— Computer Science Laboratory, SRI International

Challenging Problems for Yices

Bruno Dutertre, SRI International

Deduction at Scale Seminar
March, 2011

— Computer Science Laboratory, SRI International

SMT Solvers at SR

2000-2004: Integrated Canonizer and Solver (ICS)
o Based on Shostak’s method + a non-clausal SAT solver
2005: Two solvers in the SMT competition

o Simplics: linear arithmetic (Simplex based)
o Yices 0.1: linear arithmetic, arrays, uninterpreted functions

2006: Yices 1 released

o supported all SMT logics at that time: arithmetic, bitvectors, quantifiers
o main developer: Leonardo de Moura

Since 2006: Yices 1 maintained and developed
2008 and 2009: prototypes of a new solver (Yices 2) entered SMT-COMP

— Computer Science Laboratory, SRI International

Yices 1

Yices 1 is SRI’s current SMT solver

o Successor of previous systems and prototypes (ICS, Yices 0.1, Simplics)
o Current release: Yices 1.0.29
o Available for many platforms and OSs (Linux, Windows, MacOS X, Solaris)

A state-of-the-art SMT solver

o Yices won several categories in 2005, 2006, 2007 competition on SMT solving
o Rely on modern Boolean SAT solving (cf. Chaff, MiniSat, PicoSat)
o Many users and applications

— Computer Science Laboratory, SRI International

Main Features of Yices 1

Supported Theories

o Uninterpreted functions

o Linear real and integer arithmetic

o Extensional arrays

o Fixed-size bit-vectors

o Scalar types

o Recursive datatypes, tuples, records
o Quantifiers and lambda expressions

Other Features

o Model generation, unsatisfiable cores
o Supports incremental assertions: push, pop, retract
o Max SMT (weighted assertions)

— Computer Science Laboratory, SRI International

Some Limitations of Yices 1

Input language and type system are too complex

o Type correctness of a formula cannot be established cheaply (if at all)
o Some language features not well supported (e.g., recursive functions)

APl Issues

o Yices 1 is mostly intended to be used via the yices executable
o Many user want to embed Yices in other systems: use it as a library
o A Yices library exists but the API is not complete and fragile

Performance Issues

o Yices is still a good solver for arithmetic, arrays, uninterpreted functions
o Not as good for bitvectors and quantifiers

Portability/Maintainability

o Yices 1 is written in C++ (which changes too fast, we're already running into
issues with deprecated C++ features)

— Computer Science Laboratory, SRI International

Yices 2: The New Yices

Started in 2008

o Complete redesign and new implementation

o Written entirely in C

o UF + arithmetic done in 2008, arrays + bitvectors added in 2009
o Developments since 2009:

— model construction + queries

— support for incremental use (push/pop)

— better simplification/preprocessing

— non-linear arithmetic (under development)

Goals:

o Increase flexibility and usability as a library
o Simplify the type system to ensure easy type checking
o Maintain or improve performance

— Computer Science Laboratory, SRI International

Yices 2 Language

Types
o Primitive types: Int, Real, Bool, (Bitvector k)
o Uninterpreted and scalar types
o Tuple and function types: (7 x ... x 7,) and (7 X ... X 7, = 7p)

Subtype Relation
o Int C Real
olfmCoy,...,mmCo,then (m x ... x7,) C (01 X ... X 0gy)
olfyCopgthen (7 x ... X7, = 7)) C (11 X ... X T, = 0g)
o Two types 7 and o are compatible if they have a common supertype
Terms
o Boolean, rational, and bitvector constants

o Distinct constants k, k1, . .. for an uninterpreted type T (also for scalar types)
o Variables + usual term constructors

— Computer Science Laboratory, SRI International

Term Constructors + Type Checking

t1 21 tom
(tl = t2> .- Bool

provided 7 and 7, are compatible

c::Bool ti:1 toiTy

- provided 7, and m, are compatible
(itectity) = UM

ty Tty T, to(m X ..o X Ty)
(tuple ty...t,) = (71 X ... X Tp) (select; t) = 7

fomX... X1 —=7T) tiyoop...tpo, o1 CT...00C Ty

(fti...ty) =T

fromX...x1,—=7T) tyioy...tpo, vio o, CT OCT

(update fty...t,v) (T X ... X T = T)

— Computer Science Laboratory, SRI International

Yices 2 Architecture

Internalizer Solver

Term Construction 3 Context Management i Model Management
Contexts
/ Model
\ Model
Term/Type 3
Database

Three Main Modules: Type/Term database, Contexts, Models

o Several contexts can coexist
o Models are constructed from contexts but can be queried independently

— Computer Science Laboratory, SRI International

Solver Interaction

Arithmetic
Y / Solver
DSIZI:I_L CORE Array/Fun
Solver (UF Solver) Solver
A \ Bitvector
Solver

The actual solver combination used by a context can be configured via the API

— Computer Science Laboratory, SRI International

Current Solvers

SAT Solver
o Similar to MiniSat/Picosat, with extensions for interaction with theory solvers
Core/UF Solver

o Congruence-closure solver for uninterpreted functions and tuples

o Improvement over Yices 1: better equality propagation and support for theory
combination (Nelson-Oppen, lazy generation of interface equalities)

Arithmetic Solvers

o Default: simplex
o Floyd-Warshall solvers for difference logic

Bitvector Solver: simplifier + bit blasting

Array Solver: lazy instantiation of array axioms

10

— Computer Science Laboratory, SRI International

Preprocessing and Simplification

Preprocessing and formula simplification are not glamorous but they are critical to
SMT solving:

o Many SMT-LIB benchmarks are accidently hard: they become easy
(sometimes trivial) with the right simplification trick

— Examples: eg_diamond, nec—smt problems, rings problems,
unconstrained family

o This is not just in the SMT-LIB benchmarks:

— Bitvector problems are typically solved via bit-blasting (i.e., converted to
Boolean SAT). But without simplification, bit-blasting can turn easy problems
into exponential search

— There are other problems that just can’t be solved without the right
simplifications

11

— Computer Science Laboratory, SRI International

Bitvector Example 1 (from a Yices user)

(define vl:: (bitvector 32))
(define v2:: (bitvector 32))
(define v3:: (bitvector 32))

(assert (not (= vl 0x00000000)))
(assert (= v3 (bv-urem v2 vl)))

(assert (not (bv-1t v3 vl1)))

(check)

12

— Computer Science Laboratory, SRI International

Bitvector Example 2 (from a Yices user)

define-type bv-type-32 (bitvector 32))

define EIP_0_1_0::bv-type-32)

define temp-var-0::bv-type-32 (mk-bv 32 7))

define temp-var-22::bv-type-32 (mk-bv 32 0))

define temp-var-1l::bool (= EIP_0_1_0 temp-var-0))

define ESP_0_1_0::bv-type-32)

define ESP_0_0_0::bv-type-32)

define temp-var-2::bv-type-32 (mk-bv 32 4294967292))

define temp-var-3::bv-type-32 (bv-add ESP_0_0_0 temp-var-2))
define temp-var-4::bool (= ESP_0_1_0 temp-var-3))

define temp-var-54::bv-type-32 (bv-mul ESP_0_1_0 (mk-bv 32 473028019)))
define temp-var-55::bv-type-32 (bv-mul temp-var-0 (mk-bv 32 956831788)))

define temp-var-56::bv-type-32 (bv-sub temp-var-54 temp-var-55))

define temp-var-57::bv-type-32 (bv-mul ESP_0_0_0 (mk-bv 32 473028019)))

define temp-var-58::bv-type-32 (bv-sub temp-var-56 temp-var-57))
define temp-var-59::bool (= temp-var-22 temp-var-58))

define temp-var-65::bool (not temp-var-59))

define temp-var-66::bool (and temp-var-5 temp-var-65))

assert temp-var—-66)

(
(
(
(
(
(
(
(
(
(
(define temp-var-5::bool (and temp-var-1 temp-var-4))
(
(
(
(
(
(
(
(
(
(check)

— Computer Science Laboratory, SRI International

Example 3: Nested if-then-elses

How do we deal with non-boolean if-then-else?
o Lifting:
— Rewrite (>= (ite ¢ tl t2) u) to (ite ¢ (>= tl u) (>= t2 u))
— Risk exponential blow up if t1 and t2 are themselves if-then-else

o Use an auxiliary variable
— Rewrite (>= (ite ¢ tl1 t2) u) to (>= z u) and add two constraints
(implies ¢ (= z tl1))
(implies (not c) (= z t2))
— Benefit: this does not blow up

14

— Computer Science Laboratory, SRI International

Nested if-then-else (cont'd)

But lifting may still work better
o Example: (= t1 a) when t1 is a nested if-then-else with all leaves trivially

distinct from a.
/_\
/ \ 0]
/ \ / \

$ed e b ud

o This type of constraints occurs a lot in the nec—smt benchmarks.
o That’'s why lift-if pays off on these benchmarks (cf., Kim et al, 2009)

15

— Computer Science Laboratory, SRI International

Two Sources of Hard Problems for Yices

There are real users with real hard problems (no known simplification trick for
them!)

o Computational Biology: Flux Balance Analysis and related problems

o Scheduling Probems: Communication Schedules for Timed-Triggered Ethernet
(Steiner, RTSS 2010).

Note: these users see Yices as a constraint solver (as opposed to a theorem
proving tool). They care about finding models more than finding proofs.

16

— Computer Science Laboratory, SRI International

Flux Balance Analysis

Technique for modeling and analysis of metabolic pathways based on
stoichiometry

o For an individual reaction:

D-ribose + ATP — D-ribose-5-phosphate + ADP + 2H™

Let p denote the reaction rate, then the molecule quantities vary according to

d|D-ribose] d|ATP]

a at L
d[D-ribose-5-phosphate] d[ADP]
dt - a7
d[HT]
= 2

dt

17

— Computer Science Laboratory, SRI International

Flux Balance Analysis (cont’d)

If a molecule (say H") is involved in n reactions, then we get
dH"]
dt

where p;s are reaction rates and a; are integer constants (a; is positive if reaction i
produces H' and negative if reaction : consumes H").

= a1p1+ ...+ appn

Doing this for a full set of molecules, we get a stoichiometry matrix S and an
equation
d[C]
—— = SR
dt

where R is a vector of reaction rates and C' is a vector of molecule quantities

18

— Computer Science Laboratory, SRI International

Flux Balance Analysis (cont’d)

Flux balance analysis: looks for possible reaction rates when the system is at an

equilibrium (more or less)

o At equilibrium 4 — ¢

o SO we search for solutions to the linear system: SR =0
Which solutions?

o The system is underdetermined (many more reactions than chemical
components)

o There'’s always a trivial solution: R = 0, but it's not interesting

o SO0 more constraints are added to get solution that are “biologically interesting”

— add bounds on rates
— search for solutions that maximize some objective functions (i.e., biomass)

Beyond Flux-Balance Analysis

o add/search for missing reactions (i.e., errors in the pathway models): can be
formulated as a MILP optimization problem with 0-1 variables.

19

— Computer Science Laboratory, SRI International

Solving FBA and Related Problems

Off-the-shelf LP and MILP solvers

o Typical problem size is about 10,000s reaction, 1,000s components
o CPLEX, SCIP solve them without much problems

Using Yices?
o Motivation for trying Yices: it does exact arithmetic, off-the-shelf solvers have
licensing restrictions
o But: results so far are disapointing.

— Yices can’t solve many of the MILP problems that are easy for SCIP.
— Poor convergence of the pivoting heuristics used by Yices
— Encoding using 0-1 variables is suboptimal for Yices

20

— Computer Science Laboratory, SRI International

Timed-Triggered Ethernet (TTE)

\‘\—\\ Dat af | ow
C]/ e

- /b

Swi t ch

\
End
System

e Extension of standard Ethernet for real-time, distributed systems

e Guarantees for real-time messages: low jitter, predictable latency, no collisions
¢ All nodes are synchronized (fault-tolerant clock synchronization protocol)

¢ All communication and computation follow a system-wide, cyclic schedule

21

— Computer Science Laboratory, SRI International

Computing a Communication Schedule

Input

o a set of virtual links: dataflows from one end system to one or more end
systems

o the communication period

Constraints

o no contention: all frames on every link are in a different time slot

o application constrainis: one frame must be received at most Ams after another
o path constraints: relayed frames must be scheduled after they are received

o other constraints: limits on switch memory, etc.

22

— Computer Science Laboratory, SRI International

TTE Scheduling as an SMT Problem

Large Difference Logic Problem (over the integers)

o Typical size: 10000-20000 variables, 10° to 10" constraints
o This depends on the network topology and number of virtual links

Solving this with Yices
o Yices 1 can solve moderate size instances (about 120 virtual links) out of the
box

o In Wilfried Steiner's RTSS 2010 paper: incremental approach using push/pop
can solve much larger instances (up to 1000 virtual links)

o Still, this may not be not quite enough for all TTE systems.

23

— Computer Science Laboratory, SRI International

Conclusion

SMT solvers are not just for proofs/verification
Many users see them as constraint-solving tools

o Their problem is to find models for a formula ¢ (often in the less expressive
SMT logics such as IDL or LIA)

o They want models and speed (don’t care about proofs)

Many scalability problems to be addressed

o We're way behind state-of-the-art MILP solvers on many problems

o Naive Simplex implementations are not good enough

o How to efficiently deal with integer arithmetic is not well understood in SMT
o We need to address optimization problems, not just feasibility

24

