Terminating Tableau Systems for Modal Logic with Equality

Gert Smolka Saarland University

Based on joint work with Mark Kaminski

March 18, 2008

Goal

Terminating tableau systems for modal logics with equality

Embedded Approach

Modal logics as translational fragments of classical logic

Work in progress

Overview

- ► Tableaux for pure predicate logic
- Termination for EA
- Equality
- Modal quantifiers
- Safe edges
- Pattern-based termination
- Difference quantifiers
- Transitive modal quantification
- Converse modal quantification

Tableau Systems

- ▶ Can prove that clause is unsatisfiable
- Can prove that clause is finitely satisfiable
- Good for proof search (cut-free sequent system)
- Terminating tableau systems are decision procedures
- Successful for modal logics, description logics
- PL: Beth 1955, Hintikka 1955, Lis 1960, Smullyan 1968
- ML: Kripke 1963, Hughes&Cresswell 1968, Fitting 1972, Pratt 1978
- ▶ MLE: Bolander&Braüner 2006, Bolander&Blackburn 2007

Evidence for Propositional Logic

Formulas in negation normal form

$$s ::= a \mid \neg a \mid s \land s \mid s \lor s$$

Evidence for Propositional Logic

Formulas in negation normal form

$$s ::= a \mid \neg a \mid s \wedge s \mid s \vee s$$

F evident if

$$\mathcal{E}_{\neg} \qquad (\neg s) \in F \quad \Rightarrow \quad s \notin F$$

$$\mathcal{E}_{\wedge} \qquad (s_{1} \wedge s_{2}) \in F \quad \Rightarrow \quad s_{1} \in F \wedge s_{2} \in F$$

$$\mathcal{E}_{\vee} \qquad (s_{1} \vee s_{2}) \in F \quad \Rightarrow \quad s_{1} \in F \vee s_{2} \in F$$

Theorem (Hintikka 1955)

Every evident set is satisfiable.

$$\mathcal{R}_{\neg} \frac{\neg s}{\emptyset} s \in \Gamma$$
 $\qquad \qquad \mathcal{R}_{\land} \frac{s_1 \land s_2}{s_1, s_2}$ $\qquad \qquad \mathcal{R}_{\lor} \frac{s_1 \lor s_2}{s_1 | s_2}$

$$\mathcal{R}_{\neg} \frac{\neg s}{\emptyset} \ s \in \Gamma$$
 $\qquad \qquad \mathcal{R}_{\land} \frac{s_1 \land s_2}{s_1, s_2}$ $\qquad \qquad \mathcal{R}_{\lor} \frac{s_1 \lor s_2}{s_1 | s_2}$

 $ightharpoonup \mathcal{R}_ee$ falsifies non-evident negations

$$\mathcal{R}_{\neg} \frac{\neg s}{\emptyset} s \in \Gamma$$
 $\qquad \qquad \mathcal{R}_{\land} \frac{s_1 \land s_2}{s_1, s_2}$ $\qquad \qquad \mathcal{R}_{\lor} \frac{s_1 \lor s_2}{s_1 | s_2}$

- $ightharpoonup \mathcal{R}_{\lor}$ falsifies non-evident negations
- ▶ \mathcal{R}_{\land} and \mathcal{R}_{\lor} add witnesses to render conjunctions and disjunctions evident

$$\mathcal{R}_{\neg} \frac{\neg s}{\emptyset} s \in \Gamma$$
 $\mathcal{R}_{\land} \frac{s_1 \land s_2}{s_1, s_2}$ $\mathcal{R}_{\lor} \frac{s_1 \lor s_2}{s_1 | s_2}$

- $ightharpoonup \mathcal{R}_{\lor}$ falsifies non-evident negations
- ▶ \mathcal{R}_{\land} and \mathcal{R}_{\lor} add witnesses to render conjunctions and disjunctions evident
- ► Terminating (only subformulas are added)

$$\frac{\Gamma}{\Gamma_1 \ | \ \dots \ | \ \Gamma_n}$$

Γ: clause, finite non-empty set of formulas

$$\frac{\Gamma}{\Gamma_1 \ | \ \dots \ | \ \Gamma_n}$$

- ► Γ: clause, finite non-empty set of formulas
- $ightharpoonup \Gamma \subsetneq \Gamma_i \text{ for } i = 1, \dots, n$

$$\frac{\Gamma}{\Gamma_1 \mid \ldots \mid \Gamma_n}$$

- Γ: clause, finite non-empty set of formulas
- $ightharpoonup \Gamma \subsetneq \Gamma_i \text{ for } i = 1, \dots, n$
- ightharpoonup n = 0: falsifying move

$$\frac{\Gamma}{\Gamma_1 \mid \ldots \mid \Gamma_n}$$

- Γ: clause, finite non-empty set of formulas
- $ightharpoonup \Gamma \subsetneq \Gamma_i \text{ for } i = 1, \dots, n$
- ightharpoonup n = 0: falsifying move
- ▶ $n \ge 1$: expansive move

$$\frac{\Gamma}{\Gamma_1 \mid \ldots \mid \Gamma_n}$$

- ► Γ: clause, finite non-empty set of formulas
- $ightharpoonup \Gamma \subsetneq \Gamma_i \text{ for } i = 1, \dots, n$
- ightharpoonup n = 0: falsifying move
- ▶ $n \ge 1$: expansive move
- ▶ $n \ge 2$: branching move

$$\frac{\Gamma}{\Gamma_1 \mid \ldots \mid \Gamma_n}$$

- **Γ**: clause, finite non-empty set of formulas
- $ightharpoonup \Gamma \subsetneq \Gamma_i \text{ for } i = 1, \ldots, n$
- ightharpoonup n = 0: falsifying move
- ▶ $n \ge 1$: expansive move
- ▶ $n \ge 2$: branching move
- ▶ Soundness: Γ satisfiable iff at least one Γ_i satisfiable

$$\frac{\Gamma}{\Gamma_1 \mid \ldots \mid \Gamma_n}$$

- **Γ**: clause, finite non-empty set of formulas
- $ightharpoonup \Gamma \subsetneq \Gamma_i \text{ for } i = 1, \dots, n$
- ightharpoonup n = 0: falsifying move
- ▶ $n \ge 1$: expansive move
- ▶ $n \ge 2$: branching move
- ▶ Soundness: Γ satisfiable iff at least one Γ_i satisfiable
- Γ falsified: falsifying rule applies

$$\frac{\Gamma}{\Gamma_1 \mid \ldots \mid \Gamma_n}$$

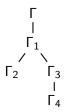
- Γ: clause, finite non-empty set of formulas
- $ightharpoonup \Gamma \subsetneq \Gamma_i \text{ for } i = 1, \ldots, n$
- ightharpoonup n = 0: falsifying move
- ▶ $n \ge 1$: expansive move
- ▶ $n \ge 2$: branching move
- ▶ Soundness: Γ satisfiable iff at least one Γ_i satisfiable
- Γ falsified: falsifying rule applies
- ▶ Falsified clauses are unsatisfiable

$$\frac{\Gamma}{\Gamma_1 \mid \ldots \mid \Gamma_n}$$

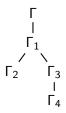
- Γ: clause, finite non-empty set of formulas
- $ightharpoonup \Gamma \subsetneq \Gamma_i \text{ for } i = 1, \ldots, n$
- ightharpoonup n = 0: falsifying move
- ▶ $n \ge 1$: expansive move
- ▶ $n \ge 2$: branching move
- ▶ Soundness: Γ satisfiable iff at least one Γ_i satisfiable
- Γ falsified: falsifying rule applies
- Falsified clauses are unsatisfiable
- Γ verified: no rule applies

$$\frac{\Gamma}{\Gamma_1 \mid \ldots \mid \Gamma_n}$$

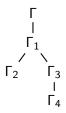
- Γ: clause, finite non-empty set of formulas
- $ightharpoonup \Gamma \subsetneq \Gamma_i \text{ for } i = 1, \ldots, n$
- ightharpoonup n = 0: falsifying move
- ▶ $n \ge 1$: expansive move
- ▶ $n \ge 2$: branching move
- ▶ Soundness: Γ satisfiable iff at least one Γ_i satisfiable
- Γ falsified: falsifying rule applies
- ► Falsified clauses are unsatisfiable
- Γ verified: no rule applies
- Semi-completeness: Verified clauses are satisfiable



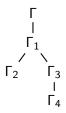
Γ falsifiable: exists proof tree with all leaves falsified



- Γ falsifiable: exists proof tree with all leaves falsified
- $ightharpoonup \Gamma$ falsifiable $\Rightarrow \Gamma$ unsatisfiable



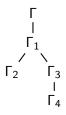
- Γ falsifiable: exists proof tree with all leaves falsified
- $ightharpoonup \Gamma$ falsifiable $\Rightarrow \Gamma$ unsatisfiable
- Γ verifiable: exists proof tree with one verified leaf



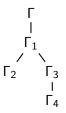
- Γ falsifiable: exists proof tree with all leaves falsified
- $ightharpoonup \Gamma$ falsifiable $\Rightarrow \Gamma$ unsatisfiable
- Γ verifiable: exists proof tree with one verified leaf
- $ightharpoonup \Gamma$ verifiable $\Rightarrow \Gamma$ satisfiable



- Γ falsifiable: exists proof tree with all leaves falsified
- $ightharpoonup \Gamma$ falsifiable $\Rightarrow \Gamma$ unsatisfiable
- Γ verifiable: exists proof tree with one verified leaf
- $ightharpoonup \Gamma$ verifiable $\Rightarrow \Gamma$ satisfiable
- $\blacktriangleright \ \Gamma \subsetneq \Gamma_1 \subsetneq \Gamma_3 \subsetneq \Gamma_4$



- Γ falsifiable: exists proof tree with all leaves falsified
- $ightharpoonup \Gamma$ falsifiable $\Rightarrow \Gamma$ unsatisfiable
- Γ verifiable: exists proof tree with one verified leaf
- $ightharpoonup \Gamma$ verifiable $\Rightarrow \Gamma$ satisfiable
- $\blacktriangleright \ \Gamma \subsetneq \Gamma_1 \subsetneq \Gamma_3 \subsetneq \Gamma_4$
- ► Tableaux represent proof trees with sharing



- Γ falsifiable: exists proof tree with all leaves falsified
- $ightharpoonup \Gamma$ falsifiable $\Rightarrow \Gamma$ unsatisfiable
- Γ verifiable: exists proof tree with one verified leaf
- $ightharpoonup \Gamma$ verifiable $\Rightarrow \Gamma$ satisfiable
- $\blacktriangleright \ \Gamma \subsetneq \Gamma_1 \subsetneq \Gamma_3 \subsetneq \Gamma_4$
- ► Tableaux represent proof trees with sharing
- ▶ Proof tree is cut-free sequent derivation $(\Gamma \Rightarrow \emptyset)$

$$a ::= px \dots x$$

 $s ::= a \mid \neg a \mid s \wedge s \mid s \vee s \mid \exists x.s \mid \forall x.s$

$$a ::= px \dots x$$

 $s ::= a \mid \neg a \mid s \land s \mid s \lor s \mid \exists x.s \mid \forall x.s$

F evident if it satisfies \mathcal{E}_{\neg} , \mathcal{E}_{\wedge} , \mathcal{E}_{\vee} and

$$\begin{array}{lll} \mathcal{E}_{\exists} & (\exists x.s) \in F & \Rightarrow & \exists y: \ s_y^x \in F \\ \mathcal{E}_{\forall} & (\forall x.s) \in F & \Rightarrow & \forall y \in \mathcal{N}F: \ s_y^x \in F \end{array}$$

$$a ::= px \dots x$$

 $s ::= a \mid \neg a \mid s \land s \mid s \lor s \mid \exists x.s \mid \forall x.s$

F evident if it satisfies \mathcal{E}_{\neg} , \mathcal{E}_{\wedge} , \mathcal{E}_{\vee} and

$$\begin{array}{lll} \mathcal{E}_{\exists} & (\exists x.s) \in F & \Rightarrow & \exists y: \ s_{y}^{\times} \in F \\ \mathcal{E}_{\forall} & (\forall x.s) \in F & \Rightarrow & \forall y \in \mathcal{N}F: \ s_{y}^{\times} \in F \end{array}$$

$$\mathcal{R}_{\exists} \ \frac{\exists x.s}{s_y^{\times}} \ y \notin \mathcal{N}\Gamma \qquad \qquad \mathcal{R}_{\forall} \ \frac{\forall x.s}{s_y^{\times}} \ y \in \mathcal{N}\Gamma$$

$$a ::= px \dots x$$

 $s ::= a \mid \neg a \mid s \land s \mid s \lor s \mid \exists x.s \mid \forall x.s$

F evident if it satisfies \mathcal{E}_{\neg} , \mathcal{E}_{\wedge} , \mathcal{E}_{\vee} and

$$\begin{array}{lll} \mathcal{E}_{\exists} & (\exists x.s) \in F & \Rightarrow & \exists y: \ s_{y}^{\times} \in F \\ \mathcal{E}_{\forall} & (\forall x.s) \in F & \Rightarrow & \forall y \in \mathcal{N}F: \ s_{y}^{\times} \in F \end{array}$$

$$\mathcal{R}_{\exists} \frac{\exists x.s}{s_{y}^{x}} \ y \notin \mathcal{N} \Gamma \land \neg \exists y \colon s_{y}^{x} \in \Gamma \qquad \qquad \mathcal{R}_{\forall} \frac{\forall x.s}{s_{y}^{x}} \ y \in \mathcal{N} \Gamma$$

► Formula is EA if free variables of existential subformulas are existentially quantified

- Formula is EA if free variables of existential subformulas are existentially quantified
- ► Tableau rules terminate on EA-clauses [Fitting 1996]
 - decision procedure
 - satisfiable EA-clauses are finitely satisfiable

- Formula is EA if free variables of existential subformulas are existentially quantified
- Tableau rules terminate on EA-clauses [Fitting 1996]
 - decision procedure
 - satisfiable EA-clauses are finitely satisfiable
- Diverging example

$$\forall x \exists y.rxy$$

- Formula is EA if free variables of existential subformulas are existentially quantified
- Tableau rules terminate on EA-clauses [Fitting 1996]
 - decision procedure
 - satisfiable EA-clauses are finitely satisfiable
- Diverging example

$$\forall x \exists y.rxy, pa$$

- Formula is EA if free variables of existential subformulas are existentially quantified
- ► Tableau rules terminate on EA-clauses [Fitting 1996]
 - decision procedure
 - satisfiable EA-clauses are finitely satisfiable
- Diverging example

$$\forall x \exists y.rxy, pa$$

 $\exists y.ray$ \mathcal{R}_{\forall}

- Formula is EA if free variables of existential subformulas are existentially quantified
- ► Tableau rules terminate on EA-clauses [Fitting 1996]
 - decision procedure
 - satisfiable EA-clauses are finitely satisfiable
- Diverging example

$$\forall x \exists y.rxy, \ pa$$
 $\exists y.ray$ \mathcal{R}_{\forall} rab \mathcal{R}_{\exists}

- Formula is EA if free variables of existential subformulas are existentially quantified
- Tableau rules terminate on EA-clauses [Fitting 1996]
 - decision procedure
 - satisfiable EA-clauses are finitely satisfiable
- Diverging example

$$\forall x \exists y.rxy, pa$$
 $\exists y.ray$
 \mathcal{R}_{\forall}
 rab
 \mathcal{R}_{\exists}
 $\exists y.ray$
 \mathcal{R}_{\forall}

- Formula is EA if free variables of existential subformulas are existentially quantified
- ► Tableau rules terminate on EA-clauses [Fitting 1996]
 - decision procedure
 - satisfiable EA-clauses are finitely satisfiable
- Diverging example

$$\forall x \exists y.rxy, pa$$
 $\exists y.ray$
 \mathcal{R}_{\forall}
 $\exists y.ray$
 \mathcal{R}_{\exists}
 $\exists y.ray$
 \mathcal{R}_{\forall}

- Formula is EA if free variables of existential subformulas are existentially quantified
- ► Tableau rules terminate on EA-clauses [Fitting 1996]
 - decision procedure
 - satisfiable EA-clauses are finitely satisfiable
- Diverging example

$$\forall x \exists y.rxy, pa$$
 $\exists y.ray$
 \mathcal{R}_{\forall}
 rab
 \mathcal{R}_{\exists}
 $\exists y.ray$
 \mathcal{R}_{\forall}

But $\{\forall x \exists y.rxy, pa, \exists y.ray, raa\}$ is verified

$$\mathcal{R}_{\neg} \frac{\neg s}{\emptyset} \ s \in \Gamma \qquad \mathcal{R}_{\wedge} \frac{s_1 \wedge s_2}{s_1, s_2} \qquad \mathcal{R}_{\vee} \frac{s_1 \vee s_2}{s_1 \mid s_2}$$

$$\mathcal{R}_{\exists} \frac{\exists x.s}{s_y^{\mathsf{x}}} \ y \notin \mathcal{N}\Gamma \wedge \neg \exists y \colon s_y^{\mathsf{x}} \in \Gamma \qquad \mathcal{R}_{\forall} \frac{\forall x.s}{s_y^{\mathsf{x}}} \ y \in \mathcal{N}\Gamma$$

Ruless add subterms only (modulo instantiation of variables)

$$\mathcal{R}_{\neg} \frac{\neg s}{\emptyset} \ s \in \Gamma \qquad \mathcal{R}_{\wedge} \frac{s_1 \wedge s_2}{s_1, s_2} \qquad \mathcal{R}_{\vee} \frac{s_1 \vee s_2}{s_1 \mid s_2}$$

$$\mathcal{R}_{\exists} \frac{\exists x.s}{s_y^{\mathsf{x}}} \ y \notin \mathcal{N}\Gamma \wedge \neg \exists y \colon s_y^{\mathsf{x}} \in \Gamma \qquad \mathcal{R}_{\forall} \frac{\forall x.s}{s_y^{\mathsf{x}}} \ y \in \mathcal{N}\Gamma$$

- Ruless add subterms only (modulo instantiation of variables)
- $ightharpoonup \mathcal{R}_\exists$ is generative since it adds subformula with new parameter

$$\mathcal{R}_{\neg} \frac{\neg s}{\emptyset} \ s \in \Gamma \qquad \mathcal{R}_{\wedge} \frac{s_1 \wedge s_2}{s_1, s_2} \qquad \mathcal{R}_{\vee} \frac{s_1 \vee s_2}{s_1 \mid s_2}$$

$$\mathcal{R}_{\exists} \frac{\exists x.s}{s_y^{\times}} \ y \notin \mathcal{N}\Gamma \wedge \neg \exists y \colon s_y^{\times} \in \Gamma \qquad \mathcal{R}_{\forall} \frac{\forall x.s}{s_y^{\times}} \ y \in \mathcal{N}\Gamma$$

- Ruless add subterms only (modulo instantiation of variables)
- \blacktriangleright \mathcal{R}_\exists is generative since it adds subformula with new parameter
- Non-generative rules always terminate

$$\mathcal{R}_{\neg} \frac{\neg s}{\emptyset} \ s \in \Gamma \qquad \mathcal{R}_{\wedge} \frac{s_1 \wedge s_2}{s_1, s_2} \qquad \mathcal{R}_{\vee} \frac{s_1 \vee s_2}{s_1 \mid s_2}$$

$$\mathcal{R}_{\exists} \frac{\exists x.s}{s_v^{\times}} \ y \notin \mathcal{N}\Gamma \wedge \neg \exists y \colon s_y^{\times} \in \Gamma \qquad \mathcal{R}_{\forall} \frac{\forall x.s}{s_v^{\times}} \ y \in \mathcal{N}\Gamma$$

- Ruless add subterms only (modulo instantiation of variables)
- $ightharpoonup \mathcal{R}_\exists$ is generative since it adds subformula with new parameter
- Non-generative rules always terminate
- Existential formulas are instantiated only once

$$\mathcal{R}_{\neg} \frac{\neg s}{\emptyset} \ s \in \Gamma \qquad \mathcal{R}_{\wedge} \frac{s_1 \wedge s_2}{s_1, s_2} \qquad \mathcal{R}_{\vee} \frac{s_1 \vee s_2}{s_1 \mid s_2}$$

$$\mathcal{R}_{\exists} \frac{\exists x.s}{s_v^{\times}} \ y \notin \mathcal{N}\Gamma \wedge \neg \exists y \colon s_y^{\times} \in \Gamma \qquad \mathcal{R}_{\forall} \frac{\forall x.s}{s_v^{\times}} \ y \in \mathcal{N}\Gamma$$

- Ruless add subterms only (modulo instantiation of variables)
- $ightharpoonup \mathcal{R}_\exists$ is generative since it adds subformula with new parameter
- Non-generative rules always terminate
- Existential formulas are instantiated only once
- ▶ \mathcal{R}_\exists adds only smaller existential formulas

$$a ::= px \dots x \mid x \stackrel{\cdot}{=} x$$

 $s ::= a \mid \neg a \mid s \land s \mid s \lor s \mid \exists x.s \mid \forall x.s$

$$a ::= px \dots x \mid x \stackrel{\cdot}{=} x$$

 $s ::= a \mid \neg a \mid s \land s \mid s \lor s \mid \exists x.s \mid \forall x.s$

 $ightharpoonup \tilde{\Gamma}$: congruence closure

$$a ::= px \dots x \mid x \stackrel{\cdot}{=} x$$

 $s ::= a \mid \neg a \mid s \land s \mid s \lor s \mid \exists x.s \mid \forall x.s$

- $ightharpoonup \tilde{\Gamma}$: congruence closure
- $\Gamma = \{ px, \ x \dot{=} y \}$

$$a ::= px \dots x \mid x \stackrel{\cdot}{=} x$$

 $s ::= a \mid \neg a \mid s \land s \mid s \lor s \mid \exists x.s \mid \forall x.s$

- $ightharpoonup \tilde{\Gamma}$: congruence closure
- $\Gamma = \{px, x = y\}$

$$a ::= px \dots x \mid x \stackrel{\cdot}{=} x$$

 $s ::= a \mid \neg a \mid s \land s \mid s \lor s \mid \exists x.s \mid \forall x.s$

- $ightharpoonup \tilde{\Gamma}$: congruence closure
- $\Gamma = \{px, x = y\}$
- ▶ Normalizer: $\varphi = \{x := y\}$

$$a ::= px \dots x \mid x \stackrel{\cdot}{=} x$$

 $s ::= a \mid \neg a \mid s \land s \mid s \lor s \mid \exists x.s \mid \forall x.s$

- $ightharpoonup \tilde{\Gamma}$: congruence closure
- $\Gamma = \{ px, \ x \dot{=} y \}$
- $\qquad \qquad \tilde{\Gamma} = \Gamma \cup \{py, \ x \dot{=} x, \ y \dot{=} x, \ y \dot{=} y\}$
- ▶ Normalizer: $\varphi = \{x := y\}$

$$a ::= px \dots x \mid x \stackrel{\cdot}{=} x$$

 $s ::= a \mid \neg a \mid s \land s \mid s \lor s \mid \exists x.s \mid \forall x.s$

- $ightharpoonup \tilde{\Gamma}$: congruence closure
- $\Gamma = \{px, x = y\}$
- ▶ Normalizer: $\varphi = \{x := y\}$
- $ightharpoonup \varphi$ Γ is basic, i.e., contains only trivial equations x = x

Generalized Rules

Nominal equality does not require new rules, it suffices to generalize \mathcal{R}_\neg and \mathcal{R}_\exists

$$\mathcal{R}_{\neg} \frac{\neg s}{\emptyset} \ s \in \tilde{\Gamma}$$

$$\mathcal{R}_{\exists} \ \frac{\exists x.s}{s_{y}^{x}} \ y \notin \mathcal{N}\Gamma \ \land \ \neg \exists y \colon s_{y}^{x} \in \tilde{\Gamma}$$

Generalized Rules

Nominal equality does not require new rules, it suffices to generalize \mathcal{R}_\neg and \mathcal{R}_\exists

$$\mathcal{R}_{\neg} \frac{\neg s}{\emptyset} \ s \in \tilde{\Gamma}$$

$$\mathcal{R}_{\exists} \ \frac{\exists x.s}{s_{y}^{x}} \ y \notin \mathcal{N}\Gamma \ \land \ \neg \exists y \colon s_{y}^{x} \in \tilde{\Gamma}$$

Lemma (Evidence)

Let Γ be verified and φ be a normalizer of Γ . Then $\varphi\Gamma$ is evident.

Generalized Rules

Nominal equality does not require new rules, it suffices to generalize \mathcal{R}_\neg and \mathcal{R}_\exists

$$\mathcal{R}_{\neg} \frac{\neg s}{\emptyset} \ s \in \tilde{\Gamma}$$

$$\mathcal{R}_{\exists} \ \frac{\exists x.s}{s_{y}^{x}} \ y \notin \mathcal{N}\Gamma \land \neg \exists y \colon s_{y}^{x} \in \tilde{\Gamma}$$

Lemma (Evidence)

Let Γ be verified and φ be a normalizer of Γ . Then $\varphi\Gamma$ is evident.

- $ightharpoonup \varphi \Gamma$ evident $\Rightarrow \Gamma$ finitely satisfiable
- Results carry over

▶
$$\langle r \rangle px = \exists y.rxy \land py$$

at least one *r*-successor of *x* satisfies *p*

diamond

[Hardt&GS HyLo 2006]

▶ $\langle r \rangle px = \exists y.rxy \land py$ at least one *r*-successor of *x* satisfies *p* diamond

► $[r]px = \forall y.rxy \rightarrow py$ all r-successors of x satisfy p box

[Hardt&GS HyLo 2006]

$$\langle r \rangle px = \exists y.rxy \land py$$
 diamond
$$[r]px = \forall y.rxy \rightarrow py$$
 box

► PLM

$$\begin{array}{lll} a & ::= & px \dots x \mid x \dot{=} x \\ s & ::= & a \mid \neg a \mid s \wedge s \mid s \vee s \mid \exists x.s \mid \forall x.s \mid tx \\ t & ::= & \lambda x.s \mid \langle r \rangle t \mid [r]t \end{array}$$
 modal term

diamond

 $[r]px = \forall y.rxy \rightarrow py$

box

- ► PLM
 - $a ::= px \dots x \mid x = x$
 - $s ::= a \mid \neg a \mid s \land s \mid s \lor s \mid \exists x.s \mid \forall x.s \mid tx$
 - $t ::= \lambda x.s \mid \langle r \rangle t \mid [r]t$

modal term

- ▶ PLM translates to PLN with β -reduction
 - $\langle _ \rangle \stackrel{.}{=} \lambda \mathit{rpx}. \ \exists \mathit{y}. \ \mathit{rxy} \wedge \mathit{py}$
 - $[_] \stackrel{.}{=} \lambda rpx. \ \forall y. \neg rxy \lor py$

$$[r]px = \forall y.rxy \rightarrow py$$

box

► Basic modal logic (t closed)

$$a ::= px$$

$$s ::= a \mid \neg a \mid s \wedge s \mid s \vee s \mid tx$$

$$t ::= \lambda x.s \mid \langle r \rangle t \mid [r]t$$

modal term

$$[r]px = \forall y.rxy \rightarrow py$$

box

► Basic hybrid logic (t closed)

$$a ::= px \mid x = x$$

$$s ::= a \mid \neg a \mid s \wedge s \mid s \vee s \mid tx$$

$$t ::= \lambda x.s \mid \langle r \rangle t \mid [r]t$$

modal term

►
$$\langle r \rangle px = \exists y.rxy \land py$$
 diamond
► $[r]px = \forall y.rxy \rightarrow py$ box

Basic hybrid logic with global modalities (t closed)

Syntactic Sugar for Modal Terms

$$p \vee \langle r \rangle [r] q$$

Needed for examples and applications but technically redundant

Syntactic Sugar for Modal Terms

$$p \vee \langle r \rangle [r] q$$

$$\lambda x. \ px \vee \langle r \rangle ([r] q) x$$

Needed for examples and applications but technically redundant

Syntactic Sugar for Modal Terms

$$p \lor \langle r \rangle [r] q$$

$$\lambda x. \ p x \lor \langle r \rangle ([r] q) x$$

$$\lambda x. \ p x \lor \langle r \rangle ([r] (\lambda y. q y)) x$$

Needed for examples and applications but technically redundant

$$\mathcal{E}_{\lambda}$$
 $(\lambda x.s)y \in F \Rightarrow s_{y}^{x} \in F$

$$\begin{array}{ll} \mathcal{E}_{\lambda} & (\lambda x.s)y \in F \quad \Rightarrow \quad s_{y}^{x} \in F \\ \mathcal{E}_{\Diamond} & \langle r \rangle sx \in F \quad \Rightarrow \quad \exists y: \ rxy \in F \land sy \in F \\ \end{array}$$

$$\begin{array}{lll} \mathcal{E}_{\lambda} & (\lambda x.s)y \in F & \Rightarrow & s_{y}^{x} \in F \\ \mathcal{E}_{\Diamond} & \langle r \rangle sx \in F & \Rightarrow & \exists y: \ rxy \in F \wedge sy \in F \\ \mathcal{E}_{\square} & [r]sx \in F & \Rightarrow & \forall y: \ rxy \in F \Rightarrow sy \in F \\ \end{array}$$

$$\begin{array}{lll} \mathcal{E}_{\lambda} & (\lambda x.s)y \in F & \Rightarrow & s_{y}^{x} \in F \\ \mathcal{E}_{\Diamond} & \langle r \rangle sx \in F & \Rightarrow & \exists y: \ rxy \in F \land sy \in F \\ \mathcal{E}_{\square} & [r]sx \in F & \Rightarrow & \forall y: \ rxy \in F \Rightarrow sy \in F \\ \end{array}$$

$$\mathcal{R}_{\lambda} \frac{(\lambda x.s)y}{s_{y}^{x}}$$

$$\begin{array}{lll} \mathcal{E}_{\lambda} & (\lambda x.s)y \in F & \Rightarrow & s_{y}^{\times} \in F \\ \mathcal{E}_{\Diamond} & \langle r \rangle sx \in F & \Rightarrow & \exists y: \ rxy \in F \wedge sy \in F \\ \mathcal{E}_{\square} & [r]sx \in F & \Rightarrow & \forall y: \ rxy \in F \Rightarrow sy \in F \\ \end{array}$$

$$\mathcal{R}_{\lambda} \frac{(\lambda x.s)y}{s_{y}^{x}}$$

$$\mathcal{R}_{\Diamond} \frac{\langle r \rangle sx}{rxy, sy} y \notin \mathcal{N}\Gamma$$

$$\begin{array}{lll} \mathcal{E}_{\lambda} & (\lambda x.s)y \in F & \Rightarrow & s_{y}^{x} \in F \\ \mathcal{E}_{\Diamond} & \langle r \rangle sx \in F & \Rightarrow & \exists y: \ rxy \in F \wedge sy \in F \\ \mathcal{E}_{\square} & [r]sx \in F & \Rightarrow & \forall y: \ rxy \in F \Rightarrow sy \in F \\ \end{array}$$

$$\mathcal{R}_{\lambda} \frac{(\lambda x.s)y}{s_{y}^{x}}$$

$$\mathcal{R}_{\Diamond} \frac{\langle r \rangle sx}{rxy, sy} \ y \notin \mathcal{N}\Gamma \land \neg \exists y : rxy, sy \in \widetilde{\Gamma}$$

Evidence Conditions for Modal Quantifiers

$$\mathcal{E}_{\lambda} \quad (\lambda x.s)y \in F \quad \Rightarrow \quad s_{y}^{x} \in F$$

$$\mathcal{E}_{\Diamond} \quad \langle r \rangle sx \in F \quad \Rightarrow \quad \exists y : rxy \in F \land sy \in F$$

$$\mathcal{E}_{\Box} \quad [r]sx \in F \quad \Rightarrow \quad \forall y : rxy \in F \Rightarrow sy \in F$$

$$\mathcal{R}_{\lambda} \frac{(\lambda x.s)y}{s_{y}^{x}}$$

$$\mathcal{R}_{\Diamond} \frac{\langle r \rangle sx}{rxy, sy} \ y \notin \mathcal{N}\Gamma \land \neg \exists y \colon rxy, sy \in \widetilde{\Gamma}$$

$$\mathcal{R}_{\square} \frac{[r]sx}{sy} \times \sim_{\Gamma} x' \wedge rx'y \in \Gamma$$

$$\langle r \rangle pa$$
, $[r](a \wedge \langle r \rangle p)a$

initial clause

$$\langle r \rangle pa, \ [r](a \wedge \langle r \rangle p)a$$
 rab, pb

initial clause \mathcal{R}_{\lozenge}

$$\langle r \rangle pa, \ [r](a \wedge \langle r \rangle p)a$$
 initial clause $rab, \ pb$ \mathcal{R}_{\Diamond} $(a \wedge \langle r \rangle p)b$ \mathcal{R}_{\Box}

$\langle r \rangle pa, [r](a \wedge \langle r \rangle p)a$	initial clause
rab, pb	\mathcal{R}_{\Diamond}
$(a \wedge \langle r \rangle p)b$	\mathcal{R}_{\square}
$a \dot{=} b \wedge \langle r \rangle pb$	\mathcal{R}_{λ}

initial clause
\mathcal{R}_{\Diamond}
\mathcal{R}_{\square}
\mathcal{R}_{λ}
\mathcal{R}_{\wedge}

$$\langle r \rangle pa$$
, $[r](a \wedge \langle r \rangle p)a$
 rab , pb
 $(a \wedge \langle r \rangle p)b$
 $a = b \wedge \langle r \rangle pb$
 $a = b$, $\langle r \rangle pb$

verified since $\mathit{rbb} \in \tilde{\Gamma}$

initial clause

 \mathcal{R}_{\Diamond}

 \mathcal{R}_{\square}

 \mathcal{R}_{λ}

 \mathcal{R}_{\wedge}

$\forall x. \langle r \rangle \top x$	totality
$\forall x. \ \neg rxx$	irreflexivity
$^{\prime}$ xyz. \neg rxy $\lor \neg$ ryz \lor rxz	transitivity

▶ A relation *r* is TIT if

$$\forall x. \langle r \rangle \top x$$

$$\forall x. \neg rxx$$

$$\forall xyz. \neg rxy \lor \neg ryz \lor rxz$$

totality irreflexivity transitivity

 \triangleright < on $\mathbb N$ is TIT

$$\forall x. \langle r \rangle \top x$$
 totality $\forall x. \neg rxx$ irreflexivity $\forall xyz. \neg rxy \lor \neg ryz \lor rxz$ transitivity

- \triangleright < on $\mathbb N$ is TIT
- There is no finite relation that is TIT

$\forall x. \langle r \rangle \top x$	totality
$\forall x. \ \neg rxx$	irreflexivity
\sqrt{xyz} . $\neg rxy \lor \neg ryz \lor rxz$	transitivity

- \triangleright < on \mathbb{N} is TIT
- There is no finite relation that is TIT
- ► Recall: tableau verifiability implies finite satisfiability

$$\forall x. \ \langle r \rangle \top x$$
 totality $\forall x. \ \neg rxx$ irreflexivity $\forall xyz. \ \neg rxy \lor \neg ryz \lor rxz$ transitivity

- \triangleright < on $\mathbb N$ is TIT
- There is no finite relation that is TIT
- Recall: tableau verifiability implies finite satisfiability
- TIT with open modal terms instead of negated edges

$$\forall x. \langle r \rangle \top x$$
 totality $\forall x. [r](\neg x)x$ irreflexivity $\forall xyz. [r](\neg y)x \vee [r](\neg z)y \vee \langle r \rangle zx$ transitivity

Simple Formulas

A formula is simple if it does not contain

▶ subformulas of the form $\neg rxy$ (negated edges)

Simple Formulas

A formula is simple if it does not contain

- ightharpoonup subformulas of the form $\neg rxy$ (negated edges)
- open modal subterms
 - ⇒ tableau rules don't introduce new modal subterms

Simple Formulas

A formula is simple if it does not contain

- ▶ subformulas of the form $\neg rxy$ (negated edges)
- open modal subterms
 - ⇒ tableau rules don't introduce new modal subterms
- ightharpoonup existential subterms with non-existentially quantified free variables ($\Rightarrow \mathcal{R}_\exists$ terminates)

$$\langle r \rangle pa$$
, $[r](\langle r \rangle p)a$, $[r](a \lor a)a$

initial clause

$$\langle r \rangle pa$$
, $[r](\langle r \rangle p)a$, $[r](a \lor a)a$
 rab , pb , $\langle r \rangle pb$, $(a \lor a)b$

initial clause $\mathcal{R}_{\Diamond}, \mathcal{R}_{\square}, \mathcal{R}_{\square}$

$$\langle r \rangle pa$$
, $[r](\langle r \rangle p)a$, $[r](a \lor a)a$
 rab , pb , $\langle r \rangle pb$, $(a \lor a)b$
 $a \doteq b \lor a \doteq b$

initial clause $\mathcal{R}_{\diamondsuit}, \mathcal{R}_{\square}, \mathcal{R}_{\square}$ \mathcal{R}_{λ}

$$\langle r \rangle pa, \ [r](\langle r \rangle p)a, \ [r](a \lor a)a$$
 initial clause $rab, \ pb, \ \langle r \rangle pb, \ (a \lor a)b$ $\mathcal{R}_{\Diamond}, \mathcal{R}_{\square}, \mathcal{R}_{\square}$ $a \dot{=} b \lor a \dot{=} b$ \mathcal{R}_{\lor}

$$\langle r \rangle pa$$
, $[r](\langle r \rangle p)a$, $[r](a \lor a)a$
 rab , pb , $\langle r \rangle pb$, $(a \lor a)b$
 $a = b \lor a = b$
verified since $rbb \in \tilde{\Gamma}$

initial clause $\mathcal{R}_{\diamondsuit}, \mathcal{R}_{\square}, \mathcal{R}_{\square}$ \mathcal{R}_{λ} \mathcal{R}_{\lor}

$$\langle r \rangle pa$$
, $[r](\langle r \rangle p)a$, $[r](a \lor a)a$
 rab , pb , $\langle r \rangle pb$, $(a \lor a)b$

initial clause $\mathcal{R}_{\Diamond}, \mathcal{R}_{\square}, \mathcal{R}_{\square}$

$$\langle r \rangle pa$$
, $[r](\langle r \rangle p)a$, $[r](a \lor a)a$
 rab , pb , $\langle r \rangle pb$, $(a \lor a)b$
 rbc , pc

initial clause $\mathcal{R}_{\diamondsuit}, \mathcal{R}_{\square}, \mathcal{R}_{\square}$ $\mathcal{R}_{\diamondsuit}$

$$\langle r \rangle pa, \ [r](\langle r \rangle p)a, \ [r](a \lor a)a$$
 initial clause $rab, \ pb, \ \langle r \rangle pb, \ (a \lor a)b$ $\mathcal{R}_{\diamondsuit}, \mathcal{R}_{\square}, \mathcal{R}_{\square}$ $rbc, \ pc$ $a \dot{=} b \lor a \dot{=} b$ \mathcal{R}_{λ}

$\langle r \rangle$ pa, $[r](\langle r \rangle p)$ a, $[r](a \lor a)$ a	initial clause
$rab, pb, \langle r \rangle pb, (a \lor a)b$	$\mathcal{R}_{\diamondsuit}, \mathcal{R}_{\square}, \mathcal{R}_{\square}$
rbc, pc	$\mathcal{R}_{\diamondsuit}$
$a \doteq b \lor a \doteq b$	\mathcal{R}_{λ}
a≐b	\mathcal{R}_ee

```
\begin{array}{lll} \langle r \rangle pa, & [r](\langle r \rangle p)a, & [r](a \vee a)a & \text{initial clause} \\ rab, & pb, & \langle r \rangle pb, & (a \vee a)b & \mathcal{R}_{\diamondsuit}, \mathcal{R}_{\square}, \mathcal{R}_{\square} \\ rbc, & pc & \mathcal{R}_{\diamondsuit} \\ a \dot{=} b \vee a \dot{=} b & \mathcal{R}_{\lambda} \\ a \dot{=} b & \mathcal{R}_{\square} \\ \langle r \rangle pc & \mathcal{R}_{\square} & (rac \in \tilde{\Gamma}) \end{array}
```

diverges!

```
\begin{array}{lll} \langle r \rangle pa, \ [r](\langle r \rangle p)a, \ [r](a \vee a)a & \text{initial clause} \\ rab, \ pb, \ \langle r \rangle pb, \ (a \vee a)b & \mathcal{R}_{\diamondsuit}, \mathcal{R}_{\square}, \mathcal{R}_{\square} \\ rbc, \ pc & \mathcal{R}_{\diamondsuit} \\ a \dot{=} b \vee a \dot{=} b & \mathcal{R}_{\lor} \\ \langle r \rangle pc & \mathcal{R}_{\square} & (rac \in \tilde{\Gamma}) \end{array}
```

Smart Box Rule for Basic Hybrid Logic

$$\mathcal{R}_{\square} \frac{[r]sx}{sy} \times \sim_{\Gamma} x' \wedge rx'y \in \Gamma$$

Smart Box Rule for Basic Hybrid Logic

$$\mathcal{R}_{\square}^{\operatorname{HL}} \frac{[r]sx}{sy} \times \sim_{\Gamma} x' \wedge rx'y \in \Gamma \wedge (x = x' \vee x' \text{ root in } \Gamma)$$

 Exploits that every non-trivial equivalence class contains root (special property of basic hybrid logic)

Smart Box Rule for Basic Hybrid Logic

$$\mathcal{R}_{\square}^{\mathrm{HL}} \frac{[r]sx}{sy} \times \sim_{\Gamma} x' \wedge rx'y \in \Gamma \wedge (x = x' \vee x' \text{ root in } \Gamma)$$

- Exploits that every non-trivial equivalence class contains root (special property of basic hybrid logic)
- Yields termination for basic hybrid logic

 $pa, \ \forall x. \langle r \rangle px$

initial clause

$$pa, \ \forall x. \ \langle r \rangle px$$
 initial clause $\langle r \rangle pa$ \mathcal{R}_{\forall}

 $\begin{array}{ll} \textit{pa}, \ \forall \textit{x}. \ \langle \textit{r} \rangle \textit{px} & \text{initial clause} \\ \langle \textit{r} \rangle \textit{pa} & \mathcal{R}_\forall \\ \textit{rab}, \ \textit{pb} & \mathcal{R}_\diamondsuit \end{array}$

$pa, \ \forall x. \langle r \rangle px$	initial clause
$\langle r \rangle$ pa	\mathcal{R}_\forall
rab, pb	\mathcal{R}_{\Diamond}
$\langle r \rangle pb$	\mathcal{R}_\forall

$pa, \ \forall x. \langle r \rangle px$	initial clause
$\langle r angle$ pa	\mathcal{R}_\forall
rab, pb	$\mathcal{R}_{\diamondsuit}$
$\langle r \rangle pb$	\mathcal{R}_\forall
rbc, pc	\mathcal{R}_{\Diamond}

$pa, \ \forall x. \langle r \rangle px$	initial clause
$\langle r angle$ pa	\mathcal{R}_\forall
rab, pb	\mathcal{R}_{\Diamond}
$\langle r angle$ pb	\mathcal{R}_\forall
rbc, pc	\mathcal{R}_{\Diamond}
• • •	
diverges!	

$pa, \ \forall x. \langle r \rangle px$	initial clause
$\langle r \rangle$ pa	\mathcal{R}_\forall
rab, pb	\mathcal{R}_{\Diamond}
$\langle r \rangle pb$	\mathcal{R}_\forall

Need Safe Edges to Verify Universal Formulas

```
\begin{array}{lll} \textit{pa}, \ \forall \textit{x}. \ \langle \textit{r} \rangle \textit{px} & \text{initial clause} \\ \langle \textit{r} \rangle \textit{pa} & \mathcal{R}_\forall \\ \textit{rab}, \ \textit{pb} & \mathcal{R}_\diamondsuit \\ \langle \textit{r} \rangle \textit{pb} & \mathcal{R}_\forall \\ \textit{rbb} & \text{safe edge} \end{array}
```

Need Safe Edges to Verify Universal Formulas

verified!

 $\begin{array}{lll} \textit{pa}, \ \forall \textit{x}. \ \langle \textit{r} \rangle \textit{px} & \text{initial clause} \\ \langle \textit{r} \rangle \textit{pa} & \mathcal{R}_\forall \\ \textit{rab}, \ \textit{pb} & \mathcal{R}_\diamondsuit \\ \langle \textit{r} \rangle \textit{pb} & \mathcal{R}_\forall \\ \textit{rbb} & \text{safe edge} \end{array}$

Safe Edges and Quasi-Evidence

A safe edge is an edge for which box propagation is already done

rxy safe in F if

- ▶ $x, y \in \mathcal{N}F$
- ¬rxy ∉ F
- $\forall t : [r]tx \in F \Rightarrow ty \in F$

Safe Edges and Quasi-Evidence

A safe edge is an edge for which box propagation is already done

rxy safe in F if

- \triangleright $x, y \in \mathcal{N}F$
- ¬rxy ∉ F
- $\forall t : [r]tx \in F \Rightarrow ty \in F$

Quasi-Evidence

$$\mathcal{E}^{\mathbf{q}}_{\lozenge} \quad \langle r \rangle sx \in F \ \Rightarrow \ \exists y \colon sy \in F \land rxy \text{ safe in } F$$

Safe Edges and Quasi-Evidence

A safe edge is an edge for which box propagation is already done

rxy safe in F if

- \triangleright $x, y \in \mathcal{N}F$
- ¬rxy ∉ F
- $\forall t \colon [r] tx \in F \Rightarrow ty \in F$

Quasi-Evidence

$$\mathcal{E}^{q}_{\Diamond} \quad \langle r \rangle sx \in F \Rightarrow \exists y : sy \in F \land rxy \text{ safe in } F$$

Lemma (Safe Edges)

If F is quasi-evident, then F together with its safe edges is evident.

▶ Pattern: set of modal terms

[Kaminski&GS HyLo 2007]

- ▶ Pattern: set of modal terms
- ▶ *P* realized in *F*: $\exists x \ \forall s \in P$: $sx \in F$

- ▶ Pattern: set of modal terms
- ▶ *P* realized in *F*: $\exists x \ \forall s \in P$: $sx \in F \lor \exists ryx \in F$: $[r]sy \in F$

- ▶ Pattern: set of modal terms
- ▶ P realized in F: $\exists x \ \forall s \in P$: $sx \in F \lor \exists ryx \in F$: $[r]sy \in F$
- ▶ $\langle r \rangle$ sx realized in F: $\{s\} \cup \{t \mid [r]tx \in F\}$ realized in F

- ▶ Pattern: set of modal terms
- ▶ *P* realized in *F*: $\exists x \ \forall s \in P$: $sx \in F \lor \exists ryx \in F$: $[r]sy \in F$
- ▶ $\langle r \rangle sx$ realized in F: $\{s\} \cup \{t \mid [r]tx \in F\}$ realized in F
- ▶ $\langle r \rangle sx$ realized in F and F satisfies \mathcal{E}_{\square} and no negated edges $\Rightarrow \langle r \rangle sx$ quasi-evident in F

- ▶ Pattern: set of modal terms
- ▶ *P* realized in *F*: $\exists x \ \forall s \in P$: $sx \in F \lor \exists ryx \in F$: $[r]sy \in F$
- ▶ $\langle r \rangle$ sx realized in F: $\{s\} \cup \{t \mid [r]tx \in F\}$ realized in F
- ▶ $\langle r \rangle sx$ realized in F and F satisfies \mathcal{E}_{\square} and no negated edges $\Rightarrow \langle r \rangle sx$ quasi-evident in F

$$\mathcal{R}^{p}_{\Diamond} \frac{\langle r \rangle sx}{rxy, sy} y \notin \mathcal{N}\Gamma \land \langle r \rangle sx \text{ not realized in } \tilde{\Gamma}$$

- ▶ Pattern: set of modal terms
- ▶ *P* realized in *F*: $\exists x \ \forall s \in P$: $sx \in F \lor \exists ryx \in F$: $[r]sy \in F$
- ▶ $\langle r \rangle$ sx realized in F: $\{s\} \cup \{t \mid [r]tx \in F\}$ realized in F
- ▶ $\langle r \rangle sx$ realized in F and F satisfies \mathcal{E}_{\square} and no negated edges $\Rightarrow \langle r \rangle sx$ quasi-evident in F

$$\mathcal{R}^{p}_{\Diamond} \frac{\langle r \rangle sx}{rxy, sy} y \notin \mathcal{N}\Gamma \land \langle r \rangle sx \text{ not realized in } \tilde{\Gamma}$$

Theorem System with $\mathcal{R}^{p}_{\Diamond}$ terminates for simple clauses

- ▶ Pattern: set of modal terms
- ▶ *P* realized in *F*: $\exists x \ \forall s \in P$: $sx \in F \lor \exists ryx \in F$: $[r]sy \in F$
- ▶ $\langle r \rangle$ sx realized in F: $\{s\} \cup \{t \mid [r]tx \in F\}$ realized in F
- ▶ $\langle r \rangle sx$ realized in F and F satisfies \mathcal{E}_{\square} and no negated edges $\Rightarrow \langle r \rangle sx$ quasi-evident in F

$$\mathcal{R}^{p}_{\Diamond} \frac{\langle r \rangle sx}{rxy, sy} y \notin \mathcal{N}\Gamma \land \langle r \rangle sx \text{ not realized in } \tilde{\Gamma}$$

Theorem System with $\mathcal{R}^{p}_{\Diamond}$ terminates for simple clauses

 $ightharpoonup \mathcal{R}^p_\lozenge$ applied to $\langle r \rangle sx$ realizes $\langle r \rangle sx$ in $\widetilde{\Gamma}$

- ▶ Pattern: set of modal terms
- ▶ *P* realized in *F*: $\exists x \ \forall s \in P$: $sx \in F \lor \exists ryx \in F$: $[r]sy \in F$
- ▶ $\langle r \rangle$ sx realized in F: $\{s\} \cup \{t \mid [r]tx \in F\}$ realized in F
- ▶ $\langle r \rangle sx$ realized in F and F satisfies \mathcal{E}_{\square} and no negated edges $\Rightarrow \langle r \rangle sx$ quasi-evident in F

$$\mathcal{R}^{p}_{\Diamond} \frac{\langle r \rangle sx}{rxy, sy} y \notin \mathcal{N}\Gamma \land \langle r \rangle sx \text{ not realized in } \widetilde{\Gamma}$$

Theorem System with $\mathcal{R}^{p}_{\Diamond}$ terminates for simple clauses

- $ightharpoonup \mathcal{R}^p_\lozenge$ applied to $\langle r \rangle sx$ realizes $\langle r \rangle sx$ in $\widetilde{\Gamma}$
- Realization of patterns is preserved

- ▶ Pattern: set of modal terms
- ▶ *P* realized in *F*: $\exists x \ \forall s \in P$: $sx \in F \lor \exists ryx \in F$: $[r]sy \in F$
- ▶ $\langle r \rangle$ sx realized in F: $\{s\} \cup \{t \mid [r]tx \in F\}$ realized in F
- ▶ $\langle r \rangle sx$ realized in F and F satisfies \mathcal{E}_{\square} and no negated edges $\Rightarrow \langle r \rangle sx$ quasi-evident in F

$$\mathcal{R}^{p}_{\Diamond} \frac{\langle r \rangle sx}{rxy, sy} y \notin \mathcal{N}\Gamma \land \langle r \rangle sx \text{ not realized in } \widetilde{\Gamma}$$

Theorem System with $\mathcal{R}^{p}_{\Diamond}$ terminates for simple clauses

- $ightharpoonup \mathcal{R}^p_\lozenge$ applied to $\langle r \rangle sx$ realizes $\langle r \rangle sx$ in $\widetilde{\Gamma}$
- Realization of patterns is preserved
- Stock of patterns is finite and preserved

► $Dpx = \exists y.y \neq x \land py$ existential difference at least one state different from x satisfies p

- ▶ $Dpx = \exists y.y \neq x \land py$ existential difference at least one state different from x satisfies p
- ▶ $\bar{D}px = \forall y.y \neq x \rightarrow py$ universal difference all states different from x satisfy p

- ▶ $Dpx = \exists y.y \neq x \land py$ existential difference at least one state different from x satisfies p
- ▶ $\bar{D}px = \forall y.y \neq x \rightarrow py$ universal difference all states different from x satisfy p
- ▶ Modal logic with D subsumes hybrid logic

- ▶ $Dpx = \exists y.y \neq x \land py$ existential difference at least one state different from x satisfies p
- ▶ $\bar{D}px = \forall y.y \neq x \rightarrow py$ universal difference all states different from x satisfy p
- Modal logic with D subsumes hybrid logic
- ▶ D neither in EA nor in guarded fragment

- ▶ $Dpx = \exists y.y \neq x \land py$ existential difference at least one state different from x satisfies p
- ▶ $\bar{D}px = \forall y.y \neq x \rightarrow py$ universal difference all states different from x satisfy p
- Modal logic with D subsumes hybrid logic
- D neither in EA nor in guarded fragment
- Balbiani&Demri's system [IJCAI 1997] doesn't terminate on all inputs

- ▶ $Dpx = \exists y.y \neq x \land py$ existential difference at least one state different from x satisfies p
- ▶ $\bar{D}px = \forall y.y \neq x \rightarrow py$ universal difference all states different from x satisfy p
- Modal logic with D subsumes hybrid logic
- D neither in EA nor in guarded fragment
- Balbiani&Demri's system [IJCAI 1997] doesn't terminate on all inputs
- ▶ Fitting's tableau rule [Handbook 2006] is unsound

- ▶ $Dpx = \exists y.y \neq x \land py$ existential difference at least one state different from x satisfies p
- ▶ $\bar{D}px = \forall y.y \neq x \rightarrow py$ universal difference all states different from x satisfy p
- Modal logic with D subsumes hybrid logic
- D neither in EA nor in guarded fragment
- Balbiani&Demri's system [IJCAI 1997] doesn't terminate on all inputs
- ▶ Fitting's tableau rule [Handbook 2006] is unsound
- Straightforward solution in our framework

$$\mathcal{R}_{D} \frac{Dsx}{x \neq y, sy} \ y \notin \mathcal{N}\Gamma$$

$$\mathcal{R}_{D} \frac{Dsx}{x \neq y, \ sy} \ y \notin \mathcal{N}\Gamma \land \neg \exists y \colon \ y \not\sim_{\Gamma} x \land sy \in \widetilde{\Gamma}$$

$$\mathcal{R}_{D} \frac{Dsx}{x \neq y, \ sy} \ y \notin \mathcal{N}\Gamma \ \land \ \neg \exists y \colon \ y \not\sim_{\Gamma} x \land sy \in \tilde{\Gamma}$$

$$\mathcal{R}_{\bar{D}} \frac{\bar{D}sx}{x \stackrel{.}{=} y \mid sy} \ y \in \mathcal{N}\Gamma \ \land \ y \not\sim_{\Gamma} x$$

$$\mathcal{R}_{D} \frac{Dsx}{x \neq y, \ sy} \ y \notin \mathcal{N}\Gamma \land \neg \exists y \colon \ y \not\sim_{\Gamma} x \land sy \in \tilde{\Gamma}$$
$$\mathcal{R}_{\bar{D}} \frac{\bar{D}sx}{x \doteq y \mid sy} \ y \in \mathcal{N}\Gamma \land y \not\sim_{\Gamma} x$$

 $ightharpoonup \mathcal{R}_D$ adds at most two witnesses per modal subterm Ds

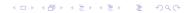
$$\mathcal{R}_{D} \frac{Dsx}{x \neq y, \ sy} \ y \notin \mathcal{N}\Gamma \land \neg \exists y \colon \ y \not\sim_{\Gamma} x \land sy \in \tilde{\Gamma}$$

$$\mathcal{R}_{\bar{D}} \frac{\bar{D}sx}{x \doteq y \mid sy} \ y \in \mathcal{N}\Gamma \land y \not\sim_{\Gamma} x$$

- \triangleright \mathcal{R}_D adds at most two witnesses per modal subterm Ds
- ▶ Terminates since D-power is decreased:

$$\begin{aligned} |\mathrm{Mod}\,\Gamma - \{\,s\mid \exists y\colon sy\in\Gamma\,\}| \\ + &\;|\mathrm{Mod}\,\Gamma - \{\,s\mid \exists x,y\colon \{sx,\,x\not\equiv y,\,sy\}\subseteq\Gamma\,\}| \end{aligned}$$

[Kaminski&GS M4M 2007]



$$Tr = \forall xyz. \ \neg rxy \lor \neg ryz \lor rxz$$

$$Tr = \forall xyz. \ \neg rxy \lor \neg ryz \lor rxz$$

$$\mathcal{E}_{\mathcal{T}}$$
 $Tr \in F \Rightarrow \forall x, y, z : rxy, ryz \in F \Rightarrow rxz \in F$

$$Tr = \forall xyz. \ \neg rxy \lor \neg ryz \lor rxz$$

$$\mathcal{E}_T$$
 $Tr \in F \implies \forall x, y, z \colon rxy, ryz \in F \Rightarrow rxz \in F$
Conflict with addition of safe edges

$$Tr = \forall xyz. \ \neg rxy \lor \neg ryz \lor rxz$$

$$\mathcal{E}_{T}$$
 $Tr \in F \Rightarrow \forall x, y, z : rxy, ryz \in F \Rightarrow rxz \in F$

$$\mathcal{E}_T^q$$
 $Tr \in F \Rightarrow \forall s, x, y : [r]sx \in F \land rxy \in F \Rightarrow [r]sy \in F$
[Halpern&Moses 1992]

$$Tr = \forall xyz. \ \neg rxy \lor \neg ryz \lor rxz$$

$$\mathcal{E}_{\mathcal{T}}$$
 $Tr \in F \Rightarrow \forall x, y, z : rxy, ryz \in F \Rightarrow rxz \in F$

$$\mathcal{E}_{T}^{q}$$
 $Tr \in F \Rightarrow \forall s, x, y : [r]sx \in F \land rxy \in F \Rightarrow [r]sy \in F$

$$\mathcal{R}_T^q \frac{Tr, [r]sx}{[r]sy} \times \sim_{\Gamma} x' \wedge rx'y \in \Gamma$$

Quantify over predecessors

$$\forall x. \langle r \rangle ([r^{-}]p)x$$

$$\forall x. \langle r \rangle ([\bar{r}]p)x, \quad a = a$$

$$\forall x. \langle r \rangle ([r^{-}]p)x, \quad a \stackrel{.}{=} a$$

 $\langle r \rangle ([r^{-}]p)a$ \mathcal{R}_{\forall}

$$\forall x. \langle r \rangle ([r]p)x, \quad a \doteq a$$
 $\langle r \rangle ([r]p)a \qquad \qquad \mathcal{R}_{\forall}$
 $rab, \quad [r]pb \qquad \qquad \mathcal{R}_{\diamondsuit}^q$

$$\forall x. \langle r \rangle ([r]p)x, \quad a \doteq a$$
 $\langle r \rangle ([r]p)a \qquad \qquad \mathcal{R}_{\forall}$
 $rab, \quad [r]pb \qquad \qquad \mathcal{R}_{\diamondsuit}^q$
 $pa \qquad \qquad \mathcal{R}_{\Box}$

$$\begin{array}{lll} \forall x. \langle r \rangle ([\bar{r}]p)x, & a \dot= a \\ \langle r \rangle ([\bar{r}]p)a & \mathcal{R}_\forall \\ rab, & [\bar{r}]pb & \mathcal{R}_\diamondsuit^q \\ pa & \mathcal{R}_\square \\ \langle r \rangle ([\bar{r}]p)b & \mathcal{R}_\forall \end{array}$$

$$\forall x. \langle r \rangle([r^-]p)x, \quad a \doteq a$$
 $\langle r \rangle([r^-]p)a \qquad \qquad \mathcal{R}_{\forall}$
 $rab, \quad [r^-]pb \qquad \qquad \mathcal{R}_{\diamondsuit}^q$
 $pa \qquad \qquad \mathcal{R}_{\Box}$
 $\langle r \rangle([r^-]p)b \qquad \qquad \mathcal{R}_{\forall}$

▶ rbb not safe since pb missing

$$\begin{array}{lll} \forall x. \langle r \rangle ([\bar{r}]p)x, & a \dot= a \\ \langle r \rangle ([\bar{r}]p)a & \mathcal{R}_\forall \\ rab, & [\bar{r}]pb & \mathcal{R}_\diamondsuit^q \\ pa & \mathcal{R}_\square \\ \langle r \rangle ([\bar{r}]p)b & \mathcal{R}_\forall \\ rbc, & [\bar{r}]pc & \mathcal{R}_\diamondsuit^q \end{array}$$

▶ rbb not safe since pb missing

$$\begin{array}{lll} \forall x.\, \langle r \rangle ([\bar{r}]p)x, & a \dot= a \\ \langle r \rangle ([\bar{r}]p)a & \mathcal{R}_\forall \\ rab, & [\bar{r}]pb & \mathcal{R}_\diamondsuit^q \\ pa & \mathcal{R}_\square \\ \langle r \rangle ([\bar{r}]p)b & \mathcal{R}_\forall \\ rbc, & [\bar{r}]pc & \mathcal{R}_\diamondsuit^q \\ pb & \mathcal{R}_\square \end{array}$$

rbb now safe, hence Γ restricted to a, b verified

$$\forall x. \langle r \rangle ([r^{-}]p)x, \quad a \stackrel{.}{=} a$$

$$\langle r \rangle ([r^{-}]p)a \qquad \qquad \mathcal{R}_{\forall}$$

$$rab, \quad [r^{-}]pb \qquad \qquad \mathcal{R}_{\Diamond}^{q}$$

$$pa \qquad \qquad \mathcal{R}_{\Box}$$

$$\langle r \rangle ([r^{-}]p)b \qquad \qquad \mathcal{R}_{\forall}^{q}$$

$$rbc, \quad [r^{-}]pc \qquad \qquad \mathcal{R}_{\Diamond}^{q}$$

$$pb \qquad \qquad \mathcal{R}_{\Box}$$
...

- rbb now safe, hence Γ restricted to a, b verified
- Still we diverge

- With converse quantification pattern-based blocking does not suffice for termination
- ► Chain-based blocking yields termination [Hughes&Creswell 1968] [Horrocks&Sattler 1999], [Bolander&Blackburn 2007]
- Our equality techniques extend to converse, can do difference with converse for the first time

Main Contributions

- Use of nominal congruence closure $(\tilde{\Gamma})$
- Safe edges
- Pattern-based termination
- Termination for D
- Termination for transitive relations
- Embedded approach to modal logic

Method Employed

- Define modal primitives in PLN
- State evidence conditions
- Find quasi-evidence conditions (safe edges)
- State tableau rules (use Γ)
- Prove evidence lemma (φ Γ evident)
- Find termination constraints
 - Root propagation for hybrid logic
 - Pattern-based blocking for simple PLM
 - Chain-based blocking for simple PLM with converse

Conclusions and Outlook

- Equality complicates terminating tableau systems a lot
- ► Abstract treatment of equality solves many problems
- ▶ Embedded approach to modal logic works well
- Work on implementation started
- ▶ Vision: μ -calculus and temporal logics with equality