
Nikolaj Bjørner
Microsoft Research
Deduction at Scale, Schloβ Ringberg March 7

FSE &

Try them online: http://rise4fun.com

http://rise4fun.com/

http://pex4fun.com/default.aspx?language=CSharp&sample=HashSetTestAddContains

Margus Veanes

http://rise4fun.com/Rex/J3

Margus Veanes

David Molnar

100+ CPU-years - largest dedicated fuzz lab in the world

100s apps - fuzzed using SAGE

100s previously unknown bugs found

1,000,000,000+ computers updated with bug fixes

Millions of $ saved for Users and Microsoft

10s of related tools (incl. Pex), 100s DART citations

100,000,000+ constraints - largest usage for any SMT solver

Slide shamelessly stolen and adapted from [Patrice Godefroid, ISSTA 2010]

int binary_search(int[] arr, int low,
 int high, int key)

while (low <= high)

 {

 // Find middle value

 int mid = (low + high) / 2;

 int val = arr[mid];

 if (val == key) return mid;

 if (val < key) low = mid+1;

 else high = mid-1;

 }

 return -1;

}

void itoa(int n, char* s) {

 if (n < 0) {

 *s++ = ‘-’;

 n = -n;

 }

 // Add digits to s

 ….

-INT_MIN=
INT_MIN

3(INT_MAX+1)/4 +
(INT_MAX+1)/4

 = INT_MIN

Package: java.util.Arrays
Function: binary_search

Book: Kernighan and Ritchie
Function: itoa (integer to ascii)

Analysis of millions of lines of Microsoft Code base

sat(and(F(k),and(T, not(next(P)))))

0.1

1

10

100

1000

Attempt to improve
Boogie/Z3 interaction

Modification in invariant
checking

Switch to Boogie2

Switch to Z3 v2

Z3 v2 update

sat(and(F(k),and(T, not(next(P)))))

Building Verve
V

e
rifie

d

Safe to the Last Instruction / Jean Yang & Chris Hawbliztl

PLDI 2010

C# compiler

Kernel.cs

Boogie/Z3

Translator/
Assembler

TAL checker

Linker/ISO generator

Verve.iso

Source file

Compilation tool
Verification tool

Nucleus.bpl (x86) Kernel.obj (x86)

9 person-months

Claim (as I see it):
Simplification - lots of junk

Structural - not random, (symmetry?)

Shallow - unsat core

Repertoire - cooperating methods

Decomposable - solve simpler problems

Abstraction - SAT < SMT

Are we there yet?

- Improve search methods and solvers,

- extend expressiveness, tactics,

- precise answers.

Claim (as I see it):
Simplification - lots of junk

Structural - not random, (symmetry?)

Shallow - unsat core

Repertoire - cooperating methods

Decomposable - solve simpler problems

Abstraction - SAT < SMT

Are we there yet?

- Improve search methods and solvers,

- extend expressiveness, tactics,

- precise answers.

The Black Diamonds of DPLL(T)

Has no short DPLL(T) proof.

Has short DPLL(T) proof when using 𝑎1 ≃ 𝑎2, 𝑎2 ≃ 𝑎3, 𝑎3 ≃ 𝑎4, … , 𝑎49 ≃ 𝑎50

¬(𝑎1≃ 𝑎50) ∧ [𝑎𝑖 ≃ 𝑏𝑖 ∧ 𝑏𝑖 ≃ 𝑎𝑖+1 ∨ (𝑎𝑖 ≃ 𝑐𝑖 ∧ 𝑐𝑖 ≃ 𝑎𝑖+1)]

49

𝑖=1

Example from [Rozanov, Strichman, SMT 07]

resolution

T- Propagate 𝑀 𝐹, 𝐶 ∨ ℓ ⟹ 𝑀, ℓ𝐶∨ℓ 𝐹, 𝐶 ∨ ℓ 𝐶 𝑖𝑠 𝑓𝑎𝑙𝑠𝑒 𝑢𝑛𝑑𝑒𝑟 𝑇 + 𝑀

T- Conflict 𝑀 𝐹 ⟹ 𝑀 𝐹 | ¬𝑀′ 𝑀′ ⊆ 𝑀 𝑎𝑛𝑑 𝑀′𝑖𝑠 𝑓𝑎𝑙𝑠𝑒 𝑢𝑛𝑑𝑒𝑟 𝑇

𝑀 | 𝐹 ⟹ 𝑀 | 𝐹, 𝑎 ≤ 𝑏 ∨ 𝑏 ≤ 𝑐 ∨ 𝑐 < 𝑎

𝑤ℎ𝑒𝑟𝑒 𝑎 > 𝑏, 𝑏 > 𝑐, 𝑎 ≤ 𝑐 ⊆ 𝑀

T- Conflict

𝑎 > 𝑏, 𝑏 > 𝑐 | 𝐹, 𝑎 ≤ 𝑐 ∨ 𝑏 ≤ 𝑑 ⟹

 𝑎 > 𝑏, 𝑏 > 𝑐, 𝑏 ≤ 𝑑𝑎≤𝑐∨𝑏≤𝑑 | 𝐹, 𝑎 ≤ 𝑐 ∨ 𝑏 ≤ 𝑑

T- Propagate

Introduces no new literals - terminates

Idea: DPLL(⊔) [B, Dutertre, de Moura 08]

Try branch 𝑎1 ≃ 𝑏1 ∧ 𝑏1 ≃ 𝑎2 Try branch ¬(𝑎1≃ 𝑏1 ∧ 𝑏1 ≃ 𝑎2)
Implies 𝑎1 ≃ 𝑏1 ≃ 𝑎2 Implies 𝑎1 ≃ 𝑐1 ≃ 𝑎2
Collect implied equalities Collect implied equalities

Compute the join ⊔ of the two equalities – common equalities are learned

Still potentially O(𝑛2) rounds just at base level of search.

Single case splits don’t suffice

Requires 2 case splits to collect implied equalities

Method: resolve literals in conflict clauses

 Theorem (for EUF): DPLL + CDER + Restart p E-Resolution

 Informal Claim: DPLL + CDTR + Restart p Resolution

Practical?
 Method introduces extra literals (= junk)
 → Throttle resolution dynamically based on activity.

Eventually, many conflicts contain: 𝑎1 ≃ 𝑏1 ∧ 𝑏1 ≃ 𝑎2

Use E-resolution, add clause: 𝑎1 ≃ 𝑏1 ∧ 𝑏1 ≃ 𝑎2 → 𝑎1 ≃ 𝑎2

Then DPLL(T) learns by itself: 𝑎1 ≃ 𝑎2

¬(𝑎1≃ 𝑎50) ∧ [𝑎𝑖 ≃ 𝑏𝑖 ∧ 𝑏𝑖 ≃ 𝑎𝑖+1 ∨ (𝑎𝑖 ≃ 𝑐𝑖 ∧ 𝑐𝑖 ≃ 𝑎𝑖+1)]

49

𝑖=1

Eventually, many conflicts contain:

𝑥𝑖 ≃ 𝑢𝑖 ∧ 𝑦𝑖 ≃ 𝑢𝑖 𝑢𝑖 = 𝑣0 𝑜𝑟 𝑢𝑖 = 𝑣1 𝑓𝑜𝑟 𝑖 = 1. . 𝑁
¬(𝑓 𝑥𝑁, … , 𝑓 𝑥2, 𝑥1 … ≃ 𝑓 𝑦𝑁, … , 𝑓 𝑦2, 𝑦1 …)

Add:

(𝑥𝑖 ≃ 𝑦𝑖) →

𝑁

𝑖=1

𝑓 𝑥𝑁 , … , 𝑓 𝑥2, 𝑥1 … ≃ 𝑓 𝑦𝑁, … , 𝑓 𝑦2, 𝑦1 …

 𝑝𝑖 ∨ 𝑥𝑖 ≃ 𝑣0 ∧ ¬𝑝𝑖 ∨ 𝑥𝑖 ≃ 𝑣1 ∧ 𝑝𝑖 ∨ 𝑦𝑖 ≃ 𝑣0 ∧ ¬𝑝𝑖 ∨ 𝑦𝑖 ≃ 𝑣1 ∧

𝑁

𝑖=1

 ¬(𝑓 𝑥𝑁, … , 𝑓 𝑥2, 𝑥1 … ≃ 𝑓 𝑦𝑁, … , 𝑓 𝑦2, 𝑦1 …)

If Congruence Rule repeatedly learns

 𝑓 𝑣, 𝑣′ ∼ 𝑓 𝑤,𝑤′

Then add clause for SAT core to use

 𝑣 ≃ 𝑤 ∧ 𝑣′ ≃ 𝑤′ → 𝑓 𝑣, 𝑣′ ≃ 𝑓 𝑤,𝑤′

Dynamic Ackermann Reduction

Dynamic Ackermann Reduction with Transitivity

If Equality Transitivity repeatedly learns

 𝑢 ∼ 𝑤 𝑓𝑟𝑜𝑚 𝑢 ∼ 𝑣 𝑎𝑛𝑑 𝑣 ∼ 𝑤

Then add clause for SAT core to use

 𝑢 ≃ 𝑣 ∧ 𝑣 ≃ 𝑤 → 𝑣 ≃ 𝑤

If Congruence Rule repeatedly learns

 𝑓 𝑣, 𝑣′ ∼ 𝑓 𝑤,𝑤′ for literal 𝑓 𝑣, 𝑣′ ≃ 𝑓 𝑤,𝑤′

Then add clause for SAT core to use

 𝑣 ≃ 𝑤 ∧ 𝑣′ ≃ 𝑤′ → 𝑓 𝑣, 𝑣′ ≃ 𝑓 𝑤,𝑤′

Dynamic Ackermann Reduction

Dynamic Ackermann Reduction with Transitivity

If Equality Transitivity repeatedly learns

 𝑢 ∼ 𝑤 𝑓𝑟𝑜𝑚 𝑢 ∼ 𝑣 𝑎𝑛𝑑 𝑣 ∼ 𝑤

Then add clause for SAT core to use

 𝑢 ≃ 𝑣 ∧ 𝑣 ≃ 𝑤 → 𝑣 ≃ 𝑤

 𝑎 < 𝑥1 ∧ 𝑎 < 𝑥2 ∧ 𝑥1 < 𝑏 ∨ 𝑥2 < 𝑏 ∧
 b < 𝑦1 ∧ 𝑏 < 𝑦2 ∧ 𝑦1 < 𝑐 ∨ 𝑦2 < 𝑐 ∧
 c < 𝑧1 ∧ 𝑐 < 𝑧2 ∧ 𝑧1 < 𝑎 ∨ 𝑧2 < 𝑎

 𝑎

 𝑥1

 𝑥2

 𝑏

 𝑦1

 𝑦2

 𝑐

 𝑧1

 𝑧2

 𝑎 ∧ ∧ ∧ ∨ ∨ ∨

 𝑥1

 𝑏

 𝑦2

 𝑐

 𝑧2

 𝑎

Add clause

𝑎 < 𝑥1 < 𝑏 → 𝑎 < 𝑏

Top Two Most Active

vertices
<

Modern SMT solvers find resolution proofs
unlike SAT solvers: SMT >p RES

Gap is real enough

Presented a technique for equalities
Based on applying Resolution to conflicts.

Dynamic - to address literal introduction junk.

Just one of many possible optimizations.
e.g. cutting plane proofs, arbitrary cuts (Frege)

The devil is in the theory

