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Answer Set Programming (ASP)

I Term coined by Vladimir Lifschitz in the late 1990s
I An approach to modeling and solving knowledge

intensive search problems with defaults, exceptions,
definitions:
planning, configuration, model checking, network
management, linguistics, bioinformatics, combinatorics, . . .

I Solving a problem in ASP:
Encode the problem as a logic program such that
solutions to the problem are given by stable models
(answer sets) of the program.

Problem
−→ ENCODING

Data
−→ ENCODING

Program
−→

ASP
solver

Models
−→

(Solutions)
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ASP

I Expressive KR language for problem encoding
I Uniform encoding:

separate problem specification and problem instance data
I Compact, easily maintainable representation
I Program development, reusable modules, debugging,

testing, optimization
I Integrating KR, DDB, and search techniques
I Handling dynamic, knowledge intensive applications:

data, frame axioms, exceptions, defaults, definitions

Problem
−→ ENCODING

Data
−→ ENCODING

Theory
−→

ASP
solver

Models
−→

(Solutions)
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Coloring Problem
Uniform Encoding: the problem specification is a fixed
program working for every input graph given as a set of facts.

% Problem specification

1 { colored(V,C):color(C) } 1 :- vtx(V).

:- edge(V,U), colored(V,C), colored(U,C).

% Data

vtx(a). ...

edge(a,b). ...

color(r). color(g). ...

+ Legal colorings of the graph given as data and stable
models of the problem encoding and data correspond:
a vertex v colored with a color c iff colored(v , c) holds in a
stable model.
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ASP Solver Technology

I ASP solvers need to handle two challenging tasks:
complex data and search

I Current systems employ a two level architecture with two
steps:

I Grounding step handles complex data:
I Given program P with variables, generate a set of ground

instances of the rules preserving stable models.
I LP and DDB techniques employed

I Model search for ground programs

+ ASP = KR + DDB + Search
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Integrating ASP and SMT

I Solvers for the propositional satisfiability problem (SAT)
are used widely as model search engines.

I Extensions of SAT emerging:
Satisfiability Modulo Theories (SMT)

I Efficient SMT solvers for expressive theories (integers,
reals, uninterpreted function with equality, bit vectors,
arrays, . . . ) are becoming available

I Is it possible to integrate ASP and SMT to exploit the
strengths of both approaches?
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Integrating ASP and SMT

Two interrelated lines of work:
I Using SMT solvers as model search engines for ground

programs
I Combining ASP and SMT modelling languages
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Outline

I Stable models and propositional satisfiability
I Stable models and linear constraints
I Satisfiability Modulo Theories
I Translating LPs to SMT
I Integrating ASP and SMT
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Stable models
I For a logic program consisting of rules of the form

a← b1, . . . ,bm,not c1, . . . ,not cn.

a stable model is a set of atoms (i) satisfying the rules
where (ii) each atom is justified by the rules (negation by
default).

I Example. P: b ← .
f ← b,not eb.
eb ← p.

I {b,eb} is not a stable model of P but
{b, f} is the (unique) stable model of P.

I For rules with variables Herbrand interpretation used
(UNA, DCA):
stable models of a set of rules are defined to be those of
the Herbrand instantiation of the rules.
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Stable Models and SAT

I LPs with stable models are closely related to SAT through
program completion.
Example.

P :
a← b,not c
a← not b,d

Completion CC(P) :
(a↔ ((b ∧ ¬c) ∨ (¬b ∧ d)))∧
¬b ∧ ¬c ∧ ¬d

I For tight programs (no positive recursion) models of the
completion and stable models coincide (Fages 1994).

I SAT solvers provide an interesting platform for
implementing ASP solvers.
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Stable Models and SAT

I However, translating general (non-tight) LPs to SAT is
challenging

I Modular translation not possible (I.N. 1999)
I Without new atoms exponential blow-up (Lifschitz &

Razborov 2006)
I There are one pass translations:

I Polynomial size (Ben-Eliyahu & Dechter 1994;
Lin & Zhao 2003)

I O(‖P‖ × log |At(P)|) size (Janhunen 2004)
I Also incremental translations have been developed

extending the completion dynamically with loop formulas
(Lin & Zhao 2002)

+ ASSAT and CMODELS ASP solvers
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Stable Models and SAT

I Question: what needs to be added to SAT to allow a
compact linear size translation of LPs to SAT?

I A possibility: stable models can be characterized using
orderings (Elkan 1990; Fages 1994).

I Such an ordering can be captured with a restricted set of
linear constraints on integers using level rankings (I.N.
AMAI 2008)

I A suitable simple extension of propositional logic with such
restricted linear constraints called difference logic is
supported by most SMT solvers.
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Stable Models and Linear Constraints
I A level ranking of a model M is a function assigning

positive integers to atoms such that
for each atom a ∈ M there is supporting rule with
(i) a as the head, (ii) body true in M and
(iii) for each positive body atom the level ranking is
smaller than that of a.

I Example. Consider a program P
p1 ← .
p2 ← p1.
p3 ← p1. p3 ← p4.
p4 ← p2. p4 ← p3.

Function lr1(pi) = i is a level
ranking of
M = {p1,p2,p3,p4}

Theorem (I.N, AMAI 2008)
Let M be a model of the completion of a ground program P.
Then M is a stable model of P iff there is a level ranking of M
for P.
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Satisfiability Modulo Theories

I Satisfiability Modulo Theories (SMT) problem:
a first-order theory T is given and the problem is to
determine whether a formula F is T -satisfiable (whether
T ∧ F is satisfiable in the usual first-order sense).

I Some restrictions are typically assumed:
I F is a ground (quantifier-free) formula that can contain free

constants not in the signature of T but all other predicate
and function symbols are in the signature of T .

I T -satisfiability of a conjunction of such ground literals
is decidable.
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Example: Difference Logic
I T is the theory of integers
I F is limited to contain only linear difference constraints of

the form

xi + k ≥ xj (or equivalently xj − xi ≤ k )

where k is an arbitrary integer constant and xi , xj ∈ X are
free constants (which can be seen as integer valued
variables).

I Difference logic = propositional logic + linear
difference constraint

I For example,

(x1 + 2 ≥ x2)↔ (p1 → ¬(x2 − 3 ≥ x1))

is a formula in difference logic where 2,3 are integer
constants, x1, x2 free function constants, and p1 a free
predicate constant.
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Translating LPs to Difference Logic

I Mapping Tdiff(P) of a logic program P to difference logic
consists of two parts:

I completion CC(P) of P and
I ranking constraints R(P).

I The completion CC(P) contains for each atom a having k
rules in P, the formula

a↔ bd1
a ∨ · · · ∨ bdk

a

and for each such rule a formula

bd i
a ↔ b1 ∧ · · · ∧ bm ∧ ¬c1 ∧ · · · ∧ ¬cn
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Ranking Constraints
I The ranking constraints R(P) contain for each atom a

which has k ≥ 1 rules in P, a formula in difference logic

a→
k∨

i=1

(bd i
a ∧ (xa − 1 ≥ xb1) ∧ · · · ∧ (xa − 1 ≥ xbm))

where xa, xbi are free function constants denoting the
rankings of atoms a,bi .

Example.
P:
p ← q,not r .
q ← p,not r .

CC(P):
¬r
p ↔ bd1

p
bd1

p ↔ q ∧ ¬r
q ↔ bd1

q
bd1

q ↔ p ∧ ¬r

R(P):
p → (bd1

p ∧ (xp − 1 ≥ xq))

q → (bd1
q ∧ (xq − 1 ≥ xp)).
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Difference Logic Captures Stable Models

Theorem (I.N., AMAI 2008)

I If a set of atoms M is a stable model of a finite normal
program P, then there is a satisfying valuation τ of Tdiff(P)
such that M = {a ∈ At(P) | τ(a) = >}.

I If there is a satisfying valuation τ of Tdiff(P), then
M = {a ∈ At(P) | τ(a) = >} is a stable model of P.

+ A solver for difference logic can be used for computing
stable models.
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Observations

I The translation is compact (of linear size).
I It uses a limited subset of difference logic:

I Level rankings can be captured with constraints of the form
xi − 1 ≥ xj

I The translation can be made even more compact and the
number of required linear constraints can be reduced
dramatically in typical cases by exploiting strongly
connected components given by the positive
dependency graph of the program (I.N., AMAI 2008).

I The translation provides a rich source of benchmarks for
difference logic solvers (wide range of ASP applications,
for example, in the ASP competitions).
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Experiments

I A translator from ground programs to difference logic
which supports a number of variants of the translation
available (Janhunen & I.N. & Sevalnev, LPNMR 2009).
http://www.tcs.hut.fi/Software/lp2diff/

I Any state-of-the-art SMT solver supporting difference logic
can be used without modification as the backend solver.

+ The performance obtained by current SMT solvers
(Z3, BARCELOGIC, YICES) surprisingly close to the best
native ASP solvers (clasp).

+ The same (or slightly better performance) is obtained
by carefully bounding the integers, translating the linear
constraints to CNF and then using state-of-the-art SAT
solvers.

http://www.tcs.hut.fi/Software/lp2diff/


Deduction at Scale 2011
21/26

Integrating ASP and SMT

I Goal: combining KR and DDB modelling language features
with rich theories offered by SMT solvers.

I A direct approach: rules of the form

a← b1, . . . ,bm,not c1, . . . ,not cn, t1, . . . , tl .

where t1, . . . , tl are theory literals
I Semantics combines

I Hebrand interpretation for rules with variables (UNA, DCA)
I "classical" interpretation for theory atoms
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Example: Routing with Real Time Constraints

% Data

vtx(a). ... edge(a,b,10.8). ... critical(c,122.5). ...

% Problem specification

{ route(X,Y) } :- edge(X,Y,T).

:- 2 { route(X,Y):edge(X,Y,T) }, vtx(X).

:- 2 { route(X,Y):edge(X,Y,T) }, vtx(Y).

:- route(X,Y), edge(X,Y,T), at(Y) - at(X) < T.

:- vtx(X), at(X) < 0.

r(start).

r(Y) :- r(X), route(X,Y).

missing_critical :- critical(X,T), not r(X).

missing_critical :- critical(X,T), r(X), at(X) > T.

:- missing_critical.
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Integrating ASP and SMT
I The approach can be implemented by combining

I ASP grounding techniques
I the proposed translation to difference logic and
I an SMT solver supporting difference logic as the model

search engine
I For example,

:- route(X,Y), edge(X,Y,T), at(Y) - at(X) < T.

can be seen as a shorthand for a set of ground rules
:- route(s1,s2), edge(s1,s2,s3), at(s2) - at(s1) < s3.

where s1, s2, s3 range over Herbrand terms and
at(s1),at(s2), s3 are treated as free constants of the
background theory.

I The grounder computes a sufficient set of such ground
instances.
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Integrating ASP and SMT

I Now the proposed translation can be used to map ground
rules to SMT with the following extension in the completion:

I For a rule r of the form

a← b1, . . . ,bm,not c1, . . . ,not cn, t1, . . . , tl .

the formula capturing the satisfaction of the body is now

bd i
a ↔ b1 ∧ · · · ∧ bm ∧ ¬c1 ∧ · · · ∧ ¬cn ∧ t1 ∧ · · · ∧ tl

I Then any SMT solver supporting difference logic + the
theory used in the theory literals t1, . . . , tl can be used as
the model search engine.
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Conclusions

I Difference logic allows for a compact translation of rules
capturing stable models.

I The translation to difference logic opens up the possibility
of using difference logic solvers as a computational
platform for implementing ASP.

I The performance obtained by the translation and current
SMT solvers is already surprisingly close to the best
state-of-the-art ASP solvers.

I The translation provides a basis for combining ASP and
SMT modelling languages
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