Searching for the Holy Grail

Ian Horrocks

<ian.horrocks@comlab.ox.ac.uk> Information Systems Group Oxford University Computing Laboratory

Background and Motivation

- Medicine has a large and complex vocabulary
- Long history of "formalising" and codifying medical vocabulary
 - Numerous medical "controlled vocabularies" of various types
- Large size of static coding schemes makes them difficult to build and maintain
 - Many terminologies specific to purpose (statistical analysis, bibliographic retrieval), specialty (epidemiology, pathology) or even database
 - Ad hoc terms frequently added to cover fine detail required for clinical care

GALEN Project

Goals of the project were:

- Design/select an appropriate (for medical terminology) modelling language: GRAIL¹
- Develop tools to support conceptual modelling in this language: GRAIL classifier (amongst others)
- Use these tools to develop a suitable model of medical terminology: GALEN terminology (aka ontology)

¹GALEN Representation And Integration Language

Problems

- Recognised:
 - Classifier too slow
 - over 24 hours to classify ontology

• Unrecognised:

- Vague semantics
 - no formal specification or mapping to (description) logic
- Language lacked many features
 - cardinality restrictions (other than functional roles)
 - negation and disjunction (not even disjointness)
- Reasoning via ad hoc structural approach
 - incorrect w.r.t. any reasonable semantics

Why Not Use a Description Logic?

- Advantages:
 - Formalise semantics via mapping to DL
 - Algorithms relatively simple and clearly described
 - Already some work on implementation & optimisation (KRIS)
- Disadvantages:
 - Only relatively simple DLs had so far been implemented
 - GALEN used transitive and functional roles, role hierarchy and "General Concept Inclusion axioms" (GCIs)

Idea: extend Baader/Sattler transitive orbits to (transitive and functional) role hierarchy, and internalise GCIs

Optimising (Tableau) Reasoners

- Reasoner based on published algorithms fails to complete a single GALEN subsumption test
- Performance problems mainly caused by GCIs
 - standard "theoretical" technique is to use internalisation:

 $C \sqsubseteq D \rightsquigarrow \top \sqsubseteq (D \sqcup \neg C)$, and

 $(D \sqcup \neg C)$ applied to every individual using a "universal role"

- convenient for proofs, but hopelessly inefficient in practice
 - over 1,200 GCIs in GALEN ontology

Lesson: Theory \neq practice!

Of course this is just a simulation of what the blocks will look like when assembled

Optimising (Tableau) Reasoners

Idea: suggested by structure of GALEN KB

- GCIs all of the form $C_1 \sqcap \ldots \sqcap C_n \sqsubseteq D$
- can be rewritten as $C_1 \sqsubseteq D \sqcup \neg (C_2 \sqcap \ldots \sqcap C_n)$
- and "absorbed" into primitive "definition" axiom for C_1
- resulting TBox is "definitorial"
 - no GCIs
 - dealt with via lazy unfolding

Result: close, but no cigar

- search space still too large
- effective non-termination

11

Optimising (Tableau) Reasoners

Idea: Investigate other optimisations, e.g., from SAT

simplifications (e.g., Boolean Constraint Propagation)

V//

- semantic branching
- caching
- heuristics
- smart backtracking

Result: (qualified) success!

 "FaCT" reasoner classified GALEN core in <400s

Qualifications

- Only works for GALEN "core"
 - full ontology is much larger & couldn't be classified by FaCT
- No support for complex roles
 - GRAIL allows for axioms of form $(r \circ s) \sqsubseteq r$

Weak (cheating?) semantics for inverse roles

- GRAIL treats them as pre-processing macros: $(r \circ s) \sqsubseteq r \rightsquigarrow (s^- \circ r^-) \sqsubseteq r^-$

Result: progress, but still searching for the Holy Grail

Extending the Logic

- Qualified Cardinality Restrictions (Q)
- Inverse roles (1)
 - loss of finite model property
 - requires new "double blocking" technique
- Nominals (*O*)
 - interaction with $\mathcal{QI} \rightarrow$ new nominal introduction rule
 - complexity increases to NExpTime-complete
- Complex role inclusions (*R*)
 - roles treated as automata
 - Complexity increases to 2NExpTime

New Algorithms and Optimisations

- HyperTableau algorithm
- Caching and individual reuse
- Exploiting constructed models
- Optimised "KP" classification
- Optimised blocking

 Result:

 SROIQ can (easily) capture Grail
 Performance greatly improved (in general)
 But still can't classify GALEN
 Some other ontologies still problematical

Scalability Issues

Problems with very large and/or cyclical ontologies

- E.g. SNOMED defines 100s of thousands of terms
 - individual tests trivial, but huge number needed for classification
- E.g., cycles in GALEN lead to construction of very large models

LeftSide ⊑ ∃hasComponent.AorticValve LeftSide ⊑ ∃hasComponent.MitralValve AorticValve ⊑ ∃hasConnection.LeftVentircle MitralValve ⊑ ∃hasConnection.LeftVentircle LeftVentricle ⊑ ∃isDivisionOf.LeftSide

Solutions?

Use tractable fragment such as \mathcal{EL} ++

- PTime algorithm for classification
- ✓ Works well in practice
- Expressivity sufficient for some life science ontologies, including SNOMED
- Not expressive enough for GALEN
- X Not clear that e.g. anatomy can be faithfully modelled
- Development and repair of ontologies tends to push them outside this fragment

Case Study: SNOMED

- Kaiser Permanente extending SNOMED to express, e.g.:
 - non-viral pneumonia (negation)
 - *infectious pneumonia* is caused by a *virus* or a *bacterium* (disjunction)
 - double pneumonia occurs in two lungs (cardinalities)
- This is easy in SNOMED-OWL
 - but reasoner failed to find expected subsumptions, e.g., that bacterial pneumonia is a kind of non-viral pneumonia
- Ontology highly under-constrained: need to add disjointness axioms (at least)
 - virus and bacterium must be disjoint

Case Study: SNOMED

- Adding disjointness led to surprising results
 - many classes become inconsistent, e.g., percutanious embolization of hepatic artery using fluoroscopy guidance
- One cause of inconsistencies identified as class groin
 - groin asserted to be subclass of both abdomen and leg
 - abdomen and leg are disjoint
 - modelling of groin (and other similar "junction" regions) identified as incorrect

Case Study: SNOMED

- Faithful modelling of groin is quite complex, e.g.:
 - groin has a part that is part of the abdomen, and has a part that is part of the leg (*inverse properties*)

```
Groin ⊆ ∃hasPart.(∃isPartOf.Abdomen))
```

 $Groin \sqsubseteq \exists hasPart.(\exists isPartOf.Leg)$

 $hasPart \equiv isPartOf^-$

 all parts of the groin are part of the abdomen or the leg (disjunction)

 $Groin \sqsubseteq \forall hasPart.(\exists isPartOf.(Abdomen \sqcup Leg))$

Other Solutions?

- Use PAYG "consequence-based" algorithm
- Deductive reasoning extending *EL*++ algorithm
- PTime when ontology inside relevant fragment
- ✓ Optimised implementation works well in practice for Horn-SHIQ ontologies (CB reasoner)
- Encouraging early results even beyond Horn (ConDOR reasoner)
- Expressive enough for GALEN

Preliminary Evaluation

	FaCT++	HermiT	Pellet	CEL	CB	ConDOR
GO	15.2	199.5	72.0	1.8	1.2	
NCI	6.0	169.5	26.5	5.8	3.6	
SNOMED	650.4	_	_	1185.7	51.8	40.4
GALEN-EL	-	_			4.6	4.9
GALEN v.0	465.4	45.7	_	n/a	0.3	
GALEN v.7	-	-	_	n/a	9.6	
SAM+	2324.1	-	-	n/a	n/a	88.9
OBI	153.8	2.5	11.8	n/a	n/a	0.6
FMA-C	-	-	-	n/a	n/a	11.7
Wine	0.1	0.7	1.7	n/a	n/a	0.2

Discussion

Not clear that \mathcal{EL} ++ suffices for many applications

- Existing *EL*++ ontologies may only be "historical accidents"
- Some form of counting needed in many applications
- Clear case for SNOMED to be extended beyond $\mathcal{EL}++$
- \mathcal{EL} ++ techniques can be lifted to Horn and beyond
 - Extended algorithms still optimal on \mathcal{EL} ++ fragment
 - Perform very well on Horn SHIQ ontologies
 - Encouraging preliminary results for more expressive languages

Discussion

Lessons learned:

- Deductive algorithms highly effective (on some ontologies)
- Optimisations are still crucial
 - Some optimisations even feed back to tableau provers
- Extension to SROIQ seems challenging
 - But we are trying!

Discussion

Already found the holy grail, but we want to go further!

Thanks To

- Yevgeny Kazakov
- Boris Motik
- Rob Shearer
- Birte Glimm

Thank you for listening

FRAZZ: © Jeff Mallett/Dist. by United Feature Syndicate, Inc.

Any questions?