
KIT – INSTITUT FÜR THEORETISCHE INFORMATIK

Scale Issues in Deductive Program Verification

Vladimir Klebanov | 9 March, 2011

KIT – University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz Association



KeY Project

www.key-project.org

Deductive Verification of
Java programs
specified with the
Java Modeling Language
in Dynamic Logic

KeY Tool

Deductive rules for all Java features
Symbolic execution
100% Java Card
High degree of automation/usability
>10,000 loc / expert year

Vladimir Klebanov – Scale Issues in Deductive Program Verification 9 March, 2011



KeY Project

www.key-project.org

Deductive Verification of
Java programs
specified with the
Java Modeling Language
in Dynamic Logic

KeY Tool
Deductive rules for all Java features

Symbolic execution
100% Java Card
High degree of automation/usability
>10,000 loc / expert year

Vladimir Klebanov – Scale Issues in Deductive Program Verification 9 March, 2011



KeY Project

www.key-project.org

Deductive Verification of
Java programs
specified with the
Java Modeling Language
in Dynamic Logic

KeY Tool
Deductive rules for all Java features
Symbolic execution

100% Java Card
High degree of automation/usability
>10,000 loc / expert year

Vladimir Klebanov – Scale Issues in Deductive Program Verification 9 March, 2011



KeY Project

www.key-project.org

Deductive Verification of
Java programs
specified with the
Java Modeling Language
in Dynamic Logic

KeY Tool
Deductive rules for all Java features
Symbolic execution
100% Java Card

High degree of automation/usability
>10,000 loc / expert year

Vladimir Klebanov – Scale Issues in Deductive Program Verification 9 March, 2011



KeY Project

www.key-project.org

Deductive Verification of
Java programs
specified with the
Java Modeling Language
in Dynamic Logic

KeY Tool
Deductive rules for all Java features
Symbolic execution
100% Java Card
High degree of automation/usability
>10,000 loc / expert year

Vladimir Klebanov – Scale Issues in Deductive Program Verification 9 March, 2011



KeY Project

www.key-project.org

Deductive Verification of
Java programs
specified with the
Java Modeling Language
in Dynamic Logic

KeY Tool
Deductive rules for all Java features
Symbolic execution
100% Java Card
High degree of automation/usability
>10,000 loc / expert year

Vladimir Klebanov – Scale Issues in Deductive Program Verification 9 March, 2011



Verification Scalability So Far

Vladimir Klebanov – Scale Issues in Deductive Program Verification 9 March, 2011http://en.wikipedia.org/wiki/File:All_Gizah_Pyramids.jpg

Verification Scalability So Far

What is the biggest system that can be verified (in unlimited time)?

http://en.wikipedia.org/wiki/File:All_Gizah_Pyramids.jpg


Verification Scalability So Far

Vladimir Klebanov – Scale Issues in Deductive Program Verification 9 March, 2011http://en.wikipedia.org/wiki/File:All_Gizah_Pyramids.jpg

Verification Scalability So Far

What is the biggest system that can be verified (in unlimited time)?

Issues with this approach
Hard to reproduce
Hard to keep track of effort
Usability swept under the rug

Needed: what can be specified and verified in 3h?

http://en.wikipedia.org/wiki/File:All_Gizah_Pyramids.jpg


Verification Scalability So Far

Vladimir Klebanov – Scale Issues in Deductive Program Verification 9 March, 2011http://en.wikipedia.org/wiki/File:All_Gizah_Pyramids.jpg

Verification Scalability So Far

What is the biggest system that can be verified (in unlimited time)?

Issues with this approach
Hard to reproduce
Hard to keep track of effort
Usability swept under the rug
Needed: what can be specified and verified in 3h?

http://en.wikipedia.org/wiki/File:All_Gizah_Pyramids.jpg


1st Verified Software Competition

informal event
at VSTTE 2010 in Edinburgh
organized by Peter Müller and Natarajan Shankar
5 problems (= pseudocode + informal spec + test cases)
4 hours of thinking time, 2 hours of hacking time
no disciplines, no ranking

The KeY Team: Vladimir Klebanov, Mattias Ulbrich, Benjamin Weiß

Vladimir Klebanov – Scale Issues in Deductive Program Verification 9 March, 2011



1st Verified Software Competition

informal event
at VSTTE 2010 in Edinburgh
organized by Peter Müller and Natarajan Shankar
5 problems (= pseudocode + informal spec + test cases)
4 hours of thinking time, 2 hours of hacking time
no disciplines, no ranking

The KeY Team: Vladimir Klebanov, Mattias Ulbrich, Benjamin Weiß

Vladimir Klebanov – Scale Issues in Deductive Program Verification 9 March, 2011



To Appear

The 1st Verified Software Competition: Experience Report

by

Peter Müller, Natarajan Shankar, Gary T. Leavens, Tom Ridge,
Thomas Tuerk, Vladimir Klebanov, Mattias Ulbrich, Benjamin Weiß,
K. Rustan M. Leino, Rod Chapman, Rosemary Monahan,
Nadia Polikarpova, Derek Bronish, Rob Arthan, Eyad Alkassar,
Ernie Cohen, Mark Hillebrand, Stephan Tobies, Bart Jacobs,
Frank Piessens, Jan Smans

www.vscomp.org

Vladimir Klebanov – Scale Issues in Deductive Program Verification 9 March, 2011

www.vscomp.org


Competing Tools

HOL4 (functional impl., spec in HOL)
ProofPower (functional impl., spec in HOL)

Isabelle/VCG (Hoare logic for C0)
Holfoot (Separation logic for a C-like language, encoded in HOL)
KeY (Dynamic logic for Java)
Dafny (object-based language with built-in spec, like Java+JML)
SPARK/Ada (contractualized subset of Ada)
Boogie (intermediate language with assertions)
Resolve (imperative component programs w/ modular specs)
VCC (C with VCC assertions/invariants)
VeriFast (Separation logic for Java and C)

Vladimir Klebanov – Scale Issues in Deductive Program Verification 9 March, 2011



Solution Overview

Tool S
U

M
&

M
A

X

IN
V

E
R

T

LI
N

K
E

D
-

LI
S

T

N
Q

U
E

E
N

S

Q
U

E
U

E

S
U

M
&

M
A

X

IN
V

E
R

T

LI
N

K
E

D
-

LI
S

T

N
Q

U
E

E
N

S

Q
U

E
U

E

Team

Isabelle
a a

A.Tsyban 1

HOL4
a

anonHolHacker 1

Holfoot Holfoot 1

KeY
a a

KeY 3

Dafny
a a a

Leino 1

SPARK
a

SparkULike 1

Boogie
a

MonaPoli 2

Resolve
b a

Resolve 1

ProofPower
a a

RobArthan 1

VCC VC Crushers 3

VeriFast
a

VeriFast 1

Vladimir Klebanov – Scale Issues in Deductive Program Verification 9 March, 2011



INVERT: Mathematically

The goal is to prove that for any N > 0, the injectivity of B

∀x , y . 0 6 x < y < N → B[x] 6= B[y] (1)

follows from the inverse relation between the arrays A and B (which
per loop invariant holds after the loop)

∀x .
(
0 6 x < N → B[A[x]] = x

)
(2)

and the surjectivity of A (which is a lemma that the problem
description allowed to assume)

∀x .
(
(0 6 x < N) → ∃x ′. (0 6 x ′ < N) ∧ x = A[x ′]

)
. (3)

Vladimir Klebanov – Scale Issues in Deductive Program Verification 9 March, 2011



INVERT: Mathematically

The goal is to prove that for any N > 0, the injectivity of B

∀x , y . 0 6 x < y < N → B[x] 6= B[y] (1)

follows from the inverse relation between the arrays A and B (which
per loop invariant holds after the loop)

∀x .
(
0 6 x < N → B[A[x]] = x

)
(2)

and the surjectivity of A (which is a lemma that the problem
description allowed to assume)

∀x .
(
(0 6 x < N) → ∃x ′. (0 6 x ′ < N) ∧ x = A[x ′]

)
. (3)

Vladimir Klebanov – Scale Issues in Deductive Program Verification 9 March, 2011

Difficulties in this problem
only interpreted arithmetical symbols in the
quantifier guard
required instantiations are Skolem constants

Range of solutions
Manual instantiation
Dummy function trigger
Complex reformulations



INVERT: Mathematically

The goal is to prove that for any N > 0, the injectivity of B

∀x , y . 0 6 x < y < N → B[x] 6= B[y] (1)

follows from the inverse relation between the arrays A and B (which
per loop invariant holds after the loop)

∀x .
(
0 6 x < N → B[A[x]] = x

)
(2)

and the surjectivity of A (which is a lemma that the problem
description allowed to assume)

∀x .
(
(0 6 x < N) → ∃x ′. (0 6 x ′ < N) ∧ x = A[x ′]

)
. (3)

Vladimir Klebanov – Scale Issues in Deductive Program Verification 9 March, 2011

Difficulties in this problem
only interpreted arithmetical symbols in the
quantifier guard
required instantiations are Skolem constants

Range of solutions
Manual instantiation
Dummy function trigger
Complex reformulations



Metric: Specification Verbosity

Tool SUM&MAX INVERT LINKEDLIST N QUEENS QUEUE

HOL4 – – – – – – – – – – – – 231 172 976

KeY 70 120 110 50 195 52+ 90 151 233 228 253 799+ 429 571 319

Dafny 80 42 11 52 234 99 122 162 194 285 176 418 472 417 210

Boogie 84 12 12 58 125 458 82 315 41 – – – 779 1909 1868

Resolve 138 221 71 109 228 57 126 499 48 309 711 90 292 138 0

ProofPower 48 173 285 – – – 121 68 548 – – – – – –

VCC 80 148 208 44 241 54 73 129 114 193 341 148 504 997 162

VeriFast 80 66 450 47 273 1834 59 94 359 269 644 3110 430 463 422

Tokens of code / requirement annotations / proof guidance annotations

Vladimir Klebanov – Scale Issues in Deductive Program Verification 9 March, 2011



Metric: Specification Verbosity

Tool SUM&MAX INVERT LINKEDLIST N QUEENS QUEUE

HOL4 – – – – – – – – – – – – 231 172 976

KeY 70 120 110 50 195 52+ 90 151 233 228 253 799+ 429 571 319

Dafny 80 42 11 52 234 99 122 162 194 285 176 418 472 417 210

Boogie 84 12 12 58 125 458 82 315 41 – – – 779 1909 1868

Resolve 138 221 71 109 228 57 126 499 48 309 711 90 292 138 0

ProofPower 48 173 285 – – – 121 68 548 – – – – – –

VCC 80 148 208 44 241 54 73 129 114 193 341 148 504 997 162

VeriFast 80 66 450 47 273 1834 59 94 359 269 644 3110 430 463 422

Tokens of code / requirement annotations / proof guidance annotations

Vladimir Klebanov – Scale Issues in Deductive Program Verification 9 March, 2011

Grain of salt
Parsimony is good.
But so is: elegance, naturality, usefulness, ubiquity
Different formalizations are hard to compare



Conclusions

Issue: Control of SMT
Issue: Abstract data types
Degree of automation played hardly any role
Performance played little role
Benchmarking difficult—profile the user, not just the tool

Vladimir Klebanov – Scale Issues in Deductive Program Verification 9 March, 2011



Vladimir Klebanov – Scale Issues in Deductive Program Verification 9 March, 2011(CC) http://www.flickr.com/photos/90514086@N00/952121271/

You are in a twisty maze of proofs

http://www.flickr.com/photos/90514086@N00/952121271/


Vladimir Klebanov – Scale Issues in Deductive Program Verification 9 March, 2011(CC) http://www.flickr.com/photos/90514086@N00/952121271/

You are in a twisty maze of proofs

Setting
Deductive proofs as program certificates

Provers track lemmas/modules
Make and CVS track source/builds
Who tracks both?

http://www.flickr.com/photos/90514086@N00/952121271/


Vladimir Klebanov – Scale Issues in Deductive Program Verification 9 March, 2011(CC) http://www.flickr.com/photos/90514086@N00/952121271/

You are in a twisty maze of proofs

Setting
Deductive proofs as program certificates
Provers track lemmas/modules

Make and CVS track source/builds
Who tracks both?

http://www.flickr.com/photos/90514086@N00/952121271/


Vladimir Klebanov – Scale Issues in Deductive Program Verification 9 March, 2011(CC) http://www.flickr.com/photos/90514086@N00/952121271/

You are in a twisty maze of proofs

Setting
Deductive proofs as program certificates
Provers track lemmas/modules
Make and CVS track source/builds

Who tracks both?

http://www.flickr.com/photos/90514086@N00/952121271/


Vladimir Klebanov – Scale Issues in Deductive Program Verification 9 March, 2011(CC) http://www.flickr.com/photos/90514086@N00/952121271/

You are in a twisty maze of proofs

Setting
Deductive proofs as program certificates
Provers track lemmas/modules
Make and CVS track source/builds
Who tracks both?

http://www.flickr.com/photos/90514086@N00/952121271/


Demo

ATM

proxyExists

insertCard

getProxy

cardIsInserted

getAccountNumber

cardForNonexistingAccountInserted

withdraw

<init>

setOnline

enterPIN

confiscateCard

accountBalance

ejectCard

getAccount

setProxy

getAccount

customerIsAuthenticated

requestAccountStatement

isOnline

Account

getTransactions

flushTransactions

checkAndWithdraw

addTransaction

getAccountNumber

<init>

transactionListToString

TransactionList

prepend

<init>

CentralHost

issueCard

getAccount

accountExists

getAccountWithMaxBalance

main

createAccount

<init>

toString

PermanentAccount

balanceIsAccessible

dailyLimitIsImportant

requestStatement

withdraw

accountBalance

newWithdrawalIsPossible

toString

requestStatement

depose

sendAccountStatement

<init>

getWithdrawnAmountForToday

withdraw

Transaction

<init>

getDate

AccountStatementRequest

replay

toString

<init>

Clock

tick

getCurrentDate

getBigBangsDate

getInstance

<init>

isSameMonth

isEarlier

isSameInterval

isSameDay

OfflineAccountProxy

replay

requestStatement

<init>

replay

newWithdrawalIsPossible

withdraw

accountBalance

balanceIsAccessible

BankCard

makeCardInvalid

cardIsInvalid

<init>

pinIsCorrect

getAccountNumber

TransactionListCons

head

isEmpty

length

<init>

tail

TransactionListNIL

<init>

length

isEmpty

tail

head

Withdrawal

<init>

getAmount

replay

toString

JML inv (id: 7) JML inv (id: 8)JML inv (id: 1) JML inv (id: 2) JML inv (id: 4) JML inv (id: 5)

JML inv (id: 23)JML inv (id: 22)

JML inv (id: 14)

JML inv (id: 15)

JML inv (id: 19)

JML inv (id: 20)

JML inv (id: 11) JML inv (id: 12)

JML inv (id: 24) JML inv (id: 25)

JML inv (id: 13)JML inv (id: 3)JML inv (id: 0)

JML inv (id: 18)

JML inv (id: 9)JML inv (id: 6)

JML inv (id: 16) JML inv (id: 17)

JML inv (id: 10)

JML inv (id: 26)

JML inv (id: 21)

JML ct (id: 64) JML ct (id: 65)

JML ct (id: 5)

JML ct (id: 135)

JML ct (id: 232) JML ct (id: 171)

JML ct (id: 27)

JML ct (id: 4)

JML ct (id: 182)

JML ct (id: 141)

JML ct (id: 123)

JML ct (id: 3)

JML ct (id: 37)

JML ct (id: 170) JML ct (id: 142)

JML ct (id: 14)

JML ct (id: 59)

JML ct (id: 42)

JML ct (id: 173)

JML ct (id: 34)

JML ct (id: 33)

JML ct (id: 11)

JML ct (id: 84) JML ct (id: 30)

JML ct (id: 44) JML ct (id: 47)

JML ct (id: 78)

JML ct (id: 66)

JML ct (id: 62)

JML ct (id: 139)

JML ct (id: 9) JML ct (id: 10)

JML ct (id: 56) JML ct (id: 57)

Proof

JML ct (id: 86) JML ct (id: 87)

JML ct (id: 91) JML ct (id: 31)

JML ct (id: 2)

JML ct (id: 172)

JML ct (id: 103)

JML ct (id: 55)

JML ct (id: 122)

JML ct (id: 72)

JML ct (id: 137)

JML ct (id: 45) JML ct (id: 48)

JML ct (id: 175)

JML ct (id: 75) JML ct (id: 76)

JML ct (id: 92) JML ct (id: 38)

JML ct (id: 229)

JML ct (id: 143)

JML ct (id: 96)

JML ct (id: 167) JML ct (id: 132)

JML ct (id: 67) JML ct (id: 68)

JML ct (id: 35)

JML ct (id: 155)

JML ct (id: 95)

JML ct (id: 82)

JML ct (id: 97) JML ct (id: 98)

JML ct (id: 22)

JML ct (id: 233)

JML ct (id: 63)

JML ct (id: 23)

JML ct (id: 58)

JML ct (id: 174)

JML ct (id: 93)

JML ct (id: 71)

JML ct (id: 131)

JML ct (id: 100)

JML ct (id: 24)

JML ct (id: 169) JML ct (id: 138)

JML ct (id: 168)

JML ct (id: 6)

JML ct (id: 85)

JML ct (id: 16)JML ct (id: 15)

JML ct (id: 176)

JML ct (id: 8)

JML ct (id: 41)

JML ct (id: 157) JML ct (id: 150)

JML ct (id: 90)

JML ct (id: 89) JML ct (id: 28)

JML ct (id: 52)

JML ct (id: 0)

JML ct (id: 61)

JML ct (id: 19) JML ct (id: 20)

JML ct (id: 83)

JML ct (id: 102)

JML ct (id: 39)

JML ct (id: 17)

JML ct (id: 156)

JML ct (id: 99)

JML ct (id: 80) JML ct (id: 81)

JML ct (id: 21)

JML ct (id: 77)

JML ct (id: 164)

JML ct (id: 54)

JML ct (id: 18)

JML ct (id: 101)

JML ct (id: 7)

JML ct (id: 25)

JML ct (id: 12)

JML ct (id: 79)

JML ct (id: 60)

JML ct (id: 70)

JML ct (id: 51)

JML ct (id: 13)

JML ct (id: 94)

JML ct (id: 154) JML ct (id: 134)

JML ct (id: 49)

JML ct (id: 153)

JML ct (id: 69)

JML ct (id: 1)

JML ct (id: 53)

JML ct (id: 73)

JML ct (id: 40)

JML ct (id: 88)

JML ct (id: 74)

JML ct (id: 26)

EnsuresPost

EnsuresPost

Proof

EnsuresPost

Proof

Transaction

AccountStatementRequest

Withdrawal

TransactionList

TransactionListCons

TransactionListNIL

Account

OfflineAccountProxy

PermanentAccount

Vladimir Klebanov – Scale Issues in Deductive Program Verification 9 March, 2011



A product line is a set of software systems (products) with
well-defined commonalities and variabilities.

Vladimir Klebanov – Scale Issues in Deductive Program Verification 9 March, 2011(CC) http://www.flickr.com/photos/50457550@N00/64830775/

You are in a twisty maze of products

http://www.flickr.com/photos/50457550@N00/64830775/


A product line is a set of software systems (products) with
well-defined commonalities and variabilities.

Vladimir Klebanov – Scale Issues in Deductive Program Verification 9 March, 2011(CC) http://www.flickr.com/photos/50457550@N00/64830775/

You are in a twisty maze of products

Setting
A product line is a set of software systems (products)
with well-defined commonalities and variabilities.

http://www.flickr.com/photos/50457550@N00/64830775/


The Problem We Solve

Given:
a specified/verified product P1

a set of proofs for the product P1

an applicable delta set ∆(P1,P2)

Wanted:
a set of valid proofs for the product P2

. . . faster than (re-)verifying P2 in isolation

A solution:
Proof slicing algorithm

with Daniel Bruns and Ina Schaefer [Formal Verification of OO Software 2010]

Vladimir Klebanov – Scale Issues in Deductive Program Verification 9 March, 2011



What’s in a Delta?

Add/remove class
Change direct superclass (reparent)

Add/remove field
Add/remove method
Add/remove method contract
Add/remove class invariant

Vladimir Klebanov – Scale Issues in Deductive Program Verification 9 March, 2011



Slicing Algorithm (1): Adding Fields

For each adds(C::f ):
1 find (statically) the set of method implementations M referring

to C::f in the new product

invalidate all pre-existing proofs about any C′::m ∈ M
invalidate all pre-existing proofs inlining any C′::m ∈ M

2 invalidate all pre-existing proofs of specifications referring to C::f
in the new product

class C extends D {

//@ invariant f == ((D)this).f;
}

3 add non-nullness invariant for C::f

Vladimir Klebanov – Scale Issues in Deductive Program Verification 9 March, 2011



Slicing Algorithm (1): Adding Fields

For each adds(C::f ):
1 find (statically) the set of method implementations M referring

to C::f in the new product
invalidate all pre-existing proofs about any C′::m ∈ M
invalidate all pre-existing proofs inlining any C′::m ∈ M

2 invalidate all pre-existing proofs of specifications referring to C::f
in the new product

class C extends D {

//@ invariant f == ((D)this).f;
}

3 add non-nullness invariant for C::f

Vladimir Klebanov – Scale Issues in Deductive Program Verification 9 March, 2011



Slicing Algorithm (1): Adding Fields

For each adds(C::f ):
1 find (statically) the set of method implementations M referring

to C::f in the new product
invalidate all pre-existing proofs about any C′::m ∈ M
invalidate all pre-existing proofs inlining any C′::m ∈ M

2 invalidate all pre-existing proofs of specifications referring to C::f
in the new product

class C extends D {

//@ invariant f == ((D)this).f;
}

3 add non-nullness invariant for C::f

Vladimir Klebanov – Scale Issues in Deductive Program Verification 9 March, 2011



Slicing Algorithm (1): Adding Fields

For each adds(C::f ):
1 find (statically) the set of method implementations M referring

to C::f in the new product
invalidate all pre-existing proofs about any C′::m ∈ M
invalidate all pre-existing proofs inlining any C′::m ∈ M

2 invalidate all pre-existing proofs of specifications referring to C::f
in the new product

class C extends D {

//@ invariant f == ((D)this).f;
}

3 add non-nullness invariant for C::f

Vladimir Klebanov – Scale Issues in Deductive Program Verification 9 March, 2011



Slicing Algorithm (1): Adding Fields

For each adds(C::f ):
1 find (statically) the set of method implementations M referring

to C::f in the new product
invalidate all pre-existing proofs about any C′::m ∈ M
invalidate all pre-existing proofs inlining any C′::m ∈ M

2 invalidate all pre-existing proofs of specifications referring to C::f
in the new product

class C extends D {
Object f;
//@ invariant f == ((D)this).f;

}

3 add non-nullness invariant for C::f

Vladimir Klebanov – Scale Issues in Deductive Program Verification 9 March, 2011



Slicing Algorithm (1): Adding Fields

For each adds(C::f ):
1 find (statically) the set of method implementations M referring

to C::f in the new product
invalidate all pre-existing proofs about any C′::m ∈ M
invalidate all pre-existing proofs inlining any C′::m ∈ M

2 invalidate all pre-existing proofs of specifications referring to C::f
in the new product

class C extends D {
Object f;
//@ invariant f == ((D)this).f;

}

3 add non-nullness invariant for C::f

Vladimir Klebanov – Scale Issues in Deductive Program Verification 9 March, 2011



Slicing Algorithm (2): Adding
Methods

For each adds(C::m):
1 invalidate all pre-existing proofs where m was inlined and C::m

would have been a relevant implementation (mostly w.r.t.
dynamic binding)

2 proofs using the contracts for m remain valid
3 prove that C::m satisfies all specifications of C (either stated

directly or inherited), as well as all other invariants

Vladimir Klebanov – Scale Issues in Deductive Program Verification 9 March, 2011



Slicing Algorithm (2): Adding
Methods

For each adds(C::m):
1 invalidate all pre-existing proofs where m was inlined and C::m

would have been a relevant implementation (mostly w.r.t.
dynamic binding)

2 proofs using the contracts for m remain valid

3 prove that C::m satisfies all specifications of C (either stated
directly or inherited), as well as all other invariants

Vladimir Klebanov – Scale Issues in Deductive Program Verification 9 March, 2011



Slicing Algorithm (2): Adding
Methods

For each adds(C::m):
1 invalidate all pre-existing proofs where m was inlined and C::m

would have been a relevant implementation (mostly w.r.t.
dynamic binding)

2 proofs using the contracts for m remain valid
3 prove that C::m satisfies all specifications of C (either stated

directly or inherited), as well as all other invariants

Vladimir Klebanov – Scale Issues in Deductive Program Verification 9 March, 2011



Relevant Method Implementations

C [inherits Ĉ::m()]

Ĉ Ĉ::m()

S [inherits Ĉ::m()]

C′′ C′′::m()

class A {
//@ ensures \result > 0;
int foo() {

return 23;
} }

class B extends A {

}

Vladimir Klebanov – Scale Issues in Deductive Program Verification 9 March, 2011



Relevant Method Implementations

C [inherits Ĉ::m()]

Ĉ Ĉ::m()

S [inherits Ĉ::m()]

C′′ C′′::m()

class A {
//@ ensures \result > 0;
int foo() {

return 23;
} }

class B extends A {

}

Vladimir Klebanov – Scale Issues in Deductive Program Verification 9 March, 2011



Relevant Method Implementations

C C::m()

Ĉ Ĉ::m()

S [inherits C::m()]

C′′ C′′::m()

class A {
//@ ensures \result > 0;
int foo() {

return 23;
} }

class B extends A {
int foo() {

return 42;
} }

Vladimir Klebanov – Scale Issues in Deductive Program Verification 9 March, 2011



Relevant Method Implementations

C C::m()

Ĉ Ĉ::m()

S [inherits C::m()]

C′′ C′′::m()

class A {
//@ ensures \result > 0;
int foo() {

return 23;
} }

class B extends A {
int foo() {

return 42;
} }

Vladimir Klebanov – Scale Issues in Deductive Program Verification 9 March, 2011



Slicing Algorithm (3): Class
Reparenting

For each reparents(C,C′):
1 invalidate all pre-existing proofs inlining any C′′::m with C′′ v C

2 contracts for methods in reparented classes remain valid unless
the contract no longer exists (inherited contract)

3 invalidate proofs for specifications inherited from any class K
with C̃ v K @ Ĉ where Ĉ is the least common supertype of C′

and the old direct supertype C̃ of C
4 prove that all classes C′′ v C satisfy the specifications inherited

from new superclasses K with C′ v K @ Ĉ

Vladimir Klebanov – Scale Issues in Deductive Program Verification 9 March, 2011



Slicing Algorithm (3): Class
Reparenting

For each reparents(C,C′):
1 invalidate all pre-existing proofs inlining any C′′::m with C′′ v C
2 contracts for methods in reparented classes remain valid unless

the contract no longer exists (inherited contract)

3 invalidate proofs for specifications inherited from any class K
with C̃ v K @ Ĉ where Ĉ is the least common supertype of C′

and the old direct supertype C̃ of C
4 prove that all classes C′′ v C satisfy the specifications inherited

from new superclasses K with C′ v K @ Ĉ

Vladimir Klebanov – Scale Issues in Deductive Program Verification 9 March, 2011



Slicing Algorithm (3): Class
Reparenting

For each reparents(C,C′):
1 invalidate all pre-existing proofs inlining any C′′::m with C′′ v C
2 contracts for methods in reparented classes remain valid unless

the contract no longer exists (inherited contract)
3 invalidate proofs for specifications inherited from any class K

with C̃ v K @ Ĉ where Ĉ is the least common supertype of C′

and the old direct supertype C̃ of C

4 prove that all classes C′′ v C satisfy the specifications inherited
from new superclasses K with C′ v K @ Ĉ

Vladimir Klebanov – Scale Issues in Deductive Program Verification 9 March, 2011



Slicing Algorithm (3): Class
Reparenting

For each reparents(C,C′):
1 invalidate all pre-existing proofs inlining any C′′::m with C′′ v C
2 contracts for methods in reparented classes remain valid unless

the contract no longer exists (inherited contract)
3 invalidate proofs for specifications inherited from any class K

with C̃ v K @ Ĉ where Ĉ is the least common supertype of C′

and the old direct supertype C̃ of C
4 prove that all classes C′′ v C satisfy the specifications inherited

from new superclasses K with C′ v K @ Ĉ

Vladimir Klebanov – Scale Issues in Deductive Program Verification 9 March, 2011



Slicing Algorithm (3): Class
Reparenting

Ĉ

C̃ C′

C

C′′

Vladimir Klebanov – Scale Issues in Deductive Program Verification 9 March, 2011



Slicing Algorithm (3): Class
Reparenting

Ĉ

C̃ C′

C

C′′

C

C′′

Vladimir Klebanov – Scale Issues in Deductive Program Verification 9 March, 2011



Slicing Algorithm (3): Class
Reparenting

Ĉ

C̃ C′

C

C′′

C

C′′

Vladimir Klebanov – Scale Issues in Deductive Program Verification 9 March, 2011



Slicing Algorithm (3): Class
Reparenting

Ĉ

C̃ C′

C

C′′

C

C′′

Vladimir Klebanov – Scale Issues in Deductive Program Verification 9 March, 2011



2nd Step: Proof Reuse

Idea
Some proofs have been killed in slicing
Still, new proofs for product P2 often similar to those in P1

Solution: similarity-guided proof reuse [SEFM 2004]

Proof reuse in KeY
Originally implemented to support incremental software
development
. . . in interactive verification
Sound by design

Vladimir Klebanov – Scale Issues in Deductive Program Verification 9 March, 2011



Not Tied to One Verification System

We do assume syntax-correct, typesafe products
Method calls by contract or inlining
Parametric invariant checking
Conservative proof invalidation (currently based on structural
change information only)

Vladimir Klebanov – Scale Issues in Deductive Program Verification 9 March, 2011



Warning

JML-style specifications and code are not separated.
Changes to code may not mean what you think they mean.

Vladimir Klebanov – Scale Issues in Deductive Program Verification 9 March, 2011



Thanks

Vladimir Klebanov – Scale Issues in Deductive Program Verification 9 March, 2011http://en.wikipedia.org/wiki/File:Jupiter-Earth-Spot_comparison.jpg

Final Words

Scale effects are not negligible
Scaling up must include change management
Scaling down is important
(otherwise usability cannot be adequately measured and compared)

http://en.wikipedia.org/wiki/File:Jupiter-Earth-Spot_comparison.jpg

	Verifying SPL

