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Goal
Terminating tableau systems for modal logics with equality

Embedded Approach
Modal logics as translational fragments of classical logic

Work in progress



Overview

Tableaux for pure predicate logic
Termination for EA

Equality

Modal quantifiers

Safe edges

Pattern-based termination
Difference quantifiers

Transitive modal quantification

vV vV V. VvV v V. V. VY

Converse modal quantification



Tableau Systems

vV v vV vV VvV VY

Can prove that clause is unsatisfiable

Can prove that clause is finitely satisfiable

Good for proof search (cut-free sequent system)
Terminating tableau systems are decision procedures
Successful for modal logics, description logics

PL: Beth 1955, Hintikka 1955, Lis 1960, Smullyan 1968

ML: Kripke 1963, Hughes& Cresswell 1968, Fitting 1972, Pratt
1978

MLE: Bolander&Bratiner 2006, Bolander&Blackburn 2007



Evidence for Propositional Logic

Formulas in negation normal form

s = a|a|sAs|sVs



Evidence for Propositional Logic

Formulas in negation normal form
s = a| a|sAs|sVs
F evident if

& (ns)eF = s¢F
En (s1Nsx)€EF = sseFAsEF
Ey (s1Vs)€EF = sse€FVseF

Theorem (Hintikka 1955)
Every evident set is satisfiable.
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Evidence Conditions Yield Tableau Rules

-s s1AS s1V s
R —serl R/\ R\/
0 51,52 51| 2

» R, falsifies non-evident negations

» R and Ry add witnesses to render conjunctions and
disjunctions evident

» Terminating (only subformulas are added)
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Tableau Rules yield Moves

M| ... | Ty

I": clause, finite non-empty set of formulas
FClhijfori=1,...,n

n = 0: falsifying move

n > 1: expansive move

n > 2: branching move

Soundness: I satisfiable iff at least one ['; satisfiable
I" falsified: falsifying rule applies

Falsified clauses are unsatisfiable

I" verified: no rule applies

vV vV vV V. V. Y V.V VY

Semi-completeness: Verified clauses are satisfiable
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Proof Trees

I" falsifiable: exists proof tree with all leaves falsified
I" falsifiable = I unsatisfiable

I" verifiable: exists proof tree with one verified leaf
I" verifiable = T satisfiable

Frcricr3cry

Tableaux represent proof trees with sharing

vV v vV vV V. VY

Proof tree is cut-free sequent derivation (I' = ()
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Pure Predicate Logic

a = px...x
= a|a|sAs|sVs| dxs | Vxs
F evident if it satisfies £-, €A, £v and

& (Ixs)eF = dy: sefF
& (Wxs)eF = VyeNF: sfecF

dx.s Vx.s
Ry ——y¢NTA-Ty:s el Rv —
sy s

y

y € NT
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EA-Fragment

» Formula is EA if free variables of existential subformulas are
existentially quantified

» Tableau rules terminate on EA-clauses [Fitting 1996]
» decision procedure
» satisfiable EA-clauses are finitely satisfiable

» Diverging example

Vxdy.rxy, pa

dy.ray Ry
rab R3
dy.ray Ry

But {Vx3y.rxy, pa, Jy.ray, raa} is verified
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Termination Proof

-s Ss1AS s1V s
7?,ﬁ — S c r R/\ V
0 51,52 s1| s2
dx.s Vx.s
Rs —— y ¢ NT A-3y:s; el Ry —— y € NT
y y

Ruless add subterms only (modulo instantiation of variables)
R3 is generative since it adds subformula with new parameter
Non-generative rules always terminate

Existential formulas are instantiated only once

vV v . v. v .Y

R3 adds only smaller existential formulas
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Nominal Equality and Congruence Closure

a = px...x | x=x

s u=a| a|sAs|sVs|3dxs | Vxs

[: congruence closure

M= {px, x=y}

[ =TU{py, x=x, y=x, y=y}
Normalizer: ¢ = {x := y}

seil «— ps € @l

vV v v v Vv Y

ol is basic, i.e., contains only trivial equations x=x



Generalized Rules
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generalize R-, and R3
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Generalized Rules

Nominal equality does not require new rules, it suffices to
generalize R-, and R3

—s . dx.s -
Rﬁﬁser R1 = ygé/\fl'/\—Ely:S;EF
y

Lemma (Evidence)

Let T be verified and ¢ be a normalizer of T
Then @l is evident.

> ol evident = [ finitely satisfiable
» Results carry over
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Modal Quantifiers

> (r)px = Jy.rxy A py
at least one r-successor of x satisfies p

> [r]px = Vy.rxy — py
all r-successors of x satisfy p

[Hardt&GS Hylo 2006]

diamond

box
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Modal Quantifiers

> (r)px = Jy.rxy A py diamond
> [r]px = Vy.rxy — py box
» PLM

a = px...x | x=x

s = a|alsAs|sVs | dxs | Vxs | tx

t u= Ax.s | ()t | [r]t modal term

» PLM translates to PLN with 3-reduction
(0) = Arpx. Jy.rxy A py
[[] = Arpx. Yy.—rxy V py
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> (r)px = Jy.rxy A py diamond
> [r]px = Vy.rxy — py box
» Basic hybrid logic (t closed)

a = px | x=x

s = a|alsAs|sVs| tx

t o= Ax.s | (r)t | [r]t modal term



Modal Quantifiers

> (r)px = Jy.rxy A py diamond
> [r]px = Vy.rxy — py box
» Basic hybrid logic with global modalities (t closed)

a = px | x=x

s = al|alsAs|sVs|tx]| dxs| Vxs

t n= Ax.s | (r)t ]| [r]t modal term
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Syntactic Sugar for Modal Terms

pV{(nlrlq
Ax. px v (r)([r]q)x

Ax. px VA(r)([r](Ay-qy))x

Needed for examples and applications but technically redundant
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Evidence Conditions for Modal Quantifiers

& (Ms)yeF = sfeF
Eo (rsxe F = 3dy: xye FAsyeF
&n [rlsx e F = VYy: xye F=syeF

(r)sx

rxy, sy

Ro yENT A—Ty:my,syel

[r]sx

sy

O x~r X' Arx'y el
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Terminating Example

(rypa, [rl(an(r)p)a initial clause
rab, pb Ro
(an(r)p)b Ro
a=b A (r)pb R
a=b, (r)pb R

verified since rbb € [
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TIT Example

» A relation ris TIT if

Vx. (r)Tx totality
Vx. —rxx irreflexivity
Vxyz. —rxy V —ryz V rxz transitivity

» <onNis TIT
» There is no finite relation that is TIT
» Recall: tableau verifiability implies finite satisfiability

» TIT with open modal terms instead of negated edges

Vx. (r)Tx totality
Vx. [r](—x)x irreflexivity

Vxyz. [r](—y)x V [r](=z)y V (r)zx transitivity
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Simple Formulas

A formula is simple if it does not contain
» subformulas of the form —rxy (negated edges)

» open modal subterms
= tableau rules don't introduce new modal subterms

> existential subterms with non-existentially quantified free
variables (= R3 terminates)



Terminating/Diverging Example

(rypa, [r]({r)p)a, [r](aV a)a initial clause



Terminating/Diverging Example

(rypa, [r]({r)p)a, [r](aV a)a initial clause
rab, pb, (r)pb, (aV a)b Ro,Ro, Ro



Terminating/Diverging Example

(rypa, [r]({r)p)a, [r](aV a)a initial clause
rab, pb, (r)pb, (aV a)b Ro, Ro, Ro
a=bV a=b R



Terminating/Diverging Example

(ripa, [r]({r)p)a, [r](aV a)a
rab, pb, (r)pb, (aV a)b
a=bV a=b

a=b

initial clause
Ro, Ro, Ro
R
Rv



Terminating/Diverging Example

(pa, [A((rP)a, [rl(a v 2)a
rab, pb, (r)pb, (aV a)b
a=bV a=b

a=b

verified since rbb € T

initial clause
Ro,Ro, Ro
R
Ry



Terminating/Diverging Example

(rypa, [r]({r)p)a, [r](aV a)a initial clause
rab, pb, (r)pb, (aV a)b Ro,Ro, Ro



Terminating/Diverging Example

(rypa, [r]({r)p)a, [r](aV a)a initial clause
rab, pb, <r>pb7 (a v a)b RO? Ro, Ro
rbc, pc Ro



Terminating/Diverging Example

(ripa, [r]({r)p)a, [r](aV a)a
rab, pb, (r)pb, (aV a)b
rbc, pc

a=bV a=b

initial clause
Ro,Ro, Ro
Ro
R



Terminating/Diverging Example

(r)pa, [1((Np)a, [(aV a)a
rab, pb, (r)pb, (aV a)b
rbc, pc

a=bV a=b

a=b

initial clause
Ro,Ro, Ro



Terminating/Diverging Example

(rypa, [r]({r)p)a, [r](aV a)a initial clause
rab, pb, (r)pb, (aV a)b Ro,Ro, Ro
rbc, pc Ro
a=bV a=b R
a=b Ry

(r)pc R0 (rac € T)



Terminating/Diverging Example

(rypa, [r]({r)p)a, [r](aV a)a initial clause

rab, pb, (r)pb, (aV a)b Ro,Ro, Ro

rbc, pc Ro

a=bV a=b R

a=b Ry

(r)pc R0 (rac € T)

diverges!
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Smart Box Rule for Basic Hybrid Logic

[r]sx

TRHL
O sy

x~r X Arxly e TA(x=x"V x rootinT)

» Exploits that every non-trivial equivalence class contains root
(special property of basic hybrid logic)
» Yields termination for basic hybrid logic
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Need Safe Edges to Verify Universal Formulas

pa, Vx.(r)px
(r)pa

rab, pb
(r)pb

rbb

verified!

initial clause

safe edge
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Safe Edges and Quasi-Evidence

A safe edge is an edge for which box propagation is already done

rxy safe in F if
» x,y e NF
> rxy € F
> Vit [rltxe F =ty e F

Quasi-Evidence

Eg (r)sx e F = Jdy:sy € F Arxy safein F

Lemma (Safe Edges)

If F is quasi-evident, then F together with its safe edges is evident.
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Pattern-Based Termination

Pattern: set of modal terms
P realized in F: 3x Vs € P:sx € FV3dryx € F: [r]sy € F
(r)sx realized in F: {s}U{t]|[r]tx € F} realized in F
(r)sx realized in F and F satisfies £ and no negated edges
= (r)sx quasi-evident in F

(r)sx

rxy, sy

R y ¢ NT A (r)sx not realized in [
Theorem  System with Rg terminates for simple clauses
> RY, applied to (r)sx realizes (r)sx in r

» Realization of patterns is preserved

» Stock of patterns is finite and preserved
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Difference Quantifiers

» Dpx = dy.y#x A py existential difference
at least one state different from x satisfies p

» Dpx =Vy.y#x — py universal difference
all states different from x satisfy p

» Modal logic with D subsumes hybrid logic
» D neither in EA nor in guarded fragment

» Balbiani&Demri's system [IJCAI 1997]
doesn’t terminate on all inputs

» Fitting's tableau rule [Handbook 2006] is unsound

» Straightforward solution in our framework



Tableau Rules for Difference

Dsx

Rp —
x#£Yy, sy

y & NT



Tableau Rules for Difference

Dsx

Rp ——
x#£Yy, sy

y ¢ NT A =3y yobrxAsyel



Tableau Rules for Difference

Dsx

Rp ——
x#£Yy, sy

y ¢ NT A =3y yobrxAsyel

DSX
Rp ————yENT Aysdrx
x=y|sy



Tableau Rules for Difference

Dsx -
Rp———— y¢éNT A=Ty: yoidrxAsyel
X#y, sy
Dsx
Rp ————yENT Aysdrx
x=ylsy

» Rp adds at most two witnesses per modal subterm Ds

[Kaminski&GS M4M 2007]



Tableau Rules for Difference

Dsx -
Rp———— y¢éNT A=Ty: yoidrxAsyel
X#y, sy
Dsx
Rp ————yENT Aysdrx
x=ylsy

» Rp adds at most two witnesses per modal subterm Ds

» Terminates since D-power is decreased:

[Modl —{s|3dy:syel}
+ [Modl — {5 3x,y: {sx, x#£y, sy} C T }|

[Kaminski&GS M4M 2007]
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Transitive Relations

Tr = Vxyz. -rxy V —ryz V rxz

Er TreF = Vx,y,z:rxy,ryze F=rxze F

E] TreF = Vs,x,y:[rlsx e FAxy € F=[rlsy € F

[Halpern&Moses 1992]



Transitive Relations

Tr = Vxyz. -rxy V —ryz V rxz

Er TreF = Vx,y,z:rxy,ryze F=rxze F

ET TreF = Vs,x,y:[rlsx e FAxy € F=[rlsy € F

g I, [r]sx

x~rxX'Arxly el
[rlsy
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Converse Modal Quantifiers

Vx. (r)([F]p)x, a=a

(n(rlp)a Ry
rab, [r]pb R
pa Ro
(N([r1p)b Ry
rbe, [F]pc RE
pb Ro

» rbb now safe, hence I restricted to a, b verified

» Still we diverge



Converse Modal Quantifiers

» With converse quantification pattern-based blocking does not
suffice for termination

» Chain-based blocking yields termination [Hughes&Creswell
1968] [Horrocks&Sattler 1999], [Bolander&Blackburn 2007]

» Our equality techniques extend to converse, can do difference
with converse for the first time



Main Contributions

Use of nominal congruence closure (')
Safe edges

Pattern-based termination
Termination for D

Termination for transitive relations

vV v v v v Y

Embedded approach to modal logic



Method Employed

Define modal primitives in PLN

State evidence conditions

Find quasi-evidence conditions (safe edges)
State tableau rules (use I")

Prove evidence lemma (¢l evident)

vV vy vy vV VvVy

Find termination constraints
» Root propagation for hybrid logic
» Pattern-based blocking for simple PLM
» Chain-based blocking for simple PLM with converse



Conclusions and Outlook

Equality complicates terminating tableau systems a lot
Abstract treatment of equality solves many problems
Embedded approach to modal logic works well

Work on implementation started

vV v v v .Y

Vision: p-calculus and temporal logics with equality
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