Local Reasoning in the Verification of Parameterized Systems

Swen Jacobs

with Johannes Faber and Viorica Sofronie-Stokkermans

Mar 17 2008

• Local Reasoning

We know how to instantiate quantified formulae

• Verification

We want to prove properties of a formally specified system

• Parameterized Systems

Parameters are number of (identical) components or constant values which influence behaviour of the system

Case Study: European Train Control System

Time between updates:	$\Delta_t > 0$	\mathbb{R}
Minimum and maximum speed:	$0 \leq \min < \max$	\mathbb{R}
Minimum secure distance:	alarm	\mathbb{R}
Number of trains:	<i>n</i> > 0	\mathbb{N}
Train positions:	pos	$\mathbb{N} \to \mathbb{R}$

Update rules, e.g.:

$$\begin{array}{ll} \textbf{(F2)} & \forall i \ (0 < i < n \ \land \ pos(i-1) > 0 \ \land \ pos(i-1) - pos(i) \geq alarm \\ & \rightarrow pos(i) + \Delta_t * \min \leq pos'(i) \leq pos(i) + \Delta_t * \max) \end{array} \end{array}$$

In general,

$$\forall i \ \phi[pos] \rightarrow \psi[pos'(i)]$$

s.t. ϕ are mutually exclusive for a given *i* and ψ is either $t_1 \leq pos'(i) \leq t_2$ or pos'(i) = t.

Locality of Mon(pos) and Update allows us to reduce problem to the ground fragment of $\mathbb{R} \cup \mathbb{N} \cup EUF$, for which efficient solvers exist.

Extensions (I)

Consider a variable number of up to *n* trains:

Function pos

X	2	3	4	5	6	7	8	9		
X	p2	p3	p4	p5	рб	p7	p8	p9		

Update rules: $\forall i : first \leq i \leq last \land \phi_j \rightarrow t_1 \leq pos(i) \leq t_2$

[*PDPAR06*, *ENTCS07*] Applications of Hierarchical Reasoning in the Verification of Complex Systems In addition to normal operation, also consider emergencies:

- separate update rules for emergency case
- consider braking distances
- using formal specification in CSP-OZ-DC

[*IFM*07] Verifying CSP-OZ-DC specifications with complex data types and timing parameters

Current & Future Work (I)

Pointer data structure (see [TACAS08]) and track segments:

Track Segments

Current & Future Work (I)

Pointer data structure (see [TACAS08]) and track segments:

Current & Future Work (II)

Complex track topology:

Track Network

