
Parallel SAT Solving in a Grid
Tommi Junttila
Joint work with Antti Hyvärinen and Ilkka Niemelä
Department of Information and Computer Science
Aalto University, School of Science
Tommi.Junttila@tkk.fi

Deduction at Scale seminar, Ringberg Castle, Germany, March 7–11, 2011



SAT Solving in a Grid
March 8, 2011

2/41

SAT Solvers

instance
SAT/SMTproblem

encode SAT/SMT
solver solution

SAT/SMT solvers used when solving other computationally hard problems
(verification, planning, etc)

Making SAT solvers run faster:
I Improve deductive power, algorithms, or data structures of solvers
I Use faster running processors (MHz rates not increasing as in past)
I Parallelize to exploit multi-core processors, clusters, grids
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Context and Goals

Parallel satisfiability solving
I of hard SAT instances
I in a loosely-coupled computational Grid
I by using randomization, clause learning, and partitioning

Some goals:
I to be able to exploit existing sequential SAT solvers with as

small changes as possible
I to better understand the roles of and interactions between

randomization, partitioning, and learning
I to solve previously unsolvable SAT instances
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Outline

I Computing environment: a Grid
I Parallelizing SAT solvers:

1. Framework I: portfolios with clause sharing
2. Framework II: search space partitioning

I Conclusions
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Computing Environment: a Grid
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I NorduGrid: a set of clusters of
CPUs

I Hundreds of CPUs available via a
common interface

I Jobs (SAT solver+instance)
submitted to job manager (JM),
results from JM

I No communication to/from running
jobs due to cost, sandboxing etc

I Resource limitations (time, mem)
[de-facto] imposed on jobs

I Substantial delays on jobs: queueing, network connection (a SAT
instance can be tens of megabytes large), other users
⇒ typical submission-to-start delay 2–20 minutes!
⇒ submit 64 jobs and have 10–64 run in parallel, others wait
⇒ repeatability, measuring scalability etc difficult

I Jobs can fail (a cluster is reset etc)
I Compare this to multi-core environments with short delays, shared

memory/MPI communication, indefinitely running threads, ...
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Parallelizing SAT solvers
Framework I: portfolios
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Framework I: portfolios
Solver1(~P1,1)

Solver1(~P1,2)

Solver2(~P2,1)

Solver1(~P1,3)

sat/unsat

SAT-Race 2010: framework used in best multi-core SAT solvers
Idea:

I run n solvers in parallel ...
I different solvers or
I same solver with different parameters
I solvers compete: who solves the problem first?

I and share learnt clauses between solvers
I learnt clauses ≈ lemmas found during search
I current best solvers: conflict-driven clause learning (CDCL)

Davis-Putnam-Logemann-Loveland algorithm
I solvers co-operate: avoid mistakes made by others
⇒ better than the best
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Framework I: portfolios
Solver1(~P1,1)
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SAT-Race 2010: framework used in best multi-core SAT solvers
I Plingeling [Biere 2010]:

n thread copies of lingeling, different random seeds and
deduction component scheduling in threads, share unit
clauses

I ManySAT [Hamadi, Jabbour & Sais, J.Sat 2009]:
n threads, differentiate search strategies, share clauses of
length at most 8

I SArTagnan [Kottler, Sat-Race 2010] and
antom [Schubert, Lewis & Becker, Sat-Race 2010]:
run different search strategies, clause sharing
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Framework I: portfolios
Solver1(~P1,1)

Solver1(~P1,2)

Solver2(~P2,1)

Solver1(~P1,3)

sat/unsat
C
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Some other references
I //Z3 [Wintersteiger, Hamadi & de Moura, CAV 2009]:

n threads, differentiate SAT search strategies and run
theory solvers in parallel, share clauses of length at most 8

I SATzilla2009 [Xu, Hutter, Hoos & Leyton-Brown, SatComp
2009]: Real algorithm portfolio, select and run different SAT
solvers in parallel

I [Hamadi, Jabbour & Sais, IJCAI 2009]:
how to share clauses between solvers
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Portfolios with Clause Sharing in a Grid
Solver1(~P1,1)

Solver1(~P1,2)

Solver2(~P2,1)

Solver1(~P1,3)

sat/unsat
C

C ′
sat/unsat

Problems when applied in our computational environment:
I No communication to/from running jobs
I Resource limits imposed on jobs: jobs must terminate

within a predefined time limit (e.g. 1–4 hours)
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Portfolios with Clause Sharing in a Grid
Solver1(~P1,1)

Solver1(~P1,2)

Solver2(~P2,1)

Solver1(~P1,3)

clause database ∅ ~C1⊎ ⊎ ~C2

sat/unsattimeout

timeout

An approach: [Hyvärinen, Junttila & Niemelä, J.Sat 2009]
I Maintain a master database ~C of learnt clauses
I Clause sharing only when a solver starts or timeouts

I Start: import a part ~D of the database permanently into
solver’s instance, i.e. solve φ ∧ ~D instead of φ

I Timeout: merge (a subset of) current learnt clauses into the
database [and simplify with unit propagation etc]

I “Cumulative parallel learning with hard restarting solvers”
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Portfolios with Clause Sharing in a Grid
Solver1(~P1,1)

Solver1(~P1,2)

Solver2(~P2,1)

Solver1(~P1,3)

clause database ∅ ~C1⊎ ⊎ ~C2

sat/unsattimeout

timeout

Some design issues:
I How large should the master clause database be?

We allowed at most 1M literals, should expand gradually
I Which clauses should be imported/merged?

We evaluated random, length-based (keep shortest clauses),
and frequency-based (keep most frequent) filtering; should use
frequency-based but length-based easier to implement
Imported/merged at most 100k literals
See [Hyvärinen, Junttila & Niemelä, J.Sat 2009] for further analysis
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Portfolios with Clause Sharing in a Grid
Solver1(~P1,1)

Solver1(~P1,2)

∅ ~C1⊎

timeout

timeout

timeout

?
k

Solver1(~P1,k)

clause database

...

Controlled experiment: number of solvers run in parallel
I One “round” of parallel learning
I Instance manol-pipe-f9b

solver Minisat 1.14
I Each solver run 25% of the

minimum run time, with different
seed

I Length-based filtering
I Plot shows cumulative run-time

distributions: instance solved 50
times with different prng seeds
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Portfolios with Clause Sharing in a Grid
Solver1(~P1,1)

Solver1(~P1,2)

∅ ~C1⊎ ~Cn−1 ⊎ ~Cn

?
timeout

timeout

timeout

⊎

... ... ... ...16

clause database

Solver1(~P1,16)

Controlled experiment: number of rounds
I Cumulative effect of parallel

learning

I Instance manol-pipe-f9b,
solver Minisat 1.14

I 16 solvers in each round

I Each solver run 25% of the
minimum run time

I Length-based filtering
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Portfolios with Clause Sharing in a Grid
Wall clock times for some difficult instances from SAT-Comp 2007

I Grid: at most 64 Minisat 1.14 solvers in parallel, 1 hour time limit
per solver, 3 days time limit in total

I Sequential: sequential Minisat 1.14, no time limit, mem limit 2GB

Solved by some solver in SAT 2007 but not by Minisat 1.14
Name Type Grid (s) sequential (s)

ezfact64_5.sat05-452.reshuffled-07 SAT 4,826 65,739
vmpc_33 SAT 669 184,928
safe-50-h50-sat SAT 12,070 m.o.
connm-ue-csp-sat-n800-d-0.02-s1542454144.sat05-
533.reshuffled-07

SAT 5,974 119,724

Not solved by any solver in SAT 2007
Name Type Grid (s) sequential (s)

AProVE07-01 UNSAT 13,780 39,627
AProVE07-25 UNSAT 94,974 306,634
QG7a-gensys-ukn002.sat05-3842.reshuffled-07 UNSAT 8,260 127,801
vmpc_34 SAT 3,925 90,827
safe-50-h49-unsat t.o. m.o.
partial-10-13-s.cnf SAT 7,960 m.o.
sortnet-8-ipc5-h19-sat t.o. m.o.
dated-10-17-u UNSAT 11,747 105,821
eq.atree.braun.12.unsat UNSAT 9,072 59,229
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Parallelizing SAT solvers
Framework II: search space partitioning
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Framework II: search space partitioning
solver 1

¬x

solver 2
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solver 3
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In multi-core, p2p network environments:
I Guiding paths (≈ first search tree decisions) to make

solvers explore different parts of the search space
I Dynamic load balancing by splitting guiding paths
I Search ends when a solution is found or the whole search

space is covered
I On-the-fly clause sharing also possible
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Framework II: search space partitioning
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In multi-core, p2p network environments:
I [Blochinger, Sinz & Küchlin, Par.Comp. 2003]
I ZetaSAT [Blochinger, Westje, Küchlin & Wedeniwski, IEEE

CCGrid 2005]
I Satciety [Schulz & Blochinger, WPSS 2010]
I GridSAT [Chrabakh & Wolski, Par.Comp 2006]
I MiraXT [Lewis, Schubert & Becker, ASP-DAC 2007]
I PaMiraXT [Lewis, Schubert & Becker, J.SAT 2009]
I pMinisat [Chu & Stuckey, Sat-Race 2008]
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Framework II: search space partitioning
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A problem in our environment:
I Dynamic load balancing by splitting guiding paths not

possible



SAT Solving in a Grid
March 8, 2011

21/41

Partitioning Functions
φ

φ ∧Π2 φ ∧ Π3 φ ∧Π4φ ∧ Π1
runningrunningrunningrunning

I Static partitioning to avoid communication to/from running
solvers

I Partition the instance φ into n model-disjoint derived
instances φ ∧ Π1, ..., φ ∧ Πn and solve them in parallel in
Grid

I A partitioning function P maps a formula φ to a set

P(φ) = {Π1, ...,Πk}
of generic partitioning constraints such that

1. φ ≡ (φ ∧ Π1) ∨ ... ∨ (φ ∧ Πk ) (equivalence)
2. φ ∧ Πi ∧ Πj is unsat if i 6= j (disjoint models)
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Partitioning Functions
φ

φ ∧Π2 φ ∧ Π3 φ ∧Π4φ ∧ Π1
runningsat runningrunning

I If φ is satisfiable, it is enough to find a solution in one of the
derived instances
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Partitioning Functions
φ

φ ∧ Π2 φ ∧Π3 φ ∧ Π4φ ∧Π1
unsat unsat unsat unsat

I If φ is unsatisfiable, must show all derived instances
unsatisfiable
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Partitioning Functions
φ

φ ∧ Π2 φ ∧Π3 φ ∧ Π4φ ∧Π1
unsat unsat unsat unsat

I If φ is unsatisfiable, must show all derived instances
unsatisfiable

I Assume a void partitioning function P that produces
derived instances as hard as the original one

I For instance, Πis constrain an easy part of φ or variables
not in an unsat core

I When the number n of derived instances and parallel
solvers is increased, the expected run-time of the parallel
approach tends to the maximum run-time of the original
instance (“increasing bad luck”)
That is, more parallelism⇒ run times can get worse
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Implementing Partitioning Functions
I VSIDS Scattering [Hyvärinen, Junttila & Niemelä, SAT 2006]:

run minisat, restart, select best branching literals as unit
constraints, repeat with negated constraint included

I Lookahead DPLL partitioning function [Hyvärinen, Junttila &
Niemelä, LPAR-17 2010]

I Non-learning lookahead DPLL (e.g. satz, march)
I The partial truth assignments at log n level nodes are the

partitioning constraints
I A new method for speeding up failed literal rule detection

I Lookahead Scattering [Hyvärinen, Junttila & Niemelä,
LPAR-17 2010]: same as VSIDS scattering but
lookahead-based branching heuristics in Minisat

I See also [Bordeaux, Hamadi & Samulowitz, IJCAI 2009]:
Partition with parity constraints over randomly selected
variables
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Implementing Partitioning Functions
I VSIDS Scattering [Hyvärinen, Junttila & Niemelä, SAT 2006]:

run minisat, restart, select best branching literals as unit
constraints, repeat with negated constraint included

1. run Minisat for x seconds on φ
2. output Π1 = (x1) ∧ (¬x17)
3. run Minisat for x seconds on φ ∧ (¬x1 ∨ x17)
4. output Π2 = (¬x1 ∨ x17) ∧ (x3) ∧ (¬x90)
5. run Minisat for x seconds on φ ∧ (¬x1 ∨ x17) ∧ (¬x3 ∨ x90)
6. output Π3 = (¬x1 ∨ x17) ∧ (¬x3 ∨ x90) ∧ (x150)

output Π4 = (¬x1 ∨ x17) ∧ (¬x3 ∨ x90) ∧ (¬x150)
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Implementing Partitioning Functions
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Experiments with a Partitioning Function
I Controlled experiments with LA DPLL partitioning function
I At most 300s spent in partitioning φ into 4 or 64 derived instances
I Run time of the derived instance set {φ ∧ Π1, ..., φ ∧ Πn}:

I SAT: minimum run time of any satisfiable derived instance
I UNSAT: maximum run time of (unsat) derived instances
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I Theory meets practise: UNSAT harder than SAT
I More results: [Hyvärinen, Junttila & Niemelä, LPAR-17 2010]
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Iterative Partitioning
φ

φ ∧Π2 φ ∧ Π3 φ ∧Π4φ ∧ Π1
running running

φ∧Π2∧Π2,4φ∧Π2∧Π2,3φ∧Π2∧Π2,2φ∧Π2∧Π2,1
running

unsat running

I Into how many derived instances should one partition φ?
I Many derived instances in a plain partitioning can be easy
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Iterative Partitioning
φ

timeout

φ ∧Π2 φ ∧ Π3 φ ∧Π4φ ∧ Π1
running running

φ∧Π2∧Π2,4φ∧Π2∧Π2,3φ∧Π2∧Π2,2φ∧Π2∧Π2,1
running

unsat running

I Use smallish partitioning factor (e.g. 8),
further partition hard derived instances, and
use the free resources to solve these

I BFS/DFS construction of a “partitioning tree”
I Theoretical hazard of “void partitioning” an unsat instance

is avoided when the [derived] instance is also attempted to
be solved

I Fault tolerant



SAT Solving in a Grid
March 8, 2011

33/41

Iterative Partitioning
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Iterative Partitioning
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Iterative Partitioning: Some Experimental Results
I LA DPLL, LA scatter, VSIDS scatter: iterative partitioning

NorduGrid, at most 64 jobs, all delays included
Solver at jobs: Minisat 1.14, 1GB mem limit, 60–90min time limit

I SD 64: best of 64 runs of sequential Minisat 1.14, different prng seeds,
1GB mem limit

I ManySAT 1.0 and Plingeling 276: 12 cores, 32GB mem limit

6 hour wall-clock time limit for all approaches
SAT-Comp 2009 applications category, 63 insts not solved in the comp.

Name Type LA DPLL LA scatter VSIDS scatter SD 64 ManySAT Plingeling

9dlx_vliw_at_b_iq8 UNSAT — — — — — 3256.41
9dlx_vliw_at_b_iq9 UNSAT — — — — — 5164.00
AProVE07-25 UNSAT 8992.60 9176.91 11347.42 — — —
dated-5-19-u UNSAT 16557.82 20155.96 4124.62 — — 4465.00
eq.atree.braun.12.unsat UNSAT 3157.19 2357.55 3006.19 20797.60 15338.00 —
eq.atree.braun.13.unsat UNSAT 7117.39 8504.50 8158.85 — — —
gss-24-s100 SAT 1977.19 3449.55 2271.24 968.23 13190.00 2929.92
gss-26-s100 SAT 10844.22 — 6057.80 — — 18173.00
gss-32-s100 SAT — 16412.40 — — — —
gus-md5-14 UNSAT 14779.03 16264.37 16098.04 — — —
ndhf_xits_09_UNSAT UNSAT — — 14793.78 — — —
rpoc_xits_09_UNSAT UNSAT — — 12388.32 — — —
sortnet-8-ipc5-h19-sat SAT — — — — — 2699.62
total-10-17-u UNSAT 4431.21 7198.23 5099.73 — 10216.00 3672.00
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Iterative Partitioning: Some Experimental Results
Same setting and solvers
“medium hard” instances, application and crafted categories
Name Type LA DPLL LA scatter VSIDS scatter SD 64 COMP ManySAT Plingeling

Solved in SAT-COMP 2009 with best time at least 1 hour

9dlx_vliw_at_b_iq7 UNSAT — — — — 6836.20 7665.00 1576.08
AProVE07-01 UNSAT 1465.22 1322.04 2451.36 20230.30 6816.94 13219.00 21144.00
dated-5-13-u UNSAT 3881.60 4745.52 4563.15 — 8005.27 15818.00 2524.05
gss-22-s100 SAT 830.77 1151.13 4246.25 2280.82 4326.83 — 1136.39
gss-27-s100 SAT — — 9156.71 — 7132.69 — 18013.00
gus-md5-11 UNSAT 1190.28 2077.99 2092.54 5057.39 4518.06 20184.00 —
maxor128 UNSAT — — — — 7131.52 — 2227.07
maxxor064 UNSAT — — — — 5162.75 2837.28 9346.00
minandmaxor128 UNSAT — — — — 5143.44 4228.00 3737.00
mod4block_3vars_7gates UNSAT 1740.17 1755.47 2326.02 — 4109.89 — 5048.00
new-difficult-26-243-24-70 SAT 3260.86 8887.61 5087.98 3311.62 4440.72 13343.00 0.17
rbcl_xits_08_UNSAT UNSAT 4557.86 2390.50 3695.97 — 3892.92 10136.00 4783.00
sgen1-unsat-109-100 UNSAT 1363.14 3000.48 4196.36 14675.60 4045.49 — —
UR-20-10p1 SAT 4463.24 — — — 8766.23 8164.00 3598.17
UTI-20-10p1 SAT — 7097.74 — — 6289.06 750.76 892.84

Challenge instances for Minisat

countbitsarray02_32 UNSAT 1746.29 3003.50 997.84 2504.93 834.519 969.67 258.60
simon-s02b-k2f-gr-rcs-w8 UNSAT 3816.20 3106.70 14756.10 — 6.40 153.59 5.01
vange-col-abb313GPIA-9-c SAT — — — — 445.09 — 520.95
velev-pipe-uns-1.0-8 UNSAT — — — — 307.48 337.94 202.54
vmpc_34 SAT 12452.59 1350.17 1479.62 2796.19 35.347 490.71 4064.00
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Analytic studies

I For analytic and experimental run-time distribution based
analyses on

I portfolios without clause sharing,
I partitioning, and
I combinations of these

on instances that are
I unsatisfiable,
I satisfiable with many solutions, or
I satisfiable with few solutions

see [Hyvärinen, Junttila, Niemelä, AISC 2008], [Hyvärinen,
Junttila, Niemelä, AI*IA 2009] or [Hyvärinen, Junttila, Niemelä,
Fund.Inf.], and [Hyvärinen, Junttila, Niemelä, LPAR-17]
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Conclusions
I For “medium hard” instances multi-core approach with

portfolios with clause sharing very competitive
I Portfolios with clause sharing can also work in a Grid

environment
I Iterative search space partitioning very promising for “very

hard” instances
I Obtaining good partitioning functions is challenging,

especially for unsatisfiable instances
I How to efficiently parallelize a resolution proof?

I Experiments with very hard instances very time consuming
I Possible future challenges: parallel generation of

1. unsatisfiability cores
2. proofs of unsatisfiability
3. interpolants
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