xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Scale Issues in Deductive Program Verification

Vladimir Klebanov | 9 March, 2011

KIT — INSTITUT FUR THEORETISCHE INFORMATIK

I KeY Project (T

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Deductive Verification of
m Java programs

m specified with the
Java Modeling Language

a in Dynamic Logic

www.key-project.org

Vladimir Klebanov — Scale Issues in Deductive Program Verification 9 March, 2011

I KeY Project AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Deductive Verification of
m Java programs

m specified with the
Java Modeling Language

a in Dynamic Logic

www.key-project.org

KeY Tool

@ Deductive rules for all Java features

Vladimir Klebanov — Scale Issues in Deductive Program Verification 9 March, 2011

I KeY Project AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Deductive Verification of
m Java programs

m specified with the
Java Modeling Language

a in Dynamic Logic

www.key-project.org

KeY Tool

m Deductive rules for all Java features
a Symbolic execution

Vladimir Klebanov — Scale Issues in Deductive Program Verification 9 March, 2011

I KeY Project AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Deductive Verification of
m Java programs

m specified with the
Java Modeling Language

a in Dynamic Logic

www.key-project.org

KeY Tool

m Deductive rules for all Java features
m® Symbolic execution
a 100% Java Card

Vladimir Klebanov — Scale Issues in Deductive Program Verification 9 March, 2011

I KeY Project

Deductive Verification of
m Java programs
m specified with the
Java Modeling Language
a in Dynamic Logic
www.key-project.org

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

KeY Tool

m Deductive rules for all Java features
m® Symbolic execution
@ 100% Java Card

a High degree of automation/usability
>10,000 loc / expert year

Vladimir Klebanov — Scale Issues in Deductive Program Verification 9 March, 2011

I KeY Project AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Deductive Verification of
m Java programs

m specified with the
Java Modeling Language

a in Dynamic Logic

www.key-project.org

KeY Tool R

i of Object-Oriented

m Deductive rules for all Java features
m® Symbolic execution
@ 100% Java Card

a High degree of automation/usability
>10, 000 loc / expert year

Vladimir Klebanov — Scale Issues in Deductive Program Verification 9 March, 2011

I Verification Scalability So Far

Karlsruhe Institute of Technoloay

‘What is the biggest system that can be verified (in unlimited time)?

http://en.wikipedia.org/wiki/File:All_Gizah_Pyramids.jpg

I Verification Scalability So Far AT

Karlsruhe Institute of Technoloay

Issues with this approach :

a Hard to reproduce
m Hard to keep track of effort
m Usability swept under the rug

 Whatis the biggest system that can be verified (in unlimited time)?

http://en.wikipedia.org/wiki/File:All_Gizah_Pyramids.jpg

I Verification Scalability So Far ﬂ(l'l'

Intitute of Technology

Issues with this approach :

a Hard to reproduce

m Hard to keep track of effort

m Usability swept under the rug

(] Needed what can be speC|f|ed and verified in 3h’7

~ What is the biggest system that can be verified (in unlimited time)?

http://en.wikipedia.org/wiki/File:All_Gizah_Pyramids.jpg

I 1st Verified Software Competition AT

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

a informal event

m at VSTTE 2010 in Edinburgh

m organized by Peter Miller and Natarajan Shankar

m 5 problems (= pseudocode + informal spec + test cases)
m 4 hours of thinking time, 2 hours of hacking time

m no disciplines, no ranking

Vladimir Klebanov — Scale Issues in Deductive Program Verification 9 March, 2011

I 1st Verified Software Competition AT

a informal event

m at VSTTE 2010 in Edinburgh

m organized by Peter Miller and Natarajan Shankar

m 5 problems (= pseudocode + informal spec + test cases)
m 4 hours of thinking time, 2 hours of hacking time

m no disciplines, no ranking

The KeY Team: Vladimir Klebanov, Mattias Ulbrich, Benjamin Weil3

Vladimir Klebanov — Scale Issues in Deductive Program Verification 9 March, 2011

I To Appear A\‘("

The 1st Verified Software Competition: Experience Report
by

Peter Muller, Natarajan Shankar, Gary T. Leavens, Tom Ridge,
Thomas Tuerk, Vladimir Klebanov, Mattias Ulbrich, Benjamin Weif3,
K. Rustan M. Leino, Rod Chapman, Rosemary Monahan,

Nadia Polikarpova, Derek Bronish, Rob Arthan, Eyad Alkassar,
Ernie Cohen, Mark Hillebrand, Stephan Tobies, Bart Jacobs,

Frank Piessens, Jan Smans

WWW.VSCOmp.org

Vladimir Klebanov — Scale Issues in Deductive Program Verification 9 March, 2011

www.vscomp.org

I Competing Tools A\KIT

HOLA4 (functional impl., spec in HOL)
ProofPower (functional impl., spec in HOL)

Isabelle/VCG (Hoare logic for C0)

Holfoot (Separation logic for a C-like language, encoded in HOL)
KeY (Dynamic logic for Java)

Dafny (object-based language with built-in spec, like Java+JML)
SPARK/Ada (contractualized subset of Ada)

Boogie (intermediate language with assertions)

Resolve (imperative component programs w/ modular specs)

a VCC (C with VCC assertions/invariants)

a VeriFast (Separation logic for Java and C)

Vladimir Klebanov — Scale Issues in Deductive Program Verification 9 March, 2011

I Solution Overview

uuuuuuuuuuuuuuuuuuuuuuuuuuu

x o x
Ses E s 3 g B oo

Tool é%%ggé égéggé Team

Isabelle . D . D D . D . D D A.Tsyban

HOL4 D D D D . D D D D . anonHolHacker 1

Holfoot . D D D D Holfoot 1

KeY BEOOD EBEOEE ke

Dafny -D.D- ----- Leino+

SPARK - D D D D - D D D D SparkULike 1

Boogie - D !, D D - - - D - MonaPoli2

Resolve D D l:, D - - - - - - Resolve 1

ProofPower - |:| . |:| |:| - |:| - |:| |:| RobArthan

VCC - D . D D - - - - - VC Crusherss

VeriFast - D . D D - - - - - VeriFast1

Vladimir Klebanov — Scale Issues in Deductive Program Verification

9 March, 2011

I INVERT: Mathematically IT

The goal is to prove that for any N > 0, the injectivity of B
VX, y.0<x<y<N-—=B[x] #Bly (1

follows from the inverse relation between the arrays A and B (which
per loop invariant holds after the loop)

Vx. (0<x<N—=B[A[X]] =X) 2)

and the surjectivity of A (which is a lemma that the problem
description allowed to assume)

VX. (0<x<N)—=3x. (0<x <N)Ax=~1[x"]) . (3)

Vladimir Klebanov — Scale Issues in Deductive Program Verification 9 March, 2011

I INVERT: Mathematically AT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Difficulties in this problem

a only interpreted arithmetical symbols in the (1)
quantifier guard

a requwed instantiations are Skolem constants

follow
perloc, ..o iicice e

3 (which

Vx. (0<x<N—=B[A[X]] =X) 2)

and the surjectivity of A (which is a lemma that the problem
description allowed to assume)

VX. (0<x<N)—=3x. (0<x <N)Ax=~1[x"]) . (3)

Vladimir Klebanov — Scale Issues in Deductive Program Verification 9 March, 2011

I INVERT: Mathematically T

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Difficulties in this problem

a only interpreted arithmetical symbols in the (1)
quantifier guard

a requwed instantiations are Skolem constants

follow
PErloc, i icice et e ooy

Range of solutions 2)

@ Manual instantiation
and tt) ,
descr ™ Dummy function trigger

a Complex reformulations
VX (USX<IN) 59X (US X <NJAX=ALX]) . (3)

3 (which

Vladimir Klebanov — Scale Issues in Deductive Program Verification 9 March, 2011

I Metric: Specification Verbosity AUT

Tool SUM&MAX INVERT LINKEDLIST

HOL4 - - - - - - - - -
KeY 70 120 110 50 195 52+ 90 151 233
Dafny 80 42 11 52 234 99 122 162 194
Boogie 84 12 12 58 125 458 82 315 41
Resolve 138 221 71 109 228 57 126 499 48
ProofPower 48 173 285 - - - 121 68 548
VCC 80 148 208 44 241 54 73 129 114
VeriFast 80 66 450 47 273 1834 59 94 359

Tokens of code / requirement annotations / proof guidance annotations

Vladimir Klebanov — Scale Issues in Deductive Program Verification 9 March, 2011

I Metric: Specification Verbosity

Tool SUM&MAX INVERT LINKEDLIST
HOL4 - - - - - - - -
KeY 70 120 110 50 195 52+ 90 151 2833

Dafny Grain of salt

Boogie a Parsimony is good.

Resolve . . —

ProofP a But so is: elegance, naturality, usefulness, ubiquity
roorFower)

VGG m Different formalizations are hard to compare

VeriFast 80 66 450 47 273 1834 59 94 359

Tokens of code / requirement annotations / proof guidance annotations

Vladimir Klebanov — Scale Issues in Deductive Program Verification 9 March, 2011

I Conclusions T

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

Issue: Control of SMT

Issue: Abstract data types

Degree of automation played hardly any role
Performance played little role

Benchmarking difficult—profile the user, not just the tool

Vladimir Klebanov — Scale Issues in Deductive Program Verification 9 March, 2011

http://www.flickr.com/photos/90514086@N00/952121271/

http://www.flickr.com/photos/90514086@N00/952121271/

a Deductive proofs as program certificates
a Provers track lemmas/modules

http://www.flickr.com/photos/90514086@N00/952121271/

a Deductive proofs as program certificates
a Provers track lemmas/modules

m Make and CVS track source/builds

http://www.flickr.com/photos/90514086@N00/952121271/

a Deductive proofs as program certificates
a Provers track lemmas/modules

m Make and CVS track source/builds
@ Who tracks both?

http://www.flickr.com/photos/90514086@N00/952121271/

Karlsruhe Institute of Technology

I Demo

9 March, 2011

Vladimir Klebanov — Scale Issues in Deductive Program Verification

You are in a twisty maze

http://www.flickr.com/photos/50457550@N00/64830775/

Setting

A product line is a set of software systems (products)
with well-defined commonalities and variabilities.

-

http://www.flickr.com/photos/50457550@N00/64830775/

I The Problem We Solve T

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Given:
m a specified/verified product P;
a a set of proofs for the product P4
m an applicable delta set A(Py, P»)

m a set of valid proofs for the product P»
a ...faster than (re-)verifying P in isolation

Proof slicing algorithm

with Daniel Bruns and Ina Schaefer [Formal Verification of OO Software 2010]

Vladimir Klebanov — Scale Issues in Deductive Program Verification 9 March, 2011

I What'’s in a Delta? AT

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

m Add/remove class
m Change direct superclass (reparent)

a Add/remove field

a Add/remove method

m Add/remove method contract
a Add/remove class invariant

Vladimir Klebanov — Scale Issues in Deductive Program Verification 9 March, 2011

| Slicing Algorithm (1): Adding Fields KIT

For each adds(C::f):

@ find (statically) the set of method implementations M referring
to C::f in the new product

Vladimir Klebanov — Scale Issues in Deductive Program Verification 9 March, 2011

| Slicing Algorithm (1): Adding Fields KIT

For each adds(C::f):

@ find (statically) the set of method implementations M referring
to C::f in the new product

m invalidate all pre-existing proofs about any C'::m € M
m invalidate all pre-existing proofs inlining any C'::me M

Vladimir Klebanov — Scale Issues in Deductive Program Verification 9 March, 2011

| Slicing Algorithm (1): Adding Fields KIT

For each adds(C::f):

@ find (statically) the set of method implementations M referring
to C::f in the new product
m invalidate all pre-existing proofs about any C'::m € M
m invalidate all pre-existing proofs inlining any C'::me M
@ invalidate all pre-existing proofs of specifications referring to C::f
in the new product

Vladimir Klebanov — Scale Issues in Deductive Program Verification 9 March, 2011

| Slicing Algorithm (1): Adding Fields KIT

For each adds(C::f):

@ find (statically) the set of method implementations M referring
to C::f in the new product

m invalidate all pre-existing proofs about any C'::m € M
m invalidate all pre-existing proofs inlining any C'::me M

@ invalidate all pre-existing proofs of specifications referring to C::f
in the new product

class C extends D {

//Q invariant £ == ((D)this).f;

Vladimir Klebanov — Scale Issues in Deductive Program Verification 9 March, 2011

| Slicing Algorithm (1): Adding Fields KIT

For each adds(C::f):
@ find (statically) the set of method implementations M referring
to C::f in the new product
m invalidate all pre-existing proofs about any C'::m € M
m invalidate all pre-existing proofs inlining any C'::me M
@ invalidate all pre-existing proofs of specifications referring to C::f
in the new product

class C extends D {

Object f£f;
//@ invariant £ == ((D)this).f;

Vladimir Klebanov — Scale Issues in Deductive Program Verification 9 March, 2011

| Slicing Algorithm (1): Adding Fields KIT

For each adds(C::f):
@ find (statically) the set of method implementations M referring
to C::f in the new product
m invalidate all pre-existing proofs about any C'::m € M
m invalidate all pre-existing proofs inlining any C'::me M
@ invalidate all pre-existing proofs of specifications referring to C::f
in the new product

class C extends D {

Object f£f;

//@ invariant £ == ((D)this).f;
}

@ add non-nullness invariant for C::f

Vladimir Klebanov — Scale Issues in Deductive Program Verification 9 March, 2011

Slicing Algorithm (2): Adding
Methods S<IT

For each adds(C::m):

@ invalidate all pre-existing proofs where m was inlined and C::m
would have been a relevant implementation (mostly w.r.t.
dynamic binding)

Vladimir Klebanov — Scale Issues in Deductive Program Verification 9 March, 2011

Slicing Algorithm (2): Adding 8
Methods S<IT

For each adds(C::m):

@ invalidate all pre-existing proofs where m was inlined and C::m
would have been a relevant implementation (mostly w.r.t.
dynamic binding)

@ proofs using the contracts for m remain valid

Vladimir Klebanov — Scale Issues in Deductive Program Verification 9 March, 2011

Slicing Algorithm (2): Adding A\
Methods S<IT

For each adds(C::m):

@ invalidate all pre-existing proofs where m was inlined and C::m
would have been a relevant implementation (mostly w.r.t.
dynamic binding)

@ proofs using the contracts for m remain valid

@ prove that C::m satisfies all specifications of C (either stated
directly or inherited), as well as all other invariants

Vladimir Klebanov — Scale Issues in Deductive Program Verification 9 March, 2011

I Relevant Method Implementations

@ &)
@ [inherits C::m()]
linherits C::m()]
@) cin0

Vladimir Klebanov — Scale Issues in Deductive Program Verification

class A {
//@ ensures \result > 0;
int foo() {
return 23;

bl

class B extends A {

9 March, 2011

I Relevant Method Implementations

%) I class A {
e‘ C:n() //@ ensures \result > 0;

int foo () {

return 23;
e [inherits &::m()] b
class B extends A {
[inherits C::m()]
(s) 0

@) cin0

Vladimir Klebanov — Scale Issues in Deductive Program Verification 9 March, 2011

I Relevant Method Implementations AT

R class A {
(::) C:m() //@ ensures \result > 0;

int foo() {

<:;> C:m() } }

class B extends A {

: . . int foo () {
e [inherits C::m()] return 42;
} }

return 23;

Vladimir Klebanov — Scale Issues in Deductive Program Verification 9 March, 2011

I Relevant Method Implementations

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

class A {
//@ ensures \result > 0;
int foo() {
return 23;

bl

class B extends A {
int foo() {

zm()] return 42;

} }

Vladimir Klebanov — Scale Issues in Deductive Program Verification 9 March, 2011

Slicing Algorithm (3): Class
Reparenting

For each reparents(C, C'):
@ invalidate all pre-existing proofs inlining any C”::m with C" C C

Vladimir Klebanov — Scale Issues in Deductive Program Verification 9 March, 2011

Slicing Algorithm (3): Class AT
Reparenting =y

For each reparents(C, C'):
@ invalidate all pre-existing proofs inlining any C”::m with C" C C

@ contracts for methods in reparented classes remain valid unless
the contract no longer exists (inherited contract)

Vladimir Klebanov — Scale Issues in Deductive Program Verification 9 March, 2011

Slicing Algorithm (3): Class AT
Reparenting =y

For each reparents(C, C'):
@ invalidate all pre-existing proofs inlining any C”::m with C" C C
@ contracts for methods in reparented classes remain valid unless
the contract no longer exists (inherited contract)
@ invalidate proofs for specifications inherited from any class K
with C C K = C where C is the least common supertype of C’
and the old direct supertype CofC

Vladimir Klebanov — Scale Issues in Deductive Program Verification 9 March, 2011

Slicing Algorithm (3): Class AT
Reparenting =y

For each reparents(C, C'):

@ invalidate all pre-existing proofs inlining any C”::m with C" C C

@ contracts for methods in reparented classes remain valid unless
the contract no longer exists (inherited contract)

@ invalidate proofs for specifications inherited from any class K
with C C K = C where C is the least common supertype of C’
and the old direct supertype CofC

@ prove that all classes C” C C satisfy the specifications inherited
from new superclasses K with C' C K C c

Vladimir Klebanov — Scale Issues in Deductive Program Verification 9 March, 2011

Slicing Algorithm (3): Class AKIT

Reparenting

L BN]
g ©

Vladimir Klebanov — Scale Issues in Deductive Program Verification 9 March, 2011

Slicing Algorithm (3): Class AT
Reparentng =S

/Q\
! <
T
~_ -

Vladimir Klebanov — Scale Issues in Deductive Program Verification 9 March, 2011

Slicing Algorithm (3): Class AT
Reparentng =S

Vladimir Klebanov — Scale Issues in Deductive Program Verification 9 March, 2011

Slicing Algorithm (3): Class AT
Reparentng =S

Vladimir Klebanov — Scale Issues in Deductive Program Verification 9 March, 2011

I 2" Step: Proof Reuse AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

a Some proofs have been killed in slicing
m Still, new proofs for product P» often similar to those in P4
m Solution: similarity-guided proof reuse [SEFM 2004]

Proof reuse in KeY

a Originally implemented to support incremental software
development

® ...in interactive verification
a Sound by design

Vladimir Klebanov — Scale Issues in Deductive Program Verification 9 March, 2011

I Not Tied to One Verification System AIT

® We do assume syntax-correct, typesafe products
a Method calls by contract or inlining
m Parametric invariant checking

m Conservative proof invalidation (currently based on structural
change information only)

Vladimir Klebanov — Scale Issues in Deductive Program Verification 9 March, 2011

I Warning T

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

JML-style specifications and code are not separated.
Changes to code may not mean what you think they mean.

Vladimir Klebanov — Scale Issues in Deductive Program Verification 9 March, 2011

I Final Words

d and compared)

X
x4

http://en.wikipedia.org/wiki/File:Jupiter-Earth-Spot_comparison.jpg

	Verifying SPL

