Logic Encodings in LF: A Completeness Criterion

Florian Rabe

Jacobs University Bremen

- LF = A Framework for Defining Logics (Harper, Honsell, Plotkin; 1993)
- Impredicative dependent type theory, related to Martin-Löf type theory
- Curry-Howard equivalent to first-order logic with predicates, implication and universal quantifier
- Types:
- Application of type-valued constant, e.g., if Matrix: $\mathbb{N} \rightarrow \mathbb{N} \rightarrow$ type, then Matrix(5,4):type
- Dependent product, e.g., if $I: \Pi x: \mathbb{N}$. Matrix(x, x), then I(3): Matrix $(3,3)$ (e.g., identity matrix)

Logic Encodings

- LF very suitable for logic encodings (esspecially natural deduction or sequent calculus)
- Example: Fragment of propositional logic with natural deduction

$$
\begin{aligned}
& \text { form: type } \\
& \wedge: \text { form } \rightarrow \text { form } \rightarrow \text { form } \\
& \text { proof: form } \rightarrow \text { type } \\
& \wedge I: \operatorname{proof}(F) \rightarrow \operatorname{proof}(G) \rightarrow \operatorname{proof}(F \wedge G) \\
& \wedge E I: \operatorname{proof}(F \wedge G) \rightarrow \operatorname{proof}(F) \\
& \wedge E r: \operatorname{proof}(F \wedge G) \rightarrow \operatorname{proof}(G)
\end{aligned}
$$

- Structural rules (axiom, weakening, exchange) naturally derivable in the type theory
- Model theory not covered

LF as a Logic

- Proof and model theory for LF developed building on joint work with Steve Awodey
- Permits to
- encode model theory of logics as well as proof theory
- formalize encodings as institution translation into LF
- reason about logic encodings
- Formulas: equalities for all types, first-order connectives, first-order quantifiers for all types, classical negation

Proof theory of the LF meta-logic (examples)

$$
\begin{aligned}
& \frac{F \vdash_{\Sigma} F^{\prime}}{\vdash_{\Sigma} F \Rightarrow F^{\prime}} \quad \frac{\vdash_{\Sigma} F \Rightarrow F^{\prime} \vdash_{\Sigma} F}{\vdash_{\Sigma} F^{\prime}} \\
& \frac{\vdash_{\Sigma} F \vdash_{\Sigma} F^{\prime}}{\vdash_{\Sigma} F \wedge F^{\prime}} \quad \frac{\vdash_{\Sigma} F \wedge F^{\prime}}{\vdash_{\Sigma} F} \quad \frac{\vdash_{\Sigma} F \wedge F^{\prime}}{\vdash_{\Sigma} F^{\prime}} \\
& \frac{x: S \vdash_{\Sigma} F}{\vdash_{\Sigma} \forall x: S . F} \quad \frac{\vdash_{\Sigma} \forall x: S . F}{\vdash_{\Sigma} F[x / s]} \vdash_{\Sigma} s: S \\
& \frac{\vdash_{\Sigma} s: S}{\vdash_{\Sigma} \exists x: S . F} \\
& \vdash_{\Sigma} F[x / s] \\
& \exists x: S . F \vdash_{\Sigma} F^{\prime}
\end{aligned}
$$

Example and Completeness Criterion

- Extending LF encodings to cover model theory surprisingly simple
- Example: two axioms needed in the LF meta-logic to encode first-order logic
- non-empty model universes: $\exists x: u n i v . t r u e$
- consistency: $\neg \exists x: p r o o f(f a l s e)$.true
- Completeness criterion: All provable existential quantifiers have witnesses

Question: When can this criterion be applied?

