
Parallel SAT Solving in a Grid
Tommi Junttila
Joint work with Antti Hyvärinen and Ilkka Niemelä
Department of Information and Computer Science
Aalto University, School of Science
Tommi.Junttila@tkk.fi

Deduction at Scale seminar, Ringberg Castle, Germany, March 7–11, 2011

SAT Solving in a Grid
March 8, 2011

2/41

SAT Solvers

instance
SAT/SMTproblem

encode SAT/SMT
solver solution

SAT/SMT solvers used when solving other computationally hard problems
(verification, planning, etc)

Making SAT solvers run faster:
I Improve deductive power, algorithms, or data structures of solvers
I Use faster running processors (MHz rates not increasing as in past)
I Parallelize to exploit multi-core processors, clusters, grids

 0.1

 1

 10

 100

 1000

 10000

 0.1 1 10 100 1000 10000

s
o

lv
e
r

Y

solver X

SATCOMP2009-application, time(s)

unsat
sat

 0.1

 1

 10

 100

 1000

 10000

 0.1 1 10 100 1000 10000

so
lv

er
 Y

,
4

 c
o

re
s

solver Y, sequential

SATCOMP2009-application, time(s)

unsat
sat

SAT Solving in a Grid
March 8, 2011

3/41

Context and Goals

Parallel satisfiability solving
I of hard SAT instances
I in a loosely-coupled computational Grid
I by using randomization, clause learning, and partitioning

Some goals:
I to be able to exploit existing sequential SAT solvers with as

small changes as possible
I to better understand the roles of and interactions between

randomization, partitioning, and learning
I to solve previously unsolvable SAT instances

SAT Solving in a Grid
March 8, 2011

4/41

Outline

I Computing environment: a Grid
I Parallelizing SAT solvers:

1. Framework I: portfolios with clause sharing
2. Framework II: search space partitioning

I Conclusions

SAT Solving in a Grid
March 8, 2011

5/41

Computing Environment: a Grid

CPU

CPU

job

CPU

CPU

job

...

JM

user

cluster cluster
qu

eu
e

qu
eu

e

MW MW

...

cluster@Finland cluster@Sweden

I NorduGrid: a set of clusters of
CPUs

I Hundreds of CPUs available via a
common interface

I Jobs (SAT solver+instance)
submitted to job manager (JM),
results from JM

I No communication to/from running
jobs due to cost, sandboxing etc

I Resource limitations (time, mem)
[de-facto] imposed on jobs

I Substantial delays on jobs: queueing, network connection (a SAT
instance can be tens of megabytes large), other users
⇒ typical submission-to-start delay 2–20 minutes!
⇒ submit 64 jobs and have 10–64 run in parallel, others wait
⇒ repeatability, measuring scalability etc difficult

I Jobs can fail (a cluster is reset etc)
I Compare this to multi-core environments with short delays, shared

memory/MPI communication, indefinitely running threads, ...

SAT Solving in a Grid
March 8, 2011

6/41

Parallelizing SAT solvers
Framework I: portfolios

SAT Solving in a Grid
March 8, 2011

7/41

Framework I: portfolios
Solver1(~P1,1)

Solver1(~P1,2)

Solver2(~P2,1)

Solver1(~P1,3)

sat/unsat

SAT-Race 2010: framework used in best multi-core SAT solvers
Idea:

I run n solvers in parallel ...
I different solvers or
I same solver with different parameters
I solvers compete: who solves the problem first?

I and share learnt clauses between solvers
I learnt clauses ≈ lemmas found during search
I current best solvers: conflict-driven clause learning (CDCL)

Davis-Putnam-Logemann-Loveland algorithm
I solvers co-operate: avoid mistakes made by others
⇒ better than the best

SAT Solving in a Grid
March 8, 2011

8/41

Framework I: portfolios
Solver1(~P1,1)

Solver1(~P1,2)

Solver2(~P2,1)

Solver1(~P1,3)

sat/unsat
C

C ′
sat/unsat

SAT-Race 2010: framework used in best multi-core SAT solvers
Idea:

I run n solvers in parallel ...
I different solvers or
I same solver with different parameters
I solvers compete: who solves the problem first?

I and share learnt clauses between solvers
I learnt clauses ≈ lemmas found during search
I current best solvers: conflict-driven clause learning (CDCL)

Davis-Putnam-Logemann-Loveland algorithm
I solvers co-operate: avoid mistakes made by others
⇒ better than the best

SAT Solving in a Grid
March 8, 2011

9/41

Framework I: portfolios
Solver1(~P1,1)

Solver1(~P1,2)

Solver2(~P2,1)

Solver1(~P1,3)

sat/unsat
C

C ′
sat/unsat

SAT-Race 2010: framework used in best multi-core SAT solvers
I Plingeling [Biere 2010]:

n thread copies of lingeling, different random seeds and
deduction component scheduling in threads, share unit
clauses

I ManySAT [Hamadi, Jabbour & Sais, J.Sat 2009]:
n threads, differentiate search strategies, share clauses of
length at most 8

I SArTagnan [Kottler, Sat-Race 2010] and
antom [Schubert, Lewis & Becker, Sat-Race 2010]:
run different search strategies, clause sharing

SAT Solving in a Grid
March 8, 2011

10/41

Framework I: portfolios
Solver1(~P1,1)

Solver1(~P1,2)

Solver2(~P2,1)

Solver1(~P1,3)

sat/unsat
C

C ′
sat/unsat

Some other references
I //Z3 [Wintersteiger, Hamadi & de Moura, CAV 2009]:

n threads, differentiate SAT search strategies and run
theory solvers in parallel, share clauses of length at most 8

I SATzilla2009 [Xu, Hutter, Hoos & Leyton-Brown, SatComp
2009]: Real algorithm portfolio, select and run different SAT
solvers in parallel

I [Hamadi, Jabbour & Sais, IJCAI 2009]:
how to share clauses between solvers

SAT Solving in a Grid
March 8, 2011

11/41

Portfolios with Clause Sharing in a Grid
Solver1(~P1,1)

Solver1(~P1,2)

Solver2(~P2,1)

Solver1(~P1,3)

sat/unsat
C

C ′
sat/unsat

Problems when applied in our computational environment:
I No communication to/from running jobs
I Resource limits imposed on jobs: jobs must terminate

within a predefined time limit (e.g. 1–4 hours)

SAT Solving in a Grid
March 8, 2011

12/41

Portfolios with Clause Sharing in a Grid
Solver1(~P1,1)

Solver1(~P1,2)

Solver2(~P2,1)

Solver1(~P1,3)

clause database ∅ ~C1⊎ ⊎ ~C2

sat/unsattimeout

timeout

An approach: [Hyvärinen, Junttila & Niemelä, J.Sat 2009]
I Maintain a master database ~C of learnt clauses
I Clause sharing only when a solver starts or timeouts

I Start: import a part ~D of the database permanently into
solver’s instance, i.e. solve φ ∧ ~D instead of φ

I Timeout: merge (a subset of) current learnt clauses into the
database [and simplify with unit propagation etc]

I “Cumulative parallel learning with hard restarting solvers”

SAT Solving in a Grid
March 8, 2011

13/41

Portfolios with Clause Sharing in a Grid
Solver1(~P1,1)

Solver1(~P1,2)

Solver2(~P2,1)

Solver1(~P1,3)

clause database ∅ ~C1⊎ ⊎ ~C2

sat/unsattimeout

timeout

Some design issues:
I How large should the master clause database be?

We allowed at most 1M literals, should expand gradually
I Which clauses should be imported/merged?

We evaluated random, length-based (keep shortest clauses),
and frequency-based (keep most frequent) filtering; should use
frequency-based but length-based easier to implement
Imported/merged at most 100k literals
See [Hyvärinen, Junttila & Niemelä, J.Sat 2009] for further analysis

SAT Solving in a Grid
March 8, 2011

14/41

Portfolios with Clause Sharing in a Grid
Solver1(~P1,1)

Solver1(~P1,2)

∅ ~C1⊎

timeout

timeout

timeout

?
k

Solver1(~P1,k)

clause database

...

Controlled experiment: number of solvers run in parallel
I One “round” of parallel learning
I Instance manol-pipe-f9b

solver Minisat 1.14
I Each solver run 25% of the

minimum run time, with different
seed

I Length-based filtering
I Plot shows cumulative run-time

distributions: instance solved 50
times with different prng seeds

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1000 10000 100000

q(
tim

e)

time (s)

or
ig16

32

48
64

80

96

SAT Solving in a Grid
March 8, 2011

15/41

Portfolios with Clause Sharing in a Grid
Solver1(~P1,1)

Solver1(~P1,2)

∅ ~C1⊎ ~Cn−1 ⊎ ~Cn

?
timeout

timeout

timeout

⊎

...16

clause database

Solver1(~P1,16)

Controlled experiment: number of rounds
I Cumulative effect of parallel

learning

I Instance manol-pipe-f9b,
solver Minisat 1.14

I 16 solvers in each round

I Each solver run 25% of the
minimum run time

I Length-based filtering
 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 100 1000 10000 100000

q(
tim

e)

time (s)

or
ig1

2

3

SAT Solving in a Grid
March 8, 2011

16/41

Portfolios with Clause Sharing in a Grid
Wall clock times for some difficult instances from SAT-Comp 2007

I Grid: at most 64 Minisat 1.14 solvers in parallel, 1 hour time limit
per solver, 3 days time limit in total

I Sequential: sequential Minisat 1.14, no time limit, mem limit 2GB

Solved by some solver in SAT 2007 but not by Minisat 1.14
Name Type Grid (s) sequential (s)

ezfact64_5.sat05-452.reshuffled-07 SAT 4,826 65,739
vmpc_33 SAT 669 184,928
safe-50-h50-sat SAT 12,070 m.o.
connm-ue-csp-sat-n800-d-0.02-s1542454144.sat05-
533.reshuffled-07

SAT 5,974 119,724

Not solved by any solver in SAT 2007
Name Type Grid (s) sequential (s)

AProVE07-01 UNSAT 13,780 39,627
AProVE07-25 UNSAT 94,974 306,634
QG7a-gensys-ukn002.sat05-3842.reshuffled-07 UNSAT 8,260 127,801
vmpc_34 SAT 3,925 90,827
safe-50-h49-unsat t.o. m.o.
partial-10-13-s.cnf SAT 7,960 m.o.
sortnet-8-ipc5-h19-sat t.o. m.o.
dated-10-17-u UNSAT 11,747 105,821
eq.atree.braun.12.unsat UNSAT 9,072 59,229

SAT Solving in a Grid
March 8, 2011

17/41

Parallelizing SAT solvers
Framework II: search space partitioning

SAT Solving in a Grid
March 8, 2011

18/41

Framework II: search space partitioning
solver 1

¬x

solver 2

y

solver 3

¬z

solver 4

¬y
x

z

x

¬y
x

In multi-core, p2p network environments:
I Guiding paths (≈ first search tree decisions) to make

solvers explore different parts of the search space
I Dynamic load balancing by splitting guiding paths
I Search ends when a solution is found or the whole search

space is covered
I On-the-fly clause sharing also possible

SAT Solving in a Grid
March 8, 2011

19/41

Framework II: search space partitioning
solver 1

¬x

solver 2

y

solver 3

¬z

solver 4

¬y
x

z

x

¬y
x

In multi-core, p2p network environments:
I [Blochinger, Sinz & Küchlin, Par.Comp. 2003]
I ZetaSAT [Blochinger, Westje, Küchlin & Wedeniwski, IEEE

CCGrid 2005]
I Satciety [Schulz & Blochinger, WPSS 2010]
I GridSAT [Chrabakh & Wolski, Par.Comp 2006]
I MiraXT [Lewis, Schubert & Becker, ASP-DAC 2007]
I PaMiraXT [Lewis, Schubert & Becker, J.SAT 2009]
I pMinisat [Chu & Stuckey, Sat-Race 2008]

SAT Solving in a Grid
March 8, 2011

20/41

Framework II: search space partitioning
solver 1

¬x

solver 2

y

solver 3

¬z

solver 4

¬y
x

z

x

¬y
x

A problem in our environment:
I Dynamic load balancing by splitting guiding paths not

possible

SAT Solving in a Grid
March 8, 2011

21/41

Partitioning Functions
φ

φ ∧Π2 φ ∧ Π3 φ ∧Π4φ ∧ Π1
runningrunningrunningrunning

I Static partitioning to avoid communication to/from running
solvers

I Partition the instance φ into n model-disjoint derived
instances φ ∧ Π1, ..., φ ∧ Πn and solve them in parallel in
Grid

I A partitioning function P maps a formula φ to a set

P(φ) = {Π1, ...,Πk}
of generic partitioning constraints such that

1. φ ≡ (φ ∧ Π1) ∨ ... ∨ (φ ∧ Πk) (equivalence)
2. φ ∧ Πi ∧ Πj is unsat if i 6= j (disjoint models)

SAT Solving in a Grid
March 8, 2011

22/41

Partitioning Functions
φ

φ ∧Π2 φ ∧ Π3 φ ∧Π4φ ∧ Π1
runningsat runningrunning

I If φ is satisfiable, it is enough to find a solution in one of the
derived instances

SAT Solving in a Grid
March 8, 2011

23/41

Partitioning Functions
φ

φ ∧ Π2 φ ∧Π3 φ ∧ Π4φ ∧Π1
unsat unsat unsat unsat

I If φ is unsatisfiable, must show all derived instances
unsatisfiable

SAT Solving in a Grid
March 8, 2011

24/41

Partitioning Functions
φ

φ ∧ Π2 φ ∧Π3 φ ∧ Π4φ ∧Π1
unsat unsat unsat unsat

I If φ is unsatisfiable, must show all derived instances
unsatisfiable

I Assume a void partitioning function P that produces
derived instances as hard as the original one

I For instance, Πis constrain an easy part of φ or variables
not in an unsat core

I When the number n of derived instances and parallel
solvers is increased, the expected run-time of the parallel
approach tends to the maximum run-time of the original
instance (“increasing bad luck”)
That is, more parallelism⇒ run times can get worse

SAT Solving in a Grid
March 8, 2011

25/41

Implementing Partitioning Functions
I VSIDS Scattering [Hyvärinen, Junttila & Niemelä, SAT 2006]:

run minisat, restart, select best branching literals as unit
constraints, repeat with negated constraint included

I Lookahead DPLL partitioning function [Hyvärinen, Junttila &
Niemelä, LPAR-17 2010]

I Non-learning lookahead DPLL (e.g. satz, march)
I The partial truth assignments at log n level nodes are the

partitioning constraints
I A new method for speeding up failed literal rule detection

I Lookahead Scattering [Hyvärinen, Junttila & Niemelä,
LPAR-17 2010]: same as VSIDS scattering but
lookahead-based branching heuristics in Minisat

I See also [Bordeaux, Hamadi & Samulowitz, IJCAI 2009]:
Partition with parity constraints over randomly selected
variables

SAT Solving in a Grid
March 8, 2011

26/41

Implementing Partitioning Functions
I VSIDS Scattering [Hyvärinen, Junttila & Niemelä, SAT 2006]:

run minisat, restart, select best branching literals as unit
constraints, repeat with negated constraint included

1. run Minisat for x seconds on φ
2. output Π1 = (x1) ∧ (¬x17)
3. run Minisat for x seconds on φ ∧ (¬x1 ∨ x17)
4. output Π2 = (¬x1 ∨ x17) ∧ (x3) ∧ (¬x90)
5. run Minisat for x seconds on φ ∧ (¬x1 ∨ x17) ∧ (¬x3 ∨ x90)
6. output Π3 = (¬x1 ∨ x17) ∧ (¬x3 ∨ x90) ∧ (x150)

output Π4 = (¬x1 ∨ x17) ∧ (¬x3 ∨ x90) ∧ (¬x150)

I Lookahead DPLL partitioning function [Hyvärinen, Junttila &
Niemelä, LPAR-17 2010]

I Non-learning lookahead DPLL (e.g. satz, march)
I The partial truth assignments at log n level nodes are the

partitioning constraints
I A new method for speeding up failed literal rule detection

I Lookahead Scattering [Hyvärinen, Junttila & Niemelä,
LPAR-17 2010]: same as VSIDS scattering but
lookahead-based branching heuristics in Minisat

I See also [Bordeaux, Hamadi & Samulowitz, IJCAI 2009]:
Partition with parity constraints over randomly selected
variables

SAT Solving in a Grid
March 8, 2011

27/41

Implementing Partitioning Functions
I VSIDS Scattering [Hyvärinen, Junttila & Niemelä, SAT 2006]:

run minisat, restart, select best branching literals as unit
constraints, repeat with negated constraint included

I Lookahead DPLL partitioning function [Hyvärinen, Junttila &
Niemelä, LPAR-17 2010]

I Non-learning lookahead DPLL (e.g. satz, march)
I The partial truth assignments at log n level nodes are the

partitioning constraints
I A new method for speeding up failed literal rule detection

I Lookahead Scattering [Hyvärinen, Junttila & Niemelä,
LPAR-17 2010]: same as VSIDS scattering but
lookahead-based branching heuristics in Minisat

I See also [Bordeaux, Hamadi & Samulowitz, IJCAI 2009]:
Partition with parity constraints over randomly selected
variables

SAT Solving in a Grid
March 8, 2011

28/41

Implementing Partitioning Functions
I VSIDS Scattering [Hyvärinen, Junttila & Niemelä, SAT 2006]:

run minisat, restart, select best branching literals as unit
constraints, repeat with negated constraint included

I Lookahead DPLL partitioning function [Hyvärinen, Junttila &
Niemelä, LPAR-17 2010]

I Non-learning lookahead DPLL (e.g. satz, march)
I The partial truth assignments at log n level nodes are the

partitioning constraints
I A new method for speeding up failed literal rule detection

I Lookahead Scattering [Hyvärinen, Junttila & Niemelä,
LPAR-17 2010]: same as VSIDS scattering but
lookahead-based branching heuristics in Minisat

I See also [Bordeaux, Hamadi & Samulowitz, IJCAI 2009]:
Partition with parity constraints over randomly selected
variables

SAT Solving in a Grid
March 8, 2011

29/41

Implementing Partitioning Functions
I VSIDS Scattering [Hyvärinen, Junttila & Niemelä, SAT 2006]:

run minisat, restart, select best branching literals as unit
constraints, repeat with negated constraint included

I Lookahead DPLL partitioning function [Hyvärinen, Junttila &
Niemelä, LPAR-17 2010]

I Non-learning lookahead DPLL (e.g. satz, march)
I The partial truth assignments at log n level nodes are the

partitioning constraints
I A new method for speeding up failed literal rule detection

I Lookahead Scattering [Hyvärinen, Junttila & Niemelä,
LPAR-17 2010]: same as VSIDS scattering but
lookahead-based branching heuristics in Minisat

I See also [Bordeaux, Hamadi & Samulowitz, IJCAI 2009]:
Partition with parity constraints over randomly selected
variables

SAT Solving in a Grid
March 8, 2011

30/41

Experiments with a Partitioning Function
I Controlled experiments with LA DPLL partitioning function
I At most 300s spent in partitioning φ into 4 or 64 derived instances
I Run time of the derived instance set {φ ∧ Π1, ..., φ ∧ Πn}:

I SAT: minimum run time of any satisfiable derived instance
I UNSAT: maximum run time of (unsat) derived instances

 0.1

 1

 10

 100

 1000

 10000

 0.1 1 10 100 1000 10000p
p

 4
,

L
A

 D
P

L
L

,
m

in
is

at
 2

.2
.0

minisat 2.2.0

SATCOMP2009-application, time(s)

unsat
sat

 0.1

 1

 10

 100

 1000

 10000

 0.1 1 10 100 1000 10000p
p

 6
4

,
L

A
 D

P
L

L
,

m
in

is
at

 2
.2

.0
minisat 2.2.0

SATCOMP2009-application, time(s)

unsat
sat

I Theory meets practise: UNSAT harder than SAT
I More results: [Hyvärinen, Junttila & Niemelä, LPAR-17 2010]

SAT Solving in a Grid
March 8, 2011

31/41

Iterative Partitioning
φ

φ ∧Π2 φ ∧ Π3 φ ∧Π4φ ∧ Π1
running running

φ∧Π2∧Π2,4φ∧Π2∧Π2,3φ∧Π2∧Π2,2φ∧Π2∧Π2,1
running

unsat running

I Into how many derived instances should one partition φ?
I Many derived instances in a plain partitioning can be easy

SAT Solving in a Grid
March 8, 2011

32/41

Iterative Partitioning
φ

timeout

φ ∧Π2 φ ∧ Π3 φ ∧Π4φ ∧ Π1
running running

φ∧Π2∧Π2,4φ∧Π2∧Π2,3φ∧Π2∧Π2,2φ∧Π2∧Π2,1
running

unsat running

I Use smallish partitioning factor (e.g. 8),
further partition hard derived instances, and
use the free resources to solve these

I BFS/DFS construction of a “partitioning tree”
I Theoretical hazard of “void partitioning” an unsat instance

is avoided when the [derived] instance is also attempted to
be solved

I Fault tolerant

SAT Solving in a Grid
March 8, 2011

33/41

Iterative Partitioning
φ

timeout

φ ∧Π2 φ ∧ Π3 φ ∧Π4φ ∧ Π1
running

φ∧Π2∧Π2,4φ∧Π2∧Π2,3φ∧Π2∧Π2,2φ∧Π2∧Π2,1
running

unsat

sat

timeoutrunning

I Use smallish partitioning factor (e.g. 8),
further partition hard derived instances, and
use the free resources to solve these

I BFS/DFS construction of a “partitioning tree”
I Theoretical hazard of “void partitioning” an unsat instance

is avoided when the [derived] instance is also attempted to
be solved

I Fault tolerant

SAT Solving in a Grid
March 8, 2011

34/41

Iterative Partitioning
φ

timeout

φ ∧ Π2 φ ∧Π3 φ ∧ Π4φ ∧ Π1
running

φ∧Π2∧Π2,4φ∧Π2∧Π2,3φ∧Π2∧Π2,2φ∧Π2∧Π2,1

unsat

unsat unsat unsatunsat

unsat unsat

I Use smallish partitioning factor (e.g. 8),
further partition hard derived instances, and
use the free resources to solve these

I BFS/DFS construction of a “partitioning tree”
I Theoretical hazard of “void partitioning” an unsat instance

is avoided when the [derived] instance is also attempted to
be solved

I Fault tolerant

SAT Solving in a Grid
March 8, 2011

35/41

Iterative Partitioning: Some Experimental Results
I LA DPLL, LA scatter, VSIDS scatter: iterative partitioning

NorduGrid, at most 64 jobs, all delays included
Solver at jobs: Minisat 1.14, 1GB mem limit, 60–90min time limit

I SD 64: best of 64 runs of sequential Minisat 1.14, different prng seeds,
1GB mem limit

I ManySAT 1.0 and Plingeling 276: 12 cores, 32GB mem limit

6 hour wall-clock time limit for all approaches
SAT-Comp 2009 applications category, 63 insts not solved in the comp.

Name Type LA DPLL LA scatter VSIDS scatter SD 64 ManySAT Plingeling

9dlx_vliw_at_b_iq8 UNSAT — — — — — 3256.41
9dlx_vliw_at_b_iq9 UNSAT — — — — — 5164.00
AProVE07-25 UNSAT 8992.60 9176.91 11347.42 — — —
dated-5-19-u UNSAT 16557.82 20155.96 4124.62 — — 4465.00
eq.atree.braun.12.unsat UNSAT 3157.19 2357.55 3006.19 20797.60 15338.00 —
eq.atree.braun.13.unsat UNSAT 7117.39 8504.50 8158.85 — — —
gss-24-s100 SAT 1977.19 3449.55 2271.24 968.23 13190.00 2929.92
gss-26-s100 SAT 10844.22 — 6057.80 — — 18173.00
gss-32-s100 SAT — 16412.40 — — — —
gus-md5-14 UNSAT 14779.03 16264.37 16098.04 — — —
ndhf_xits_09_UNSAT UNSAT — — 14793.78 — — —
rpoc_xits_09_UNSAT UNSAT — — 12388.32 — — —
sortnet-8-ipc5-h19-sat SAT — — — — — 2699.62
total-10-17-u UNSAT 4431.21 7198.23 5099.73 — 10216.00 3672.00

SAT Solving in a Grid
March 8, 2011

36/41

Iterative Partitioning: Some Experimental Results
Same setting and solvers
“medium hard” instances, application and crafted categories
Name Type LA DPLL LA scatter VSIDS scatter SD 64 COMP ManySAT Plingeling

Solved in SAT-COMP 2009 with best time at least 1 hour

9dlx_vliw_at_b_iq7 UNSAT — — — — 6836.20 7665.00 1576.08
AProVE07-01 UNSAT 1465.22 1322.04 2451.36 20230.30 6816.94 13219.00 21144.00
dated-5-13-u UNSAT 3881.60 4745.52 4563.15 — 8005.27 15818.00 2524.05
gss-22-s100 SAT 830.77 1151.13 4246.25 2280.82 4326.83 — 1136.39
gss-27-s100 SAT — — 9156.71 — 7132.69 — 18013.00
gus-md5-11 UNSAT 1190.28 2077.99 2092.54 5057.39 4518.06 20184.00 —
maxor128 UNSAT — — — — 7131.52 — 2227.07
maxxor064 UNSAT — — — — 5162.75 2837.28 9346.00
minandmaxor128 UNSAT — — — — 5143.44 4228.00 3737.00
mod4block_3vars_7gates UNSAT 1740.17 1755.47 2326.02 — 4109.89 — 5048.00
new-difficult-26-243-24-70 SAT 3260.86 8887.61 5087.98 3311.62 4440.72 13343.00 0.17
rbcl_xits_08_UNSAT UNSAT 4557.86 2390.50 3695.97 — 3892.92 10136.00 4783.00
sgen1-unsat-109-100 UNSAT 1363.14 3000.48 4196.36 14675.60 4045.49 — —
UR-20-10p1 SAT 4463.24 — — — 8766.23 8164.00 3598.17
UTI-20-10p1 SAT — 7097.74 — — 6289.06 750.76 892.84

Challenge instances for Minisat

countbitsarray02_32 UNSAT 1746.29 3003.50 997.84 2504.93 834.519 969.67 258.60
simon-s02b-k2f-gr-rcs-w8 UNSAT 3816.20 3106.70 14756.10 — 6.40 153.59 5.01
vange-col-abb313GPIA-9-c SAT — — — — 445.09 — 520.95
velev-pipe-uns-1.0-8 UNSAT — — — — 307.48 337.94 202.54
vmpc_34 SAT 12452.59 1350.17 1479.62 2796.19 35.347 490.71 4064.00

SAT Solving in a Grid
March 8, 2011

37/41

Analytic studies

I For analytic and experimental run-time distribution based
analyses on

I portfolios without clause sharing,
I partitioning, and
I combinations of these

on instances that are
I unsatisfiable,
I satisfiable with many solutions, or
I satisfiable with few solutions

see [Hyvärinen, Junttila, Niemelä, AISC 2008], [Hyvärinen,
Junttila, Niemelä, AI*IA 2009] or [Hyvärinen, Junttila, Niemelä,
Fund.Inf.], and [Hyvärinen, Junttila, Niemelä, LPAR-17]

SAT Solving in a Grid
March 8, 2011

38/41

Conclusions
I For “medium hard” instances multi-core approach with

portfolios with clause sharing very competitive
I Portfolios with clause sharing can also work in a Grid

environment
I Iterative search space partitioning very promising for “very

hard” instances
I Obtaining good partitioning functions is challenging,

especially for unsatisfiable instances
I How to efficiently parallelize a resolution proof?

I Experiments with very hard instances very time consuming
I Possible future challenges: parallel generation of

1. unsatisfiability cores
2. proofs of unsatisfiability
3. interpolants

SAT Solving in a Grid
March 8, 2011

39/41

References
This presentation was based mostly on the following articles by
Hyvärinen, Junttila, and Niemelä:

I A Distribution Method for Solving SAT in Grids, Proc. SAT 2006,
LNCS 4121, pp. 430–435, 2006

I Strategies for Solving SAT in Grids by Randomized Search,
Proc. AISC 2008, LNCS 5144, pp. 125–140, 2008

I Incorporating Learning in Grid-Based Randomized SAT Solving,
Proc. AIMSA 2008, LNCS 5253, pp. 247–261, 2008

I Incorporating Clause Learning in Grid-Based Randomized SAT
Solving, J. Satisfiability 6:223–244, 2009

I Partitioning Search Spaces of a Randomized Search
Proc. AI*IA 2009, LNCS 5883, pp. 243–252, 2009.

I Partitioning Search Spaces of a Randomized Search
Fundamenta Informatica, accepted for publication.

I Partitioning SAT Instances for Distributed Solving, Proc.
LPAR-17, LNCS 6397, pp. 372–386, 2010.

I IJCAI submission

SAT Solving in a Grid
March 8, 2011

40/41

Some More References
I W. Chrabakh, R. Wolski, GridSAT: a system for solving

satisfiability problems using a computational grid, Parallel
Computing 32(9):660–687, 2006

I L. Bordeaux, Y. Hamadi, and H. Samulowitz, Experiments with
Massively Parallel Constraint Solving, Proc. IJCAI 2009, pp.
443–448, 2009

I Y. Hamadi, S. Jabbour, and L. Sais, Control-based Clause
Sharing in Parallel SAT Solving, Proc. IJCAI 2009, pp. 499–504,
2009

I Y. Hamadi, S. Jabbour, and L. Sais, ManySAT: a Parallel SAT
Solver, J. Satisfiability, 6(2009) 245–262

I C.M. Wintersteiger, Y. Hamadi, and L. de Moura, A Concurrent
Portfolio Approach to SMT Solving, Proc. CAV 2009, LNCS
5643, pp. 715–720, 2009.

I A. Biere, Lingeling, Plingeling, PicoSAT, and PrecoSAT at SAT
Race 2010, Tech. Report 10/1, Johannes Kepler University, 2010

SAT Solving in a Grid
March 8, 2011

41/41

Some More References
I W. Blochinger, C. Sinz, and W. Küchlin, Parallel propositional

satisfiability checking with distributed dynamic learning, Parallel
Computing 29(2003), 969–994

I S. Schulz, and W. Blochinger, Cooperate and Compete! A
Hybrid Solving Strategy for Task-Parallel SAT Solving on
Peer-to-Peer Desktop Grid, Proc. WPSS 2010, pp. 314–323,
2010.

I M. Lewis, T. Schubert and B. Becker, Multithreaded SAT Solving,
Proc. ASP-DAC 2007, pp. 926–931, 2007

I T. Schubert, M. Lewis, and B. Becker, PaMiraXT: Parallel SAT
Solving with Threads and Message Passing, J.Satisfiability
9:203–222, 2009

I W. Blochinger, W. Westje, W. Küchlin, and S. Wedeniwski,
ZetaSAT — Boolean SATisfiability Solving on Desktop Grids,
Proc. IEEE CCGrid 2005, pp. 1079–1086, 2005

