A Learning Approach to Proof Step Size in Mathematics Tutoring

Marvin Schiller
Joint work with Dominik Dietrich and Christoph Benzmüller

March 18th, 2008

Joint Annual Meeting of the German Interest Groups on Deduction Systems and on Logics in Computer Science
Assume that $a \in X$. If $X \cap Y = \emptyset$, then $a \notin Y$.

- **DIALOG** project: Domain reasoning techniques for proof tutoring. Empirical evaluations (e.g. [Benzmüller et al., 2006]).

- One topic in **DIALOG**: evaluate proof steps w.r.t. correctness, granularity, relevance using MAS ΩMEGA.

- ΩMEGA-Tutor [Dietrich and Buckley, 2007]: Proof reconstruction using ΩMEGA.
Empirical Studies on Tutorial Dialog (Wizard-of-Oz)

Tutor: Let R and S be relations in an arbitrary set M. It holds: $(R \circ S)^{-1} = S^{-1} \circ R^{-1}$. Do the proof interactively with the system!

Student: $(x, y) \in (R \circ S)^{-1}$

Tutor: Correct! Good start!

Student: Then $(y, x) \in R \circ S$.

Tutor: Correct!
Granularity of Proof Steps

Student: Let \((x, y) \in (R \circ S)^{-1}\)

Tutor: Now try to draw conclusions from this!

Student: Then \((x, y) \in S^{-1} \circ R^{-1}\)

This cannot be concluded directly. You need some intermediate steps!
Assertion Level Proofs as Basis for Granularity Analysis

1. Tutor: Show \((R \circ S)^{-1} = S^{-1} \circ R^{-1}\)!

Exercise: \(\vdash (R \circ S)^{-1} = S^{-1} \circ R^{-1}\)
Assertion Level Proofs as Basis for Granularity Analysis

1. Tutor: Show \((R \circ S)^{-1} = S^{-1} \circ R^{-1}\)!
2. Student: Let \((x, y) \in (R \circ S)^{-1}\).

\[
\begin{align*}
\text{s1: } (x, y) \in (R \circ S)^{-1} & \implies (x, y) \in S^{-1} \circ R^{-1} \\
\implies (R \circ S)^{-1} \subseteq S^{-1} \circ R^{-1} & \quad \text{Def.} \subseteq \implies S^{-1} \circ R^{-1} \subseteq (R \circ S)^{-1} \\
\text{Exercise: } & \implies (R \circ S)^{-1} = S^{-1} \circ R^{-1} \\
\end{align*}
\]
Assertion Level Proofs as Basis for Granularity Analysis

1. Tutor: Show \((R \circ S)^{-1} = S^{-1} \circ R^{-1}\)!
2. Student: Let \((x, y) \in (R \circ S)^{-1}\).
3. Student: Hence \((y, x) \in (R \circ S)\).

\[\Delta_1\]

Exercise: \(\vdash (R \circ S)^{-1} = S^{-1} \circ R^{-1}\)
1. Tutor: Show \((R \circ S)^{-1} = S^{-1} \circ R^{-1}\)!
2. Student: Let \((x, y) \in (R \circ S)^{-1}\).
3. Student: Hence \((y, x) \in (R \circ S)\).
4. Student: Hence \((y, z) \in R \land (z, x) \in S\).
1. Tutor: Show \((R \circ S)^{-1} = S^{-1} \circ R^{-1}\)!
2. Student: Let \((x, y) \in (R \circ S)^{-1}\).
3. Student: Hence \((y, x) \in (R \circ S)\).
4. Student: Hence \((y, z) \in R \land (z, x) \in S\).
5. Student: Hence \((z, y) \in R^{-1} \land (x, z) \in S^{-1}\).

\[
\begin{align*}
\text{s1: } & (x, y) \in (R \circ S)^{-1} \vdash (x, y) \in S^{-1} \circ R^{-1} \\
& \downarrow \text{Def}^{-1} \\
& \vdash (R \circ S)^{-1} \subseteq S^{-1} \circ R^{-1} \\
& \downarrow \text{Def. } \subseteq \\
& \vdash S^{-1} \circ R^{-1} \subseteq (R \circ S)^{-1} \\
& \text{Exercise: } \vdash (R \circ S)^{-1} = S^{-1} \circ R^{-1}
\end{align*}
\]
Some Criteria

Homogeneity: Are different facts applied in one single student step, or is the same fact repeated?

Verbal Explanation: Does the student name the facts and techniques he uses?

Introduction of Hypotheses or Subgoals

Learning Progress: Does the student master the concepts involved in the step?

Question

How are the different criteria related to the question of appropriate granularity?
Relating Granularity Criteria to Judgments – An Example

- Too detailed
- Appropriate
- Too coarse-grained

- Number of unknown facts?
 - 0
 - Too detailed
 - 1
 - Appropriate
 - 2-4
 - Too coarse-grained

- Number of newly introduced hypotheses?
 - 0
 - 1
The Presented Approach

A Granularity Analysis Module

- using assertion-level proof reconstructions
- performing an analysis w.r.t. granularity criteria
- adaptive via machine-learning techniques

Prototypical Integration into E-Learning Environment

The tutoring of proof exercises for the ActiveMath E-Learning Environment [Melis and Siekmann, 2004] is facilitated by \(\Omega \text{MEGA}'s \) proof step analysis.

See you at the poster!
References

A corpus of tutorial dialogs on theorem proving; the influence of the presentation of the study-material.
In Proc. of LREC 2006, Genoa, Italy. ELDA.

Verification of Proof Steps for Tutoring Mathematical Proofs.
To appear.

Activemath: An intelligent tutoring system for mathematics.