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Needed: what can be specified and verified in 3h?
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1st Verified Software Competition

informal event
at VSTTE 2010 in Edinburgh
organized by Peter Müller and Natarajan Shankar
5 problems (= pseudocode + informal spec + test cases)
4 hours of thinking time, 2 hours of hacking time
no disciplines, no ranking

The KeY Team: Vladimir Klebanov, Mattias Ulbrich, Benjamin Weiß
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The 1st Verified Software Competition: Experience Report

by

Peter Müller, Natarajan Shankar, Gary T. Leavens, Tom Ridge,
Thomas Tuerk, Vladimir Klebanov, Mattias Ulbrich, Benjamin Weiß,
K. Rustan M. Leino, Rod Chapman, Rosemary Monahan,
Nadia Polikarpova, Derek Bronish, Rob Arthan, Eyad Alkassar,
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Competing Tools

HOL4 (functional impl., spec in HOL)
ProofPower (functional impl., spec in HOL)

Isabelle/VCG (Hoare logic for C0)
Holfoot (Separation logic for a C-like language, encoded in HOL)
KeY (Dynamic logic for Java)
Dafny (object-based language with built-in spec, like Java+JML)
SPARK/Ada (contractualized subset of Ada)
Boogie (intermediate language with assertions)
Resolve (imperative component programs w/ modular specs)
VCC (C with VCC assertions/invariants)
VeriFast (Separation logic for Java and C)
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Team

Isabelle
a a

A.Tsyban 1

HOL4
a

anonHolHacker 1

Holfoot Holfoot 1

KeY
a a

KeY 3

Dafny
a a a

Leino 1

SPARK
a

SparkULike 1

Boogie
a

MonaPoli 2

Resolve
b a

Resolve 1

ProofPower
a a

RobArthan 1

VCC VC Crushers 3

VeriFast
a

VeriFast 1
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INVERT: Mathematically

The goal is to prove that for any N > 0, the injectivity of B

∀x , y . 0 6 x < y < N → B[x] 6= B[y] (1)

follows from the inverse relation between the arrays A and B (which
per loop invariant holds after the loop)

∀x .
(
0 6 x < N → B[A[x]] = x

)
(2)

and the surjectivity of A (which is a lemma that the problem
description allowed to assume)

∀x .
(
(0 6 x < N) → ∃x ′. (0 6 x ′ < N) ∧ x = A[x ′]

)
. (3)
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only interpreted arithmetical symbols in the
quantifier guard
required instantiations are Skolem constants

Range of solutions
Manual instantiation
Dummy function trigger
Complex reformulations
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Metric: Specification Verbosity

Tool SUM&MAX INVERT LINKEDLIST N QUEENS QUEUE

HOL4 – – – – – – – – – – – – 231 172 976

KeY 70 120 110 50 195 52+ 90 151 233 228 253 799+ 429 571 319

Dafny 80 42 11 52 234 99 122 162 194 285 176 418 472 417 210

Boogie 84 12 12 58 125 458 82 315 41 – – – 779 1909 1868

Resolve 138 221 71 109 228 57 126 499 48 309 711 90 292 138 0

ProofPower 48 173 285 – – – 121 68 548 – – – – – –

VCC 80 148 208 44 241 54 73 129 114 193 341 148 504 997 162

VeriFast 80 66 450 47 273 1834 59 94 359 269 644 3110 430 463 422

Tokens of code / requirement annotations / proof guidance annotations
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Grain of salt
Parsimony is good.
But so is: elegance, naturality, usefulness, ubiquity
Different formalizations are hard to compare



Conclusions

Issue: Control of SMT
Issue: Abstract data types
Degree of automation played hardly any role
Performance played little role
Benchmarking difficult—profile the user, not just the tool
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A product line is a set of software systems (products) with
well-defined commonalities and variabilities.
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The Problem We Solve

Given:
a specified/verified product P1

a set of proofs for the product P1

an applicable delta set ∆(P1,P2)

Wanted:
a set of valid proofs for the product P2

. . . faster than (re-)verifying P2 in isolation

A solution:
Proof slicing algorithm

with Daniel Bruns and Ina Schaefer [Formal Verification of OO Software 2010]
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What’s in a Delta?

Add/remove class
Change direct superclass (reparent)

Add/remove field
Add/remove method
Add/remove method contract
Add/remove class invariant
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Slicing Algorithm (1): Adding Fields

For each adds(C::f ):
1 find (statically) the set of method implementations M referring

to C::f in the new product

invalidate all pre-existing proofs about any C′::m ∈ M
invalidate all pre-existing proofs inlining any C′::m ∈ M

2 invalidate all pre-existing proofs of specifications referring to C::f
in the new product

class C extends D {

//@ invariant f == ((D)this).f;
}

3 add non-nullness invariant for C::f
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Slicing Algorithm (2): Adding
Methods

For each adds(C::m):
1 invalidate all pre-existing proofs where m was inlined and C::m

would have been a relevant implementation (mostly w.r.t.
dynamic binding)

2 proofs using the contracts for m remain valid
3 prove that C::m satisfies all specifications of C (either stated

directly or inherited), as well as all other invariants
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Relevant Method Implementations

C [inherits Ĉ::m()]

Ĉ Ĉ::m()

S [inherits Ĉ::m()]

C′′ C′′::m()

class A {
//@ ensures \result > 0;
int foo() {

return 23;
} }

class B extends A {

}
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class A {
//@ ensures \result > 0;
int foo() {

return 23;
} }

class B extends A {
int foo() {

return 42;
} }
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Slicing Algorithm (3): Class
Reparenting

For each reparents(C,C′):
1 invalidate all pre-existing proofs inlining any C′′::m with C′′ v C

2 contracts for methods in reparented classes remain valid unless
the contract no longer exists (inherited contract)

3 invalidate proofs for specifications inherited from any class K
with C̃ v K @ Ĉ where Ĉ is the least common supertype of C′

and the old direct supertype C̃ of C
4 prove that all classes C′′ v C satisfy the specifications inherited

from new superclasses K with C′ v K @ Ĉ
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Vladimir Klebanov – Scale Issues in Deductive Program Verification 9 March, 2011



Slicing Algorithm (3): Class
Reparenting

For each reparents(C,C′):
1 invalidate all pre-existing proofs inlining any C′′::m with C′′ v C
2 contracts for methods in reparented classes remain valid unless

the contract no longer exists (inherited contract)
3 invalidate proofs for specifications inherited from any class K
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Slicing Algorithm (3): Class
Reparenting

Ĉ

C̃ C′
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2nd Step: Proof Reuse

Idea
Some proofs have been killed in slicing
Still, new proofs for product P2 often similar to those in P1

Solution: similarity-guided proof reuse [SEFM 2004]

Proof reuse in KeY
Originally implemented to support incremental software
development
. . . in interactive verification
Sound by design
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Not Tied to One Verification System

We do assume syntax-correct, typesafe products
Method calls by contract or inlining
Parametric invariant checking
Conservative proof invalidation (currently based on structural
change information only)
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Warning

JML-style specifications and code are not separated.
Changes to code may not mean what you think they mean.
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Thanks
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Final Words

Scale effects are not negligible
Scaling up must include change management
Scaling down is important
(otherwise usability cannot be adequately measured and compared)
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