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SMT Solvers at SRI

2000-2004: Integrated Canonizer and Solver (ICS)

◦ Based on Shostak’s method + a non-clausal SAT solver

2005: Two solvers in the SMT competition

◦ Simplics: linear arithmetic (Simplex based)
◦ Yices 0.1: linear arithmetic, arrays, uninterpreted functions

2006: Yices 1 released

◦ supported all SMT logics at that time: arithmetic, bitvectors, quantifiers
◦ main developer: Leonardo de Moura

Since 2006: Yices 1 maintained and developed

2008 and 2009: prototypes of a new solver (Yices 2) entered SMT-COMP
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Yices 1

Yices 1 is SRI’s current SMT solver

◦ Successor of previous systems and prototypes (ICS, Yices 0.1, Simplics)
◦ Current release: Yices 1.0.29
◦ Available for many platforms and OSs (Linux, Windows, MacOS X, Solaris)

A state-of-the-art SMT solver

◦ Yices won several categories in 2005, 2006, 2007 competition on SMT solving
◦ Rely on modern Boolean SAT solving (cf. Chaff, MiniSat, PicoSat)
◦ Many users and applications
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Main Features of Yices 1

Supported Theories

◦ Uninterpreted functions
◦ Linear real and integer arithmetic
◦ Extensional arrays
◦ Fixed-size bit-vectors
◦ Scalar types
◦ Recursive datatypes, tuples, records
◦ Quantifiers and lambda expressions

Other Features

◦ Model generation, unsatisfiable cores
◦ Supports incremental assertions: push, pop, retract
◦ Max SMT (weighted assertions)
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Some Limitations of Yices 1

Input language and type system are too complex

◦ Type correctness of a formula cannot be established cheaply (if at all)
◦ Some language features not well supported (e.g., recursive functions)

API Issues

◦ Yices 1 is mostly intended to be used via the yices executable
◦ Many user want to embed Yices in other systems: use it as a library
◦ A Yices library exists but the API is not complete and fragile

Performance Issues

◦ Yices is still a good solver for arithmetic, arrays, uninterpreted functions
◦ Not as good for bitvectors and quantifiers

Portability/Maintainability

◦ Yices 1 is written in C++ (which changes too fast, we’re already running into
issues with deprecated C++ features)
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Yices 2: The New Yices

Started in 2008

◦ Complete redesign and new implementation
◦ Written entirely in C
◦ UF + arithmetic done in 2008, arrays + bitvectors added in 2009
◦ Developments since 2009:

– model construction + queries
– support for incremental use (push/pop)
– better simplification/preprocessing
– non-linear arithmetic (under development)

Goals:

◦ Increase flexibility and usability as a library
◦ Simplify the type system to ensure easy type checking
◦ Maintain or improve performance
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Yices 2 Language

Types

◦ Primitive types: Int, Real, Bool, (Bitvector k)

◦ Uninterpreted and scalar types
◦ Tuple and function types: (τ1 × . . .× τn) and (τ1 × . . .× τn → τ0)

Subtype Relation

◦ Int < Real

◦ If τ1 < σ1, . . . , τn < σn then (τ1 × . . .× τn) < (σ1 × . . .× σn)

◦ If τ0 < σ0 then (τ1 × . . .× τn → τ0) < (τ1 × . . .× τn → σ0)

◦ Two types τ and σ are compatible if they have a common supertype

Terms

◦ Boolean, rational, and bitvector constants
◦ Distinct constants k0, k1, . . . for an uninterpreted type T (also for scalar types)
◦ Variables + usual term constructors
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Term Constructors + Type Checking

t1 :: τ1 t2 :: τ2
(t1 = t2) :: Bool

provided τ1 and τ2 are compatible

c :: Bool t1 :: τ1 t2 :: τ2
(ite c t1 t2) :: τ1 t τ2

provided τ1 and τ2 are compatible

t1 :: τ1 . . . tn :: τn
(tuple t1 . . . tn) :: (τ1 × . . .× τn)

t :: (τ1 × . . .× τn)

(selecti t) :: τi

f :: (τ1 × . . .× τn → τ ) t1 :: σ1 . . . tn :: σn σ1 < τ1 . . . σn < τn
(f t1 . . . tn) :: τ

f :: (τ1 × . . .× τn → τ ) t1 :: σ1 . . . tn :: σn v :: σ σi < τi σ < τ

(update f t1 . . . tn v) :: (τ1 × . . .× τn → τ )
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Yices 2 Architecture

Internalizer Solver

Internalizer Solver

Term Construction

Term/Type

Database

Context Management

Contexts

Model Management

Model

Model

Model

Three Main Modules: Type/Term database, Contexts, Models

◦ Several contexts can coexist
◦ Models are constructed from contexts but can be queried independently
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Solver Interaction

Solver

SAT
Solver

CORE
(UF Solver)

Arithmetic

Bitvector

Array/Fun

Solver

Solver

DPLL

The actual solver combination used by a context can be configured via the API
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Current Solvers

SAT Solver

◦ Similar to MiniSat/Picosat, with extensions for interaction with theory solvers

Core/UF Solver

◦ Congruence-closure solver for uninterpreted functions and tuples
◦ Improvement over Yices 1: better equality propagation and support for theory

combination (Nelson-Oppen, lazy generation of interface equalities)

Arithmetic Solvers

◦ Default: simplex
◦ Floyd-Warshall solvers for difference logic

Bitvector Solver: simplifier + bit blasting

Array Solver: lazy instantiation of array axioms
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Preprocessing and Simplification

Preprocessing and formula simplification are not glamorous but they are critical to
SMT solving:

◦ Many SMT-LIB benchmarks are accidently hard: they become easy
(sometimes trivial) with the right simplification trick
– Examples: eq diamond, nec-smt problems, rings problems,
unconstrained family

◦ This is not just in the SMT-LIB benchmarks:
– Bitvector problems are typically solved via bit-blasting (i.e., converted to

Boolean SAT). But without simplification, bit-blasting can turn easy problems
into exponential search

– There are other problems that just can’t be solved without the right
simplifications
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Bitvector Example 1 (from a Yices user)

(define v1::(bitvector 32))
(define v2::(bitvector 32))
(define v3::(bitvector 32))

(assert (not(= v1 0x00000000)))
(assert (= v3 (bv-urem v2 v1)))
(assert (not (bv-lt v3 v1)))

(check)
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Bitvector Example 2 (from a Yices user)

(define-type bv-type-32 (bitvector 32))
(define EIP_0_1_0::bv-type-32)
(define temp-var-0::bv-type-32 (mk-bv 32 7))
(define temp-var-22::bv-type-32 (mk-bv 32 0))
(define temp-var-1::bool (= EIP_0_1_0 temp-var-0))
(define ESP_0_1_0::bv-type-32)
(define ESP_0_0_0::bv-type-32)
(define temp-var-2::bv-type-32 (mk-bv 32 4294967292))
(define temp-var-3::bv-type-32 (bv-add ESP_0_0_0 temp-var-2))
(define temp-var-4::bool (= ESP_0_1_0 temp-var-3))
(define temp-var-5::bool (and temp-var-1 temp-var-4))
(define temp-var-54::bv-type-32 (bv-mul ESP_0_1_0 (mk-bv 32 473028019)))
(define temp-var-55::bv-type-32 (bv-mul temp-var-0 (mk-bv 32 956831788)))
(define temp-var-56::bv-type-32 (bv-sub temp-var-54 temp-var-55))
(define temp-var-57::bv-type-32 (bv-mul ESP_0_0_0 (mk-bv 32 473028019)))
(define temp-var-58::bv-type-32 (bv-sub temp-var-56 temp-var-57))
(define temp-var-59::bool (= temp-var-22 temp-var-58))
(define temp-var-65::bool (not temp-var-59))
(define temp-var-66::bool (and temp-var-5 temp-var-65))
(assert temp-var-66)
(check)
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Example 3: Nested if-then-elses

How do we deal with non-boolean if-then-else?

◦ Lifting:
– Rewrite (>= (ite c t1 t2) u) to (ite c (>= t1 u) (>= t2 u))

– Risk exponential blow up if t1 and t2 are themselves if-then-else

◦ Use an auxiliary variable
– Rewrite (>= (ite c t1 t2) u) to (>= z u) and add two constraints

(implies c (= z t1))
(implies (not c) (= z t2))

– Benefit: this does not blow up
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Nested if-then-else (cont’d)

But lifting may still work better

◦ Example: (= t1 a) when t1 is a nested if-then-else with all leaves trivially
distinct from a.

1

c2 c3

c1

3 4

c6

5 6

c7

7 8

c4

2

c5

=

0

◦ This type of constraints occurs a lot in the nec-smt benchmarks.
◦ That’s why lift-if pays off on these benchmarks (cf., Kim et al, 2009)
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Two Sources of Hard Problems for Yices

There are real users with real hard problems (no known simplification trick for
them!)

◦ Computational Biology: Flux Balance Analysis and related problems
◦ Scheduling Probems: Communication Schedules for Timed-Triggered Ethernet

(Steiner, RTSS 2010).

Note: these users see Yices as a constraint solver (as opposed to a theorem
proving tool). They care about finding models more than finding proofs.
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Flux Balance Analysis

Technique for modeling and analysis of metabolic pathways based on
stoichiometry

◦ For an individual reaction:

D-ribose + ATP −→ D-ribose-5-phosphate + ADP + 2H+

Let ρ denote the reaction rate, then the molecule quantities vary according to

d[D-ribose]

dt
=

d[ATP]

dt
= −ρ

d[D-ribose-5-phosphate]

dt
=

d[ADP]

dt
= ρ

d[H+]

dt
= 2ρ
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Flux Balance Analysis (cont’d)

If a molecule (say H+) is involved in n reactions, then we get

d[H+]

dt
= a1ρ1 + . . . + anρn

where ρis are reaction rates and ai are integer constants (ai is positive if reaction i
produces H+ and negative if reaction i consumes H+).

Doing this for a full set of molecules, we get a stoichiometry matrix S and an
equation

d[C]

dt
= SR

where R is a vector of reaction rates and C is a vector of molecule quantities
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Flux Balance Analysis (cont’d)

Flux balance analysis: looks for possible reaction rates when the system is at an
equilibrium (more or less)

◦ At equilibrium d[C]
dt = 0

◦ So we search for solutions to the linear system: SR = 0

Which solutions?

◦ The system is underdetermined (many more reactions than chemical
components)
◦ There’s always a trivial solution: R = 0, but it’s not interesting
◦ So more constraints are added to get solution that are “biologically interesting”

– add bounds on rates
– search for solutions that maximize some objective functions (i.e., biomass)

Beyond Flux-Balance Analysis

◦ add/search for missing reactions (i.e., errors in the pathway models): can be
formulated as a MILP optimization problem with 0-1 variables.
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Solving FBA and Related Problems

Off-the-shelf LP and MILP solvers

◦ Typical problem size is about 10,000s reaction, 1,000s components
◦ CPLEX, SCIP solve them without much problems

Using Yices?

◦ Motivation for trying Yices: it does exact arithmetic, off-the-shelf solvers have
licensing restrictions
◦ But: results so far are disapointing.

– Yices can’t solve many of the MILP problems that are easy for SCIP.
– Poor convergence of the pivoting heuristics used by Yices
– Encoding using 0-1 variables is suboptimal for Yices

20



Computer Science Laboratory, SRI International

Timed-Triggered Ethernet (TTE)

End
System

End
System

Switch

Switch

Switch

Dataflow

• Extension of standard Ethernet for real-time, distributed systems

• Guarantees for real-time messages: low jitter, predictable latency, no collisions

• All nodes are synchronized (fault-tolerant clock synchronization protocol)

• All communication and computation follow a system-wide, cyclic schedule
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Computing a Communication Schedule

Input

◦ a set of virtual links: dataflows from one end system to one or more end
systems
◦ the communication period

Constraints

◦ no contention: all frames on every link are in a different time slot
◦ application constraints: one frame must be received at most ∆ms after another
◦ path constraints: relayed frames must be scheduled after they are received
◦ other constraints: limits on switch memory, etc.
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TTE Scheduling as an SMT Problem

Large Difference Logic Problem (over the integers)

◦ Typical size: 10000-20000 variables, 106 to 107 constraints
◦ This depends on the network topology and number of virtual links

Solving this with Yices

◦ Yices 1 can solve moderate size instances (about 120 virtual links) out of the
box
◦ In Wilfried Steiner’s RTSS 2010 paper: incremental approach using push/pop

can solve much larger instances (up to 1000 virtual links)
◦ Still, this may not be not quite enough for all TTE systems.
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Conclusion

SMT solvers are not just for proofs/verification

Many users see them as constraint-solving tools

◦ Their problem is to find models for a formula Φ (often in the less expressive
SMT logics such as IDL or LIA)
◦ They want models and speed (don’t care about proofs)

Many scalability problems to be addressed

◦ We’re way behind state-of-the-art MILP solvers on many problems
◦ Naı̈ve Simplex implementations are not good enough
◦ How to efficiently deal with integer arithmetic is not well understood in SMT
◦ We need to address optimization problems, not just feasibility
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