TLAPS: The TLA$^+$ Proof System

Stephan Merz

joint work with K. Chaudhuri, D. Cousineau, D. Doligez, L. Lamport

INRIA Nancy

Microsoft Research - INRIA Joint Centre Saclay

http://www.msr-inria.inria.fr/Projects/tools-for-formal-specs

Deduction at Scale, Schloss Ringberg
March 2011
1. The TLA+ Specification Language
2. Theorem Proving With TLAPS
3. The TLA+ Proof Language
4. Conclusions
Euclid’s Algorithm in TLA⁺ (1/2)

- We start by defining divisibility and GCD

```
MODULE Euclid

EXTENDS Naturals

PosInteger △ Nat \ {0}

Maximum(S) △ CHOOSE x ∈ S : ∀y ∈ S : x ≥ y

\[ d \mid q \triangleq \exists k ∈ 1..q : q = k \ast d \] \hspace{1cm} \text{/* definition of divisibility}

Divisors(q) △ \{d ∈ 1..q : d \mid q\} \hspace{1cm} \text{/* set of divisors}

GCD(p, q) △ Maximum(Divisors(p) ∩ Divisors(q))
```

- Standard mathematical definitions
 - TLA⁺ is based on (untyped) set theory
 - simple module language for structuring larger specification
 - import TLA⁺ library module Naturals for basic arithmetic
 - TLA⁺ module contains declarations, assertions, and definitions
Euclid’s Algorithm in TLA\(^+\) (2/2)

- Now model the algorithm and assert its correctness

```plaintext
CONSTANTS M, N
ASSUME Positive △ M ∈ PosInteger ∧ N ∈ PosInteger
VARIABLES x, y

Init △ x = M ∧ y = N
SubX △ x < y ∧ y' = y − x ∧ x' = x
SubY △ y < x ∧ x' = x − y ∧ y' = y
Spec △ Init ∧ □[SubX ∨ SubY](x,y)

Correctness △ x = y ⇒ x = GCD(M, N)

THEOREM Spec ⇒ □Correctness
```

- Transitions represented by action formulas SubX, SubY
- Algorithm represented by initial condition and next-state relation
- Correctness expressed as TLA formula
Euclid’s Algorithm in TLA+ (2/2)

- Now model the algorithm and assert its correctness

\[
\text{CONSTANTS} \ M, N \\
\text{ASSUME Positive } \triangleq M \in \text{PosInteger} \land N \in \text{PosInteger} \\
\text{VARIABLES} \ x, y \\
\text{Init } \triangleq x = M \land y = N \\
\text{SubX } \triangleq x < y \land y' = y - x \land x' = x \\
\text{SubY } \triangleq y < x \land x' = x - y \land y' = y \\
\text{Spec } \triangleq \text{Init} \land \Box [\text{SubX} \lor \text{SubY}]_{(x,y)} \\
\text{Correctness } \triangleq x = y \Rightarrow x = \text{GCD}(M, N) \\
\text{THEOREM Spec } \Rightarrow \Box \text{Correctness}
\]

- Transitions represented by action formulas SubX, SubY
- Algorithm represented by initial condition and next-state relation
- Correctness expressed as TLA formula
Verification of Euclid’s Algorithm: Model Checking

- **TLC**: explicit-state model checker
 - verify correctness properties for finite instances
 - Euclid: fix concrete values for M and N
 - check that the result is correct for these inputs

- **Variation**: verify correctness over fixed interval

- **Invaluable for debugging TLA$^+$ models**
 - verify many seemingly trivial properties
 - type correctness, executability of every individual action, …
 - absence of deadlock, eventual response to requests, …
 - reveal corner cases before attempting full correctness proof
Overview

1. The TLA\(^+\) Specification Language

2. Theorem Proving With TLAPS

3. The TLA\(^+\) Proof Language

4. Conclusions
Using TLAPS to Prove Euclid’s Algorithm Correct

- Verify correctness for all possible inputs

- TLAPS: proof assistant for verifying TLA$^+$ specifications
 - interesting specifications cannot be verified fully automatically
 - user provides proof (skeleton) to guide verification
 - automatic back-end provers discharge leaf obligations
Using TLAPS to Prove Euclid’s Algorithm Correct

- Verify correctness for all possible inputs

- TLAPS: proof assistant for verifying TLA\(^+\) specifications
 - interesting specifications cannot be verified fully automatically
 - user provides proof (skeleton) to guide verification
 - automatic back-end provers discharge leaf obligations

- Application to Euclid’s algorithm
 - first step: strengthen correctness property \(\leadsto\) inductive invariant

\[
\text{InductiveInvariant} \overset{\Delta}{=} \land x \in \text{PosInteger} \\
\land y \in \text{PosInteger} \\
\land \text{GCD}(x, y) = \text{GCD}(M, N)
\]
The algorithm relies on the following properties of \(GCD \):

THEOREM GCDSelf \(\triangleq \) \(\hspace{1em} \)

ASSUME \(\hspace{1em} \) NEW \(p \in \text{PosInteger} \)

PROVE \(\hspace{1em} \) \(GCD(p, p) = p \)

THEOREM GCDSymm \(\triangleq \) \(\hspace{1em} \)

ASSUME \(\hspace{1em} \) NEW \(p \in \text{PosInteger} \),

NEW \(q \in \text{PosInteger} \)

PROVE \(\hspace{1em} \) \(GCD(p, q) = GCD(q, p) \)

THEOREM GCDDiff \(\triangleq \) \(\hspace{1em} \)

ASSUME \(\hspace{1em} \) NEW \(p \in \text{PosInteger} \),

NEW \(q \in \text{PosInteger} \),

\(p < q \)

PROVE \(\hspace{1em} \) \(GCD(p, q) = GCD(p, q - p) \)

ASSUME \(\ldots \) **PROVE** : TLA\(^+\) notation for sequents

We won’t bother proving these properties here
Proving an Invariant in TLA⁺

\[
\begin{align*}
\text{Init} &\Rightarrow \text{Inv} & \text{Inv} \land [\text{Next}]_v &\Rightarrow \text{Inv}' & \text{Inv} &\Rightarrow \text{Corr} \\
\hline \\
\text{Init} \land \Box[\text{Next}]_v &\Rightarrow \Box\text{Corr}
\end{align*}
\]
Proving an Invariant in TLA⁺

\[\text{Init} \Rightarrow \text{Inv} \quad \text{Inv} \land [\text{Next}]_v \Rightarrow \text{Inv}' \quad \text{Inv} \Rightarrow \text{Corr} \]

\[\text{Init} \land \Box [\text{Next}]_v \Rightarrow \Box \text{Corr} \]

Representation as a TLA⁺ sequent

THEOREM \(\text{ProveInv} \) \(\triangleq \) \(\text{ASSUME} \) STATE \(\text{Init} \), STATE \(\text{Inv} \), STATE \(\text{Corr} \),

ACTION \(\text{Next} \), STATE \(v \),

\(\text{Init} \Rightarrow \text{Inv} \),

\(\text{Inv} \land [\text{Next}]_v \Rightarrow \text{Inv}' \),

\(\text{Inv} \Rightarrow \text{Corr} \)

\(\text{PROVE} \) \(\text{Init} \land \Box [\text{Next}]_v \Rightarrow \Box \text{Corr} \)

- Currently, TLAPS doesn’t handle temporal logic
- We’ll prove the non-temporal hypotheses
Prove that InductiveInvariant implies Correctness

LEMMA InductiveInvariant ⇒ Correctness

OBVIOUS
Simple Proofs

- Prove that \textit{InductiveInvariant} implies \textit{Correctness}

LEMMA \(\text{InductiveInvariant} \Rightarrow \text{Correctness} \)
BY GCDSelf DEFS InductiveInvariant, Correctness

- by default, definitions and facts must be cited explicitly
- this helps manage the size of the search space for backend provers
Simple Proofs

• Prove that \textit{InductiveInvariant} implies \textit{Correctness}

\begin{verbatim}
LEMMA \textit{InductiveInvariant} \Rightarrow \textit{Correctness}
BY \textit{GCDSelf} \textit{DEFS} \textit{InductiveInvariant}, \textit{Correctness}
\end{verbatim}

▶ by default, definitions and facts must be cited explicitly
▶ this helps manage the size of the search space for backend provers

• Prove that \textit{Init} implies \textit{InductiveInvariant}

\begin{verbatim}
LEMMA \textit{Init} \Rightarrow \textit{InductiveInvariant}
BY \textit{Positive DEFS} \textit{Init}, \textit{InductiveInvariant}
\end{verbatim}

• To prove simple theorems, expand definitions and cite facts
Hierarchical Proofs

- Complex proofs consist of a sequence of claims, ending with QED

- Prove that all transitions preserve $\text{InductiveInvariant}$

Lemma $\text{InductiveInvariant} \land [\text{SubX} \lor \text{SubY}]_{\langle x, y \rangle} \Rightarrow \text{InductiveInvariant}'$
Hierarchical Proofs

- Complex proofs consist of a sequence of claims, ending with QED
- Prove that all transitions preserve InductiveInvariant

```
LEMMA InductiveInvariant ∧ [SubX ∨ SubY]⟨x,y⟩ ⇒ InductiveInvariant'
⟨1⟩ USE DEF InductiveInvariant
```

- (scoped) USE DEF causes TLAPS to silently expand definitions
Hierarchical Proofs

- Complex proofs consist of a sequence of claims, ending with QED

- Prove that all transitions preserve InductiveInvariant

```
LEMMA InductiveInvariant ∧ [SubX ∨ SubY]_{x,y} ⇒ InductiveInvariant'
⟨1⟩ USE DEF InductiveInvariant
⟨1⟩1. ASSUME InductiveInvariant, SubX
    PROVE InductiveInvariant'
⟨1⟩2. ASSUME InductiveInvariant, SubY
    PROVE InductiveInvariant'
```

- The steps ⟨1⟩1 and ⟨1⟩2 will be proved subsequently
Hierarchical Proofs

- Complex proofs consist of a sequence of claims, ending with QED
- Prove that all transitions preserve \textit{InductiveInvariant}

LEMMA \[\text{InductiveInvariant} \land \left[\text{SubX} \lor \text{SubY} \right]_{\langle x,y \rangle} \Rightarrow \text{InductiveInvariant}' \]

\langle 1 \rangle \text{ USE DEF } \text{InductiveInvariant}
\langle 1 \rangle 1. \text{ ASSUME } \text{InductiveInvariant}, \text{SubX}
\text{ PROVE } \text{InductiveInvariant}'
\langle 1 \rangle 2. \text{ ASSUME } \text{InductiveInvariant}, \text{SubY}
\text{ PROVE } \text{InductiveInvariant}'
\langle 1 \rangle q. \text{qed}
\text{ BY } \langle 1 \rangle 1, \langle 1 \rangle 2

- QED step verifies that the lemma follows from above steps — includes trivial case UNCHANGED\(\langle x,y \rangle\)
Hierarchical Proofs: Sublevels

(...)

⟨1⟩1. ASSUME InductiveInvariant, SubX
 PROVE InductiveInvariant'

⟨1⟩2. ASSUME InductiveInvariant, SubY
 PROVE InductiveInvariant'

(...)
Hierarchical Proofs: Sublevels

\[
\langle 1 \rangle 1. \text{ASSUME } \text{InductiveInvariant, SubX} \\
\text{PROVE } \text{InductiveInvariant}' \\
\text{\langle 2\rangle 1. } x' \in \text{PosInteger} \land y' \in \text{PosInteger} \\
\text{\langle 2\rangle 2. QED} \\
\text{BY } \langle 1\rangle 1, \langle 2\rangle 1, \text{GCDDiff DEF SubX} \\
\langle 1\rangle 2. \text{ASSUME } \text{InductiveInvariant, SubY} \\
\text{PROVE } \text{InductiveInvariant}' \\
\]

(...)
Hierarchical Proofs: Sublevels

(1) 1. ASSUME InductiveInvariant, SubX
 PROVE InductiveInvariant'

(2) 1. $x' \in \text{PosInteger} \land y' \in \text{PosInteger}$
 BY (1)1, SimpleArithmetic DEF PosInteger, SubX

(2) 2. QED
 BY (1)1, (2)1, GCDDiff DEF SubX

(1) 2. ASSUME InductiveInvariant, SubY
 PROVE InductiveInvariant'

(...)

- Cited fact SimpleArithmetic

 - theorem from the standard module TLAPS
 - invokes decision procedure for Presburger arithmetic
Overview

1. The TLA⁺ Specification Language
2. Theorem Proving With TLAPS
3. The TLA⁺ Proof Language
4. Conclusions
Assertions (in Modules or Proofs)

- Assertions state validity of formulas in current context

- AXIOM and ASSUME assert unproved facts
 - TLAPS handles ASSUME and AXIOM identically
 - TLC checks ASSUMEd facts

- THEOREM asserts that a fact is provable in the current context
 - proofs can be filled in later
 - GUI reflects proof status (missing, incomplete, finished)

- Facts can be named for future reference

THEOREM Fermat \[\triangleq \forall n \in \text{Nat} \setminus (0..2) : \forall a, b, c \in \text{Nat} \setminus \{0\} : a^n + b^n \neq c^n \]
Shape of Non-Temporal Assertions

- A TLA\(^+\) assertion can be a formula or a logical sequent

<table>
<thead>
<tr>
<th>F</th>
<th>or</th>
<th>ASSUME (A_1, \ldots, A_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PROVE (F)</td>
</tr>
</tbody>
</table>

- Shape of a sequent ASSUME \(\ldots\) PROVE
 - the conclusion \(F\) is always a formula
 - the assumptions \(A_i\) can be
 - declarations \(\text{NEW } msg \in \text{Msgs}\)
 - formulas \(msg.\text{type} = \text{“alert”}\)
 - sequents \(\text{ASSUME NEW } P(_),\)
 \(\text{ASSUME NEW } y \text{ PROVE } P(y)\)
 \(\text{PROVE } \forall x : P(x)\)
Hierarchical and declarative: nested lists of assertions

- forward-style presentation of natural deduction proofs
- final QED step proves enclosing assertion

SUFFICES steps for backward reasoning

- **SUFFICES** φ: show that φ implies current goal
- make φ current goal for the remainder of current scope

Using and hiding definitions and facts

- in BY proof or for remainder of current scope

A few derived forms for convenience

- reasoning patterns for basic connectives: \Rightarrow, \forall, \exists
Architecture of TLAPS

TLA Proof System

Proof manager

- interpret module, compute proof obligations
- convert to constant level formulas
- certify proof (when possible)
- call backends to attempt proof

TLA+ module with proofs

Isabelle/TLA+ Zenon SMT prover
Proof Manager

- Interprets TLA\(^+\) proof language, computes proof obligations
 - track module structure (imports and instantiations)
 - manage context: known and usable facts and definitions
 - expand operator definitions if they are usable

- Rewrites proof obligations to constant level
 - handle primed expressions such as \(\text{Inv}'\)
 - distribute prime over (constant-level) operators
 - introduce distinct symbols \(e\) and \(e'\) for atomic state expression \(e\)

- Invokes backend provers
 - user may explicitly indicate which proof method to apply
 - optionally: certify backend proof using Isabelle/TLA\(^+\)
The problem with modal and temporal logic

- formulas are interpreted at current (implicit) “world”
- \(F \vdash G \) deduce validity of \(G \) from validity of \(F \)
- \(\vdash F \Rightarrow G \) implication holds in current behavior
- standard calculi rely on identification of these sequents
Temporal Proofs (1)

- The problem with modal and temporal logic
 - formulas are interpreted at current (implicit) “world”
 - $F \vdash G$ deduce validity of G from validity of F
 - $\vdash F \Implies G$ implication holds in current behavior
 - standard calculi rely on identification of these sequents
Temporal Proofs (1)

- The problem with modal and temporal logic
 - formulas are interpreted at current (implicit) “world”
 - $F \vdash G$ deduce validity of G from validity of F
 - $\vdash F \Rightarrow G$ implication holds in current behavior
 - standard calculi rely on identification of these sequents

- Possible solution: introduce explicit parameters
 - distinguish $\sigma \models F \Rightarrow G$ and $(\forall \sigma : \sigma \models F) \vdash (\forall \tau : \tau \models G)$
 - also need relation $\sigma \sqsubseteq \tau$ for “transferring” temporal formulas

- Sound, but clumsy and defeats the purpose of temporal logic
Temporal Proofs (2)

Key observations

- implicit behavior at lower levels is a suffix of that at higher levels
- an assumption $\Box F$ is usable throughout the entire subproof
- $\Box F \vdash G$ coincides with $\vdash \Box F \Rightarrow G$

Distinguish temporal sequents in TLA$^+$ proofs

- \Box ASSUME F assume that F is true for all suffixes …
- \Box PROVE G … then prove G for a fresh suffix

Proof structure

- upper levels state temporal sequents, lower levels ordinary ones
- temporal sequents never occur in the scope of ordinary ones
- all assumptions remain usable throughout the subproof
Temporal Proof Rules

THEOREM Inv1 ndefeq □ ASSUME STATE Inv, Inv ⇒ Inv'
□ PROVE Inv ⇒ □Inv

- Use of this rule
 - hypothesis □[N]v should be present in the context
 - Inv ⇒ Inv' proved as shown before, using [N]v
 - also prove Init ⇒ Inv in order to derive Spec ⇒ □Inv
Temporal Proof Rules

THEOREM Inv1 \(\triangleq\) □ Assume State Inv,

\[Inv \Rightarrow Inv' \]

□ Prove \(Inv \Rightarrow □Inv \)

- **Use of this rule**
 - Hypothesis □[N] \(v\) should be present in the context
 - \(Inv \Rightarrow Inv' \) proved as shown before, using \([N]v\)
 - Also prove \(\text{Init} \Rightarrow Inv \) in order to derive \(Spec \Rightarrow □Inv \)

- **Substantial simplification of temporal verification rules**

THEOREM SF1 \(\triangleq\) □ Assume State \(P\), State \(Q\), State \(f\), Action \(A\),

\[SF_f(A), \]

\[P \Rightarrow P' \lor Q', \]

\[P \land ⟨A⟩_f \Rightarrow Q', \]

□ \(P \Rightarrow \Diamond\text{ENABLED} ⟨A⟩_f \)

□ Prove \(P \rightsquigarrow Q \)
Overview

1 The TLA^+ Specification Language

2 Theorem Proving With TLAPS

3 The TLA^+ Proof Language

4 Conclusions
Present and future of the TLAPS

- Current release: October 2010
 - releases (source and binary) include back-end provers
 - Eclipse-based GUI supports non-linear interaction

- Restricted to proving non-temporal properties
 - invariant and step simulation (refinement) proofs
 - carried out several case studies, some contained in distribution
 - proofs of Byzantine Paxos and Memoir (security architecture)

- Support for temporal logic (liveness properties)
 - implement support for temporal sequents in proof manager
 - encode semantics of temporal logic in Isabelle/TLA^+

- More backend provers
 - SMT solver, eventually with proof reconstruction
 - better support for standard theories (arithmetic, sequences, ...)

- Looking forward to user feedback

Stephan Merz (INRIA Nancy)