
Voting Machines and
Automotive Software:

Explorations with SMT at Scale

Voting Machines and
Automotive Software:

Explorations with SMT at Scale

Sanjit A. SeshiaSanjit A. Seshia

EECS DepartmentEECS Department
UC BerkeleyUC Berkeley

March 2011

Joint work with: Bryan Brady, Randy Bryant, Susmit Jha, Jon Kotker,
John O’Leary, Alexander Rakhlin, Cynthia Sturton, David Wagner

– 2 –

Three StoriesThree Stories

 Verified Voting MachineVerified Voting Machine
–– HighHigh--confidence Interactive Systemconfidence Interactive System
–– SMT solving can exponentially reduce the number SMT solving can exponentially reduce the number

of UI tests by humansof UI tests by humans
 GameTimeGameTime

–– Timing Analysis of Embedded SoftwareTiming Analysis of Embedded Software
–– SMT solving can enable systematic SMT solving can enable systematic

measurementmeasurement--based timing analysisbased timing analysis
 UCLID / ATLASUCLID / ATLAS

–– Verification of HighVerification of High--Level Hardware DesignsLevel Hardware Designs
–– SMT solving sometimes needs help! SMT solving sometimes needs help!

(automatic abstraction to suitable theories)(automatic abstraction to suitable theories)

– 3 –

Electronic Voting MachinesElectronic Voting Machines

 2010 U.S. elections statistics 2010 U.S. elections statistics [[verifiedvoting.orgverifiedvoting.org]]
–– 25% of registered voters25% of registered voters had to use paperless had to use paperless

electronic voting machineselectronic voting machines
–– In In 11 states11 states, paperless voting accounts for most or all , paperless voting accounts for most or all

Election Day ballotsElection Day ballots
 Concerns about Concerns about correctnesscorrectness and and securitysecurity

[verifiedvoting.org]

2010 elections

– 4 –

Voting Machines in the NewsVoting Machines in the News

Jefferson County Voters Continue To Raise Concerns About Voting Machines
“…voters complained that when they selected a particular candidate,
another candidate’s name would light up.”
KDFM‐TV Channel Six News. Oct. 28, 2006

Can You Count on Voting Machines?
“Sliding finger bug on the Diebold AccuVote‐TSX … machine
would crash every few hundred ballots”
The New York Times Magazine. Jan 6, 2008.

– 5 –

A Typical DREA Typical DRE

 Contest: a particular race on the ballotContest: a particular race on the ballot
–– E.g., PresidentialE.g., Presidential
–– kk choices, pick choices, pick ll

voterescue.org

 Voter session: a sequence of
contests
 Navigate back and forth

 Cast: commit all choices for all contests
 The last step of a voter session

– 6 –

Our ContributionOur Contribution

 Testing by humans + formal verificationTesting by humans + formal verification can can
prove a voting machine will work correctly on prove a voting machine will work correctly on
election dayelection day

 Designed a simplified voting machine and Designed a simplified voting machine and
proved its correctness using formal methodsproved its correctness using formal methods
–– Direct recording electronic voting machine (DRE) Direct recording electronic voting machine (DRE)

synthesized onto an FPGA synthesized onto an FPGA
–– Verification by Model checking and SMT solvingVerification by Model checking and SMT solving
–– Finite, polynomial number of testsFinite, polynomial number of tests

(to be conducted by humans)(to be conducted by humans)

Publication: C. Sturton, S. Jha, S. A. Seshia and D. Wagner, “On Voting Machine
Design for Verification and Testability”, ACM CCS 2009.

– 7 –

Correctness: Trace EquivalenceCorrectness: Trace Equivalence

Implementation

Tester

(1, ø) (1, {“Alice”})

. . .

. . .

. . .

Button 1

Contest 1,
no selections

Contest 1,
“Alice”

How to model?

– 8 –

Testing: What Tests are Sufficient?Testing: What Tests are Sufficient?

b1 b2 b3 … cast 1: Alice
2: Yes
3: Eve

=
?

What sequences (b1, b2, b3, …, cast) are
sufficient for testing?

Problem: Infinitely many input sequences!
Consider for a single contest: Alice (A) vs. Bob (B)

A A B B …

– 9 –

Formal Verification to the RescueFormal Verification to the Rescue

Verify the following properties on the code:Verify the following properties on the code:
P0. The DRE implementation is P0. The DRE implementation is deterministicdeterministic
P1. P1. Each unique output screen represents a unique Each unique output screen represents a unique

internal stateinternal state
–– output display function is injective (1output display function is injective (1--1) function 1) function

of selection state and contest numberof selection state and contest number
P2. The final cast vote record accurately reflects P2. The final cast vote record accurately reflects

the selection statethe selection state

– 10 –

Multiple Contests: Exponential BlowupMultiple Contests: Exponential Blowup

Alice

Bob
Yes

No
Eve

Mallory

next

prev

next

prev

N contests, 1-of-k choice in each contest
 kN total combinations

An SMT-based verification step can reduce
the number of choices to simply N*k !

– 11 –

Additional Properties to be VerifiedAdditional Properties to be Verified

P3. P3. Contests are IndependentContests are Independent: Updating the state : Updating the state
of one contest has no effect on any other contestof one contest has no effect on any other contest

P4. P4. Navigation does not affect SelectionNavigation does not affect Selection: A : A
navigation button does not affect the selection navigation button does not affect the selection
state of any conteststate of any contest

P5. P5. Selection does not affect NavigationSelection does not affect Navigation: A : A
selection button does not navigate to a new selection button does not navigate to a new
contestcontest

– 12 –

Verifying Independence/DeterminismVerifying Independence/Determinism

 (S,S’,I,O) ,
S’ = (S,I) ∧ O = (S)

 Encode nextEncode next--state and state and
output functions as logical output functions as logical
formulasformulas

Verify that a Verify that a variable v is a function of variable v is a function of
W = {w1, w2, W = {w1, w2, …… wk} AND nothing elsewk} AND nothing else

 Check that value of v is Check that value of v is
not affected by changes not affected by changes
to variables other than W to variables other than W
(consider two runs in (consider two runs in
which W variables have which W variables have
same initial value)same initial value)

 Check validity of the
formula

{ (S1,S1’,I1,O1) ∧
(S2,S2’,I2,O2) ∧
∀ w ∈W. w1 = w2 }
⇒ v1‘ = v2’

– 13 –

Experience with SMT SolversExperience with SMT Solvers

 Original HW implementationOriginal HW implementation
–– Small screen, rendered in hardwareSmall screen, rendered in hardware
–– BitBit--vector SMT solvers (circa 2009) worked finevector SMT solvers (circa 2009) worked fine

 Beaver (developed in my group)Beaver (developed in my group)

 Moved to combined HWMoved to combined HW--SW implementationSW implementation
–– Larger screen, more complex GUI, rendered in Larger screen, more complex GUI, rendered in

softwaresoftware
–– BitBit--vector solvers no longer scaledvector solvers no longer scaled
–– Solution: Use quantified linear arithmetic with Solution: Use quantified linear arithmetic with

uninterpreteduninterpreted functions and arrays; compositional functions and arrays; compositional
reasoningreasoning
 2009: Still too difficult for SMT solvers, Z3 returned 2009: Still too difficult for SMT solvers, Z3 returned

““unknownunknown””
 2011: Progress! Z3 solves it.2011: Progress! Z3 solves it.

– 14 –

Timing Analysis of Embedded SoftwareTiming Analysis of Embedded Software

Does the brake-by-wire software
always actuate the brakes within
1 ms?

Can the pacemaker software
trigger a pace more frequently
than prescribed?

– 15 –

The Challenge of Timing AnalysisThe Challenge of Timing Analysis

Several timing analysis problems:Several timing analysis problems:
 WorstWorst--case execution time (case execution time (WCETWCET) estimation) estimation
 ThresholdThreshold property: can a program take property: can a program take

more/less time than it is supposed to?more/less time than it is supposed to?
 Estimating Estimating distributiondistribution of execution timesof execution times
 SoftwareSoftware--inin--thethe--loop simulationloop simulation: predict : predict

execution time of particular program pathexecution time of particular program path

Challenge: Platform Modeling

– 16 –

Factors affecting Execution TimeFactors affecting Execution Time

 Processor (pipelining, branch prediction, Processor (pipelining, branch prediction, ……))
 CachesCaches
 Virtual memoryVirtual memory
 Dynamic dispatchDynamic dispatch
 Power management (voltage scaling)Power management (voltage scaling)
 Memory management (garbage collection)Memory management (garbage collection)
 JustJust--inin--time (JIT) compilationtime (JIT) compilation
 Multitasking (threads and processes)Multitasking (threads and processes)
 NetworkingNetworking
 ……

[E.A.Lee]

– 17 –

Current State-of-the-art for
Timing Analysis
Current State-of-the-art for
Timing Analysis

 Program = Sequential, Program = Sequential,
terminating programterminating program

 Runs uninterruptedRuns uninterrupted

 Platform = Platform =
SingleSingle--core Processor + core Processor +
Data/Instruction CacheData/Instruction Cache

Timing Model

PROBLEM:
Can take several man-
months to construct!

Also: limited to
extreme-case analysis

– 18 –

Our Approach: GameTimeOur Approach: GameTime

 Automatically infer a programAutomatically infer a program--specific timing specific timing
model model of the platform from of the platform from systematic systematic
measurementsmeasurements

 Model as a 2Model as a 2--player Game: Tool vs. Platformplayer Game: Tool vs. Platform
–– Tool selects program execution pathsTool selects program execution paths
–– Platform Platform ‘‘selectsselects’’ its state (possibly its state (possibly adversariallyadversarially))

 SMT solver generates tests for chosen pathsSMT solver generates tests for chosen paths
–– Typically: conjunctions of atomic formulasTypically: conjunctions of atomic formulas
–– QuantifierQuantifier--free BV + free BV + UFsUFs + Arrays+ Arrays
–– Less need for Less need for incrementalityincrementality

(don(don’’t incrementally grow a path formula, less t incrementally grow a path formula, less
sharing amongst path formulas) sharing amongst path formulas)

– 19 –

The GameTime Approach: OverviewThe GameTime Approach: Overview
Game-Theoretic Online Learning +

Satisfiability Solving Modulo Theories (SMT)

PROGRAM CONTROL-FLOW
GRAPH

EXTRACT BASIS PATHS

i1
i2

i3

SMT SOLVER GENERATES
TEST INPUTS

PREDICT
TIMING

PROPERTIES
(worst-case,

distribution,etc.)

LEARNING
ALGORITHM

i1
i2
i3

…

42
75
101

…

MEASURE
EXECUTION

TIMES

online

Publication: S. A. Seshia and A. Rakhlin, “Quantitative Analysis of Embedded Systems
Using Game-Theoretic Learning”, ACM Trans. Embedded Computing Systems.

– 20 –

Example: Automotive Window ControllerExample: Automotive Window Controller

 ~ 1000 lines of C code~ 1000 lines of C code
 7 x 107 x 101616 program pathsprogram paths

Number of basis paths explored by GameTime: < 200

Accurately predicts lengths of non-basis paths

SMT queries: Max time about a second

– 21 –

Term-Level Modeling for H/W VerificationTerm-Level Modeling for H/W Verification

 Data AbstractionData Abstraction: View Data as Symbolic : View Data as Symbolic ““TermsTerms””

 Function AbstractionFunction Abstraction: Abstract Functional Units : Abstract Functional Units
as as UninterpretedUninterpreted (partially(partially--interpreted) functionsinterpreted) functions

x0
x1
x2

xn-1

x

A
L
U

A
L
U

f

. . .

– 22 –

Modeling for Hardware VerificationModeling for Hardware Verification

–– Symbolic (e.g. integer) dataSymbolic (e.g. integer) data
–– UninterpretedUninterpreted functions & functions &

predicatespredicates

–– FixedFixed--width words of bitswidth words of bits
–– Standard arithmetic and Standard arithmetic and

logical operatorslogical operators

–– Individual bitsIndividual bits
–– Boolean operationsBoolean operations

Bit Level

Bit Vector Level

Term Level

Bit-vectors (+ arrays)

Bit-vectors + uninterpreted functions + arrays + integers

– 23 –

Impact of Term-Level Abstraction Impact of Term-Level Abstraction

 ATLAS: Automatic TermATLAS: Automatic Term--Level AbstractionLevel Abstraction

 Abstracting to term level generates much easier Abstracting to term level generates much easier
SMT problemsSMT problems

 Experience on processor and lowExperience on processor and low--power designspower designs
–– QF_BV QF_BV  QF_AUFBVQF_AUFBV
–– Speedup of 5XSpeedup of 5X--100X 100X (using all leading solvers, this number (using all leading solvers, this number

for for BoolectorBoolector))

Publication: B. Brady, R. E. Bryant, S. A. Seshia and J. W. O’Leary, “ATLAS:
Automatic Term-Level Abstraction of RTL Designs”, MEMOCODE 2010.

– 24 –

Other Explorations with SMTOther Explorations with SMT

 Program Synthesis from I/O ExamplesProgram Synthesis from I/O Examples [ICSE[ICSE’’10]10]
–– Applied to reverse engineering of Applied to reverse engineering of malwaremalware
–– SMT solvers used to generate examples and SMT solvers used to generate examples and

candidate programscandidate programs
 CalCSCalCS: SMT solving for non: SMT solving for non--linear convex linear convex

constraintsconstraints [FMCAD[FMCAD’’10]10]
–– Applied to verification of hybrid systemsApplied to verification of hybrid systems

 Verification and Synthesis of NetworkVerification and Synthesis of Network--onon--Chip Chip
DesignsDesigns [DATE[DATE’’11, DAC11, DAC’’11]11]

http://www.eecs.berkeley.edu/~sseshiahttp://www.eecs.berkeley.edu/~sseshia
http://uclid.eecs.berkeley.eduhttp://uclid.eecs.berkeley.edu

