Challenging Problems for Yices

Bruno Dutertre, SRI International

Deduction at Scale Seminar
March, 2011
SMT Solvers at SRI

2000-2004: Integrated Canonizer and Solver (ICS)
 ○ Based on Shostak’s method + a non-clausal SAT solver

2005: Two solvers in the SMT competition
 ○ Simplics: linear arithmetic (Simplex based)
 ○ Yices 0.1: linear arithmetic, arrays, uninterpreted functions

2006: Yices 1 released
 ○ supported all SMT logics at that time: arithmetic, bitvectors, quantifiers
 ○ main developer: Leonardo de Moura

Since 2006: Yices 1 maintained and developed

2008 and 2009: prototypes of a new solver (Yices 2) entered SMT-COMP
Yices 1

Yices 1 is SRI’s current SMT solver

- Successor of previous systems and prototypes (ICS, Yices 0.1, Simplics)
- Current release: Yices 1.0.29
- Available for many platforms and OSs (Linux, Windows, MacOS X, Solaris)

A state-of-the-art SMT solver

- Yices won several categories in 2005, 2006, 2007 competition on SMT solving
- Rely on modern Boolean SAT solving (cf. Chaff, MiniSat, PicoSat)
- Many users and applications
Main Features of Yices 1

Supported Theories
- Uninterpreted functions
- Linear real and integer arithmetic
- Extensional arrays
- Fixed-size bit-vectors
- Scalar types
- Recursive datatypes, tuples, records
- Quantifiers and lambda expressions

Other Features
- Model generation, unsatisfiable cores
- Supports incremental assertions: push, pop, retract
- Max SMT (weighted assertions)
Some Limitations of Yices 1

Input language and type system are too complex
 ○ Type correctness of a formula cannot be established cheaply (if at all)
 ○ Some language features not well supported (e.g., recursive functions)

API Issues
 ○ Yices 1 is mostly intended to be used via the `yices` executable
 ○ Many user want to embed Yices in other systems: use it as a library
 ○ A Yices library exists but the API is not complete and fragile

Performance Issues
 ○ Yices is still a good solver for arithmetic, arrays, uninterpreted functions
 ○ Not as good for bitvectors and quantifiers

Portability/Maintainability
 ○ Yices 1 is written in C++ (which changes too fast, we’re already running into issues with deprecated C++ features)
Yices 2: The New Yices

Started in 2008
- Complete redesign and new implementation
- Written entirely in C
- UF + arithmetic done in 2008, arrays + bitvectors added in 2009
- Developments since 2009:
 - model construction + queries
 - support for incremental use (push/pop)
 - better simplification/preprocessing
 - non-linear arithmetic (under development)

Goals:
- Increase flexibility and usability as a library
- Simplify the type system to ensure easy type checking
- Maintain or improve performance
Yices 2 Language

Types
- Primitive types: Int, Real, Bool, (Bitvector k)
- Uninterpreted and scalar types
- Tuple and function types: \((\tau_1 \times \ldots \times \tau_n)\) and \((\tau_1 \times \ldots \times \tau_n \rightarrow \tau_0)\)

Subtype Relation
- \(\text{Int} \sqsubseteq \text{Real}\)
- If \(\tau_1 \sqsubseteq \sigma_1, \ldots, \tau_n \sqsubseteq \sigma_n\) then \((\tau_1 \times \ldots \times \tau_n) \sqsubseteq (\sigma_1 \times \ldots \times \sigma_n)\)
- If \(\tau_0 \sqsubseteq \sigma_0\) then \((\tau_1 \times \ldots \times \tau_n \rightarrow \tau_0) \sqsubseteq (\tau_1 \times \ldots \times \tau_n \rightarrow \sigma_0)\)
- Two types \(\tau\) and \(\sigma\) are compatible if they have a common supertype

Terms
- Boolean, rational, and bitvector constants
- Distinct constants \(k_0, k_1, \ldots\) for an uninterpreted type \(T\) (also for scalar types)
- Variables + usual term constructors
Term Constructors + Type Checking

\[
\frac{t_1 :: \tau_1 \quad t_2 :: \tau_2}{(t_1 = t_2) :: \text{Bool}} \quad \text{provided } \tau_1 \text{ and } \tau_2 \text{ are compatible}
\]

\[
\frac{c :: \text{Bool} \quad t_1 :: \tau_1 \quad t_2 :: \tau_2}{(\text{ite } c \ t_1 \ t_2) :: \tau_1 \sqcup \tau_2} \quad \text{provided } \tau_1 \text{ and } \tau_2 \text{ are compatible}
\]

\[
\frac{t_1 :: \tau_1 \ldots t_n :: \tau_n}{(\text{tuple } t_1 \ldots t_n) :: (\tau_1 \times \ldots \times \tau_n)} \quad \frac{t :: (\tau_1 \times \ldots \times \tau_n)}{(\text{select}_i \ t) :: \tau_i}
\]

\[
\frac{f :: (\tau_1 \times \ldots \times \tau_n \rightarrow \tau) \quad t_1 :: \sigma_1 \ldots t_n :: \sigma_n \quad \sigma_1 \sqsubseteq \tau_1 \ldots \sigma_n \sqsubseteq \tau_n}{(f \ t_1 \ldots t_n) :: \tau}
\]

\[
\frac{f :: (\tau_1 \times \ldots \times \tau_n \rightarrow \tau) \quad t_1 :: \sigma_1 \ldots t_n :: \sigma_n \quad v :: \sigma \quad \sigma_i \sqsubseteq \tau_i \quad \sigma \sqsubseteq \tau}{(\text{update } f \ t_1 \ldots t_n \ v) :: (\tau_1 \times \ldots \times \tau_n \rightarrow \tau)}
\]
Yices 2 Architecture

Three Main Modules: Type/Term database, Contexts, Models
- Several contexts can coexist
- Models are constructed from contexts but can be queried independently
Solver Interaction

The actual solver combination used by a context can be configured via the API
Current Solvers

SAT Solver
- Similar to MiniSat/Picosat, with extensions for interaction with theory solvers

Core/UF Solver
- Congruence-closure solver for uninterpreted functions and tuples
- Improvement over Yices 1: better equality propagation and support for theory combination (Nelson-Oppen, lazy generation of interface equalities)

Arithmetic Solvers
- Default: simplex
- Floyd-Warshall solvers for difference logic

Bitvector Solver: simplifier + bit blasting

Array Solver: lazy instantiation of array axioms
Preprocessing and Simplification

Preprocessing and formula simplification are not glamorous but they are critical to SMT solving:

- Many SMT-LIB benchmarks are accidentally hard: they become easy (sometimes trivial) with the right simplification trick
 - Examples: eq_diamond, nec-smt problems, rings problems, unconstrained family
- This is not just in the SMT-LIB benchmarks:
 - Bitvector problems are typically solved via bit-blasting (i.e., converted to Boolean SAT). But without simplification, bit-blasting can turn easy problems into exponential search
 - There are other problems that just can’t be solved without the right simplifications
Bitvector Example 1 (from a Yices user)

(define v1::(bitvector 32))
(define v2::(bitvector 32))
(define v3::(bitvector 32))

(assert (not (= v1 0x00000000)))
(assert (= v3 (bv-urem v2 v1)))
(assert (not (bv-lt v3 v1)))

(check)
Bitvector Example 2 (from a Yices user)

```
(define-type bv-type-32 (bitvector 32))
(define EIP_0_1_0::bv-type-32)
(define temp-var-0::bv-type-32 (mk-bv 32 7))
(define temp-var-22::bv-type-32 (mk-bv 32 0))
(define temp-var-1::bool (= EIP_0_1_0 temp-var-0))
(define ESP_0_1_0::bv-type-32)
(define ESP_0_0_0::bv-type-32)
(define temp-var-2::bv-type-32 (mk-bv 32 4294967292))
(define temp-var-3::bv-type-32 (bv-add ESP_0_0_0 temp-var-2))
(define temp-var-4::bool (= ESP_0_1_0 temp-var-3))
(define temp-var-5::bool (and temp-var-1 temp-var-4))
(define temp-var-54::bv-type-32 (bv-mul ESP_0_1_0 (mk-bv 32 473028019)))
(define temp-var-55::bv-type-32 (bv-mul temp-var-0 (mk-bv 32 956831788)))
(define temp-var-56::bv-type-32 (bv-sub temp-var-54 temp-var-55))
(define temp-var-57::bv-type-32 (bv-mul ESP_0_0_0 (mk-bv 32 473028019)))
(define temp-var-58::bv-type-32 (bv-sub temp-var-56 temp-var-57))
(define temp-var-59::bool (= temp-var-22 temp-var-58))
(define temp-var-65::bool (not temp-var-59))
(define temp-var-66::bool (and temp-var-5 temp-var-65))
(assert temp-var-66)
(check)
```
Example 3: Nested if-then-elses

How do we deal with non-boolean if-then-else?

- **Lifting:**
 - Rewrite $(\text{ite } c \ t1 \ t2) \ u \to (\text{ite } c \ (\geq t1 \ u) \ (\geq t2 \ u))$
 - Risk exponential blow up if $t1$ and $t2$ are themselves if-then-else

- **Use an auxiliary variable**
 - Rewrite $(\geq (\text{ite } c \ t1 \ t2) \ u) \to (\geq z \ u)$ and add two constraints
 (implies c ($=$ z $t1$))
 (implies (not c) ($=$ z $t2$))
 - **Benefit:** this does not blow up
Nested if-then-else (cont’d)

But lifting may still work better

- **Example:** \((= \text{t1 a})\) when \text{t1} is a nested if-then-else with all leaves trivially distinct from \text{a}.

- This type of constraints occurs a lot in the *nec-smt* benchmarks.
- That’s why lift-if pays off on these benchmarks (cf., Kim et al, 2009)
Two Sources of Hard Problems for Yices

There are real users with real hard problems (no known simplification trick for them!)

- **Computational Biology:** Flux Balance Analysis and related problems
- **Scheduling Problems:** Communication Schedules for Timed-Triggered Ethernet (Steiner, RTSS 2010).

Note: these users see Yices as a constraint solver (as opposed to a theorem proving tool). They care about finding models more than finding proofs.
Flux Balance Analysis

Technique for modeling and analysis of metabolic pathways based on stoichiometry

- For an individual reaction:

\[
\text{D-ribose} + \text{ATP} \rightarrow \text{D-ribose-5-phosphate} + \text{ADP} + 2\text{H}^+
\]

Let \(\rho \) denote the reaction rate, then the molecule quantities vary according to

\[
\frac{d[\text{D-ribose}]}{dt} = \frac{d[\text{ATP}]}{dt} = -\rho
\]

\[
\frac{d[\text{D-ribose-5-phosphate}]}{dt} = \frac{d[\text{ADP}]}{dt} = \rho
\]

\[
\frac{d[\text{H}^+]}{dt} = 2\rho
\]
Flux Balance Analysis (cont’d)

If a molecule (say H^+) is involved in n reactions, then we get

$$\frac{d[H^+]}{dt} = a_1 \rho_1 + \ldots + a_n \rho_n$$

where ρ_i’s are reaction rates and a_i are integer constants (a_i is positive if reaction i produces H^+ and negative if reaction i consumes H^+).

Doing this for a full set of molecules, we get a stoichiometry matrix S and an equation

$$\frac{d[C]}{dt} = SR$$

where R is a vector of reaction rates and C is a vector of molecule quantities
Flux Balance Analysis (cont’d)

Flux balance analysis: looks for possible reaction rates when the system is at an equilibrium (more or less)

- At equilibrium \(\frac{d[C]}{dt} = 0 \)
- So we search for solutions to the linear system: \(SR = 0 \)

Which solutions?

- The system is underdetermined (many more reactions than chemical components)
- There’s always a trivial solution: \(R = 0 \), but it’s not interesting
- So more constraints are added to get solution that are “biologically interesting”
 - add bounds on rates
 - search for solutions that maximize some objective functions (i.e., biomass)

Beyond Flux-Balance Analysis

- add/search for missing reactions (i.e., errors in the pathway models): can be formulated as a MILP optimization problem with 0-1 variables.
Solving FBA and Related Problems

Off-the-shelf LP and MILP solvers

- Typical problem size is about 10,000s reaction, 1,000s components
- CPLEX, SCIP solve them without much problems

Using Yices?

- Motivation for trying Yices: it does exact arithmetic, off-the-shelf solvers have licensing restrictions
- But: results so far are disappointing.
 - Yices can’t solve many of the MILP problems that are easy for SCIP.
 - Poor convergence of the pivoting heuristics used by Yices
 - Encoding using 0-1 variables is suboptimal for Yices
Timed-Triggered Ethernet (TTE)

- Extension of standard Ethernet for real-time, distributed systems
- Guarantees for real-time messages: low jitter, predictable latency, no collisions
- All nodes are synchronized (fault-tolerant clock synchronization protocol)
- All communication and computation follow a system-wide, cyclic schedule
Computing a Communication Schedule

Input
- a set of virtual links: dataflows from one end system to one or more end systems
- the communication period

Constraints
- no contention: all frames on every link are in a different time slot
- application constraints: one frame must be received at most Δms after another
- path constraints: relayed frames must be scheduled after they are received
- other constraints: limits on switch memory, etc.
TTE Scheduling as an SMT Problem

Large Difference Logic Problem (over the integers)
- Typical size: 10000-20000 variables, 10^6 to 10^7 constraints
- This depends on the network topology and number of virtual links

Solving this with Yices
- Yices 1 can solve moderate size instances (about 120 virtual links) out of the box
- In Wilfried Steiner’s RTSS 2010 paper: incremental approach using push/pop can solve much larger instances (up to 1000 virtual links)
- Still, this may not be quite enough for all TTE systems.
Conclusion

SMT solvers are not just for proofs/verification

Many users see them as constraint-solving tools
- Their problem is to find models for a formula Φ (often in the less expressive SMT logics such as IDL or LIA)
- They want models and speed (don’t care about proofs)

Many scalability problems to be addressed
- We’re way behind state-of-the-art MILP solvers on many problems
- Naïve Simplex implementations are not good enough
- How to efficiently deal with integer arithmetic is not well understood in SMT
- We need to address optimization problems, not just feasibility