Voting Machines and
Automotive Software:
Explorations with SMT at Scale

Sanjit A. Seshia

EECS Department
UC Berkeley

Joint work with: Bryan Brady, Randy Bryant, Susmit Jha, Jon Kotker,
John O’Leary, Alexander Rakhlin, Cynthia Sturton, David Wagner

March 2011




Three Stories
m Verified Voting Machine
— High-confidence Interactive System

— SMT solving can exponentially reduce the number
of Ul tests by humans

@ GameTime

— Timing Analysis of Embedded Software

— SMT solving can enable systematic
measurement-based timing analysis

m UCLID/ATLAS
— Verification of High-Level Hardware Designs

— SMT solving sometimes needs help!
(automatic abstraction to suitable theories)




Electronic Voting Machines

m 2010 U.S. elections statistics [verifiedvoting.org]

— 25% of registered voters had to use paperless
electronic voting machines

— In 11 states, paperless voting accounts for most or all
Election Day ballots

m Concerns about correctness and security

2010 elections

See states' use of;
+ Standard and Acceszsible Equipmeant

+ Standard Polling Place Equipment
+ Accessible Polling Place Equipment

Legend - Standard and Accessible Equipment

ot and DREs with and without WVWFAT

1es and Accessible Ballat Marking Devicas
- par Audit Trall Printers
\ ; \
b E 1 ) DRE = DirecT-recording Electionic

3
[verifiedvoting.org]




Voting Machines in the News

Jefferson County Voters Continue To Raise Concerns About Voting Machines
“...voters complained that when they selected a particular candidate,
another candidate’s name would light up.”

KDFM-TV Channel Six News. Oct. 28, 2006

Can You Count on Voting Machines?

“Sliding finger bug on the Diebold AccuVote-TSX ... machine
would crash every few hundred ballots”

The New York Times Magazine. Jan 6, 2008.




A Typical DRE

m Contest: a particular race on the ballot
— E.g., Presidential
— k choices, pick 7

= \Voter session: a sequence of

contests
= Navigate back and forth

voterescue.org

= Cast: commit all choices for all contests

" The last step of a voter session




Our Contribution

m Testing by humans + formal verification can

prove a voting machine will work correctly on
election day

m Designed a simplified voting machine and
proved its correctness using formal methods

— Direct recording electronic voting machine (DRE)
synthesized onto an FPGA

— Verification by Model checking and SMT solving

— Finite, polynomial number of tests
(to be conducted by humans)

Publication: C. Sturton, S. Jha, S. A. Seshia and D. Wagner, “On Voting Machine
Design for Verification and Testability”, ACM CCS 20009.




Correctness: Trace Equivalence

Contest 1, Contest 1
' no selections = Alice”

T uolng

How to model?

_ I
— (1, @) (1, {“Alice”}) ...

Implementation




Testing: What Tests are Sufficient?

What sequences (b1, b2, b3, ..., cast) are
sufficient for testing?

Problem: Infinitely many input sequences!
Consider for a single contest: Alice (A) vs. Bob (B)

o A B B _
—N > =R — e —




Formal Verification to the Rescue

Verify the following properties on the code:
PO. The DRE implementation is deterministic

P1. Each unique output screen represents a unigue
Internal state

— output display function is injective (1-1) function

of selection state and contest number

P2. The final cast vote record accurately reflects
the selection state




Multiple Contests: Exponential Blowup

ext
é
Eve =

-
(pi Mallory; =

N contests, 1-of-k choice in each contest
- kN total combinations

An SMT-based verification step can reduce
the number of choices to simply N*k !




Additional Properties to be Verified

P3. Contests are Independent: Updating the state
of one contest has no effect on any other contest

P4. Navigation does not affect Selection: A
navigation button does not affect the selection
state of any contest

P5. Selection does not affect Navigation: A
selection button does not navigate to a new
contest




Verifying Independence/Determinism

Verify that a variable v is a function of
W ={wl, w2, ... wk} AND nothing else

= §(S5,5,1,0) = = Encode next-state and
S =3(S) A0 =p(S) output functions as logical

formulas

m Check validity of the m Check that value of v is

formula not affected by changes
, <— to variables other than W
{ (I)(Sl’sl,’ll’ol) 4 (consider two runs in
0(S,,S,',15,0,) A which W variables have

VweW.w, =w, } same initial value)
(« _ )




Experience with SMT Solvers

s Original HW implementation
— Small screen, rendered in hardware

— Bit-vector SMT solvers (circa 2009) worked fine
m Beaver (developed in my group)

= Moved to combined HW-SW implementation

— Larger screen, more complex GUI, rendered In
software

— Bit-vector solvers no longer scaled

— Solution: Use quantified linear arithmetic with
uninterpreted functions and arrays; compositional
reasoning

m 2009: Still too difficult for SMT solvers, Z3 returned
“unknown”

m 2011: Progress! Z3 solves it.




Timing Analysis of Embedded Software

Does the brake-by-wire software
always actuate the brakes within

Can the pacemaker software
trigger a pace more frequently
than prescribed?




The Challenge of Timing Analysis

Several timing analysis problems:
Worst-case execution time (WCET) estimation

Threshold property: can a program take
more/less time than it Is supposed to?

Estimating distribution of execution times

Software-in-the-loop simulation: predict
execution time of particular program path

Challenge: Platform Modeling




Factors affecting Execution Time

Processor (pipelining, branch prediction, ...)
Caches

Virtual memory

Dynamic dispatch

Power management (voltage scaling)
Memory management (garbage collection)
Just-in-time (JIT) compilation

Multitasking (threads and processes)
Networking




Current State-of-the-art for
Timing Analysis

m Program = Sequential,
terminating program

® Runs uninterrupted

PROBLEM:

l Can take several man-
/ months to construct!

Also: limited to
extreme-case analysis

Timing Model
m Platform =
Single-core Processor +
Data/Instruction Cache




Our Approach: GameTime

m Automatically infer a program-specific timing
model of the platform from systematic
measurements

m Model as a 2-player Game: Tool vs. Platform

— Tool selects program execution paths
— Platform ‘selects’ its state (possibly adversarially)

m SMT solver generates tests for chosen paths
— Typically: conjunctions of atomic formulas
— Quantifier-free BV + UFs + Arrays

— Less need for incrementality
(don’t incrementally grow a path formula, less
sharing amongst path formulas)




The GameTime Approach: Overview

Game-Theoretic Online Learning +
Satisfiability Solving Modulo Theories (SMT)

| LEARNING
UULER A\ | GORITHM

AV

MEASURE 1

PROGRAM CONTROL-FLOW EXECUTION
GRAPH TIMES PREDICT

TIMING
PROPERTIES

SMT SOLVER GENERATES (worst-case,
TEST INPUTS distribution,etc.)

EXTRACT BASIS PATHS

Publication: S. A. Seshia and A. Rakhlin, “Quantitative Analysis of Embedded Systems
Using Game-Theoretic Learning”, ACM Trans. Embedded Computing Systems. —19-




Example: Automotive Window Controller

m ~ 1000 lines of C code
m 7/ X 101 program paths

Number of basis paths explored by GameTime: < 200

SMT queries: Max time about a second

Accurately predicts lengths of non-basis paths




erm-Level Modeling for H/W Verification

m Data Abstraction: View Data as Symbolic “ Terms”

m Function Abstraction: Abstract Functional Units
as Uninterpreted (partially-interpreted) functions

—




Modeling for Hardware Verification

— Symbolic (e.g. integer) data

— Uninterpreted functions &
predicates

Bit-vectors + uninterpreted functions + arrays + integers

— Fixed-width words of bits

Bit Vector Level _ Standard arithmetic and

logical operators
Bit-vectors (+ arrays)

Bit Level — Individual bits

— Boolean operations




Impact of Term-Level Abstraction

m ATLAS: Automatic Term-Level Abstraction

m Abstracting to term level generates much easier
SMT problems

m Experience on processor and low-power designs
— QF BV > QF AUFBV

— Speedup of 5X-100X (using all leading solvers, this number
for Boolector)

Publication: B. Brady, R. E. Bryant, S. A. Seshia and J. W. O’Leary, “ATLAS:
Automatic Term-Level Abstraction of RTL Designs”, MEMOCODE 2010.




Other Explorations with SMT

m Program Synthesis from I/O Examples [ICSE'10]
— Applied to reverse engineering of malware

— SMT solvers used to generate examples and
candidate programs

m CalCS: SMT solving for non-linear convex
constraints [FMCAD’10]

— Applied to verification of hybrid systems

m Verification and Synthesis of Network-on-Chip
Designs [DATE’'11, DAC’11]

http://Iwww.eecs.berkeley.edu/~sseshia
http://uclid.eecs.berkeley.edu




