}$

Dominik Dietrich, joint work with the Ω mega group Assertion Level Proof Verification in Ω mega Saarland University

Evaluation [BDSA07]

- 144 human-level proof steps by real students
- Proof search limited to depth 4

Results		
correctly rejected:	28	19 %
correctly accepted:	113	79 %
wrongly accepted:	0	0 %
not verified:	3	2 %

Summary

- Proof step analysis, in particular, correctness analysis, benefits from ΩMEGA's assertion level proofs
- Simple BFS sufficient to correctly classify 95.9 %

Dominik Dietrich, joint work with the Ω mega group Assertion Level Proof Verification in Ω mega Saarland University

S. Autexier and D. Dietrich.

Synthesizing proof planning methods and oants agents from mathematical knowledge.

In J. Borwein and B. Farmer, editors, *Proceedings of MKM'06*, volume 4108 of *LNAI*, pages 94–109. Springer, august 2006.

Christoph Benzmüller, Dominik Dietrich, Marvin Schiller, and Serge Autexier.

Deep inference for automated proof tutoring? In *KI 2007: Advances in Artificial Intelligence, 30th Annual German Conference on AI*, pages 435–439. Springer, 2007.

Dominik Dietrich, joint work with the Ω mega group Assertion Level Proof Verification in Ω mega

Saarland University

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > <

Dominik Dietrich and Mark Buckley. Verification of Proof Steps for Tutoring Mathematical Proofs. In Rose Luckin and Ken Koedinger, editors, *Proceedings of the* 13th International Conference on Artificial Intelligence in Education, Los Angeles, 2007. To appear.

Dominik Dietrich, joint work with the Ω mega group Assertion Level Proof Verification in Ω mega Saarland University