The General Case

Beyond Initialized Systems
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Further Agenda

© Translation of high-level models
e Simulink + Stateflow
o Compositional translation
@ based on predicative encoding of block invariants
© Basic principles of state-exploratory analysis of HA
o Finite-state abstraction vs. hybridisation vs. image computation of
ODEs
o iterating a FO-definable map
© A sample tool set
@ SAT-modulo-theory based
o four (increasingly experimental) levels:

linear hybrid automata vs. LinSAT
@ non-linear assignments

@ non-linear differential equations

@ probabilistic hybrid systems

©
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Verification Frontend

Translation of hybrid systems
to arithmetic constraints
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Translation

Hybrid System Effective Verification
Encoding Backend

lterated FOLR...) | 4.8
- Vvav / v3 s
discrete Boolean % H S

formula ——

‘\ Existential :

FOL(R,Z+,...) FOL(R,... '

i BMC/IV §
‘continuous . )
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@ Compositional translation into many-sorted logics
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Analogy: Combinatorial Circuits

Combinational Combinational Circuit
Circuit | Circuit Il level
————— Translator e
Logical Formula

formula level

Valuation
- of propositional variables Approval/
;e\?(fe'cwcwt nodes counterexample
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Mapping circuits to formulae

A gate is mapped to a propositional formula formalizing its invariant:

Xi

& —z — xAy&z
yi
Xi

>=1—z — xVy&z
yi
X—<]l—z — —x&z

+— combinations thereof.

Circuit behavior corresponds to conjunction of all its gate formulae.

M. Frénzle (CvO) Automatic Analysis of Hybrid Systems 2008/09/17-18 88 / 227



Formalizing circuit equivalence

@ Given two circuits C and D, we obtain formulae ¢¢ and ¢p,

@ furthermore, have correspondence lists | € Nodec x Nodep and
O C Nodec x Nodep for in- and outputs.

@ generate formula £q(C, D) =

bcANdo AN N (is))| = A (0&p)
(ig)el (o,p)€0

@ E£q9(C, D) is satisfiable iff the two circuits are functionally
different.

@ Each satisfying valuation provides a counterexample to circuit
equivalence.
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Enumerating valuations

. is completely out-of-scope:

@ When comparing two circuits of (only) 10.000 nodes, we need to
explore 4 - 10020 possible valuations.

@ If we were able to explore 1OSM, this would take 7 - 109017 years.

Enumerating only inputs is considerably more efficient, but still
out-of-scope:
@ When comparing two circuits with 100 input nodes, we need to
explore 1.3 - 1039 possible valuations.
@ If we were able to explore 108M, this would still take

9.6 - 101 years.

Yet routinely solved by recent propositional satisfiability solvers!
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Generalizing the concept: Simulink+Stateflow
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Functional blocks / signal tran

@ Dynamic system is a network of basic blocks:

input

— function U g

@ Blocks are connected via directed links that share a state variable
@ The time model is (two-dimensional) time over real-valued physical

time,
yielding a continuous-time data flow semantics.
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Basic blocks

Basic blocks are signal transducers with a ‘simple’ characterization in the

time domain, e.g.

@ ‘algebraic’ blocks: output is a time-invariant function of input:

out(t) = f (in(t))

out(t) = init—I—J in(u)du nput

M. Frénzle (CvO)

t

0

Automatic Analysis of Hybrid Systems

input : > output

@ state-holding blocks: integrators & friends, e.g.

1/s

init

output
| —
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Example: spring-mass system w. disturbance

) Ba5|c model:
Y (t) #
F(t) k(1(t) —h)
I(t) u(t) —y(t)
@ Replace higher-order derivatives:
Add v(t) =y (t).
Gives }7(t)
v (t)

v(t)
(u(t) —y(t) — k)

k
m
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Example: spring-mass system w. disturbance

e DE: }(t) = v(t), y(0) =
V() = K(u(t)—y(t)—h), v(0) = 0
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A /D coupling components

have an idealized, delay-free semantics:
@ Threshold sensor:

@ Analog input i : Time — R,
o digital output o: Time — B,
e dynamics: o(t) = (i(t) > c).
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D/A coupling components

also have an idealized, delay-free semantics:
@ Analog switch:

i1
i0

©

Analog inputs ip 1 : Time — R,
digital input s : Time — B,
analog output o : Time — R,

dynamics: o(t) Z{ :;Eg : :E i(St()t) '

¢ ¢

©
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D/A coupling components cntd.

@ Resettable integrator:

1s

!

@ Analog inputs/output i, rv,0: Time — R,

e Digital input r : Time — B,

e dynamics: o(t) = rv(t,) —|—f: i(t)dt , where
t, = sup{t’ <t|r(t")}

I
——
rv
——
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Dynamics of networks

© The individual blocks impose relations between their input and output
waveforms.

Q These relations are adequately covered by the aforementioned
characteristic equations of the various basic blocks.

© Consequently, the dynamics of a network of basic blocks coincides to
(solutions of) the conjunction of the characteristic equations of the
entailed blocks.

But how to avoid spontaneous, non-causal state changes?
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The sane case

A
\J

M. Frénzle (CvO) Automatic Analysis of Hybrid Systems 2008/09/17-18 100 / 227



The insane case

Analog
1 i1 | switch

Semantics permits non-causal switching, i.e. full non-determinism.
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Avoiding non-causality

© Simulink (and many other languages) forbids delay-free loops:
@ each loop in the “circuit” has to contain at least one delaying element

@ an integrator
@ a delay block
o ...

¢ if a two-dimensional time model is adopted, even d-delays suffice!
© some modeling frameworks interpret delay-free loops as fixed point
equations

@ try to solve these equations
@ solution is taken if it is unique
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Towards FO Representation: ‘Algebraic’ blocks

input output

@ time-invariant transfer function output(t) = f (input(t))
@ made 1st-order by making time implicit: Flow = output = f (input)
@ no constraints on initial value: Init = true,

@ discontinuous jumps always admissible Jump = true,

All the formulae are elements of a suitably rich

1st-order logics over R.
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Towards FO Representation: Integrators

i s
input = output
init

@ integrates its input over time: output(t) = init + fé input(u)du.

© made semi-1st-order by using derivatives: Flow = 22424

= input
@ initial value is rest value: Init = output = init,

@ discontinuous jumps don’t affect output Jump = output = output,
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Use in Model Exploration

Given: Transition pred. trans(x, x’), initial state pred. init(x), conj. invar. ¢(x).

E.g., Bounded Model Checking (BMC) algorithm:
@ For given i € N check for satisfiability of
, < init(xp) /\ trans(xg, x1) /\ ... /\ trans(x;_1, x,-)>
= o) A A d(x) '
If test succeeds then report violation of goal.
@ Otherwise repeat with larger /.

Can we use the predicates off-the-shelf?
No, as dynamics is not in terms of pure pre-/post-relations.
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Images of ODEs: Approaches

1. Safe finite-state abstraction: A
@ E.g., discretization through quantization (and
overapproximation); yields finite-state system.

(3 exponential in dimension of system

coarse abstractions give many false negatives
~» CEGAR

2. Hybridization: chop the phase space; do piecewi- |
se safe approximation by tractable dynamics (e.g.,
maps definable in decidable logics over R)

©) potentially more concise,
(3 yet still exponential in dimension of system \

3. (Safely approximate) on-the-fly computation of ODE images.
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Hybridization

Will not elaborate on into this issue here: approaches range from
@ approximation by piecewise (i.e., in a grid element) constant
differential inclusions obtained via interval-based safe approx. of upper
and lower bounds on individual derivatives:

dx 2 dx
— = 2y Ax e [1,2] ANy € 5,7 — €
=X T Ax [L2IAy € 5,7~ &

a.0. [Henzinger, Kopke, Puri, Varaiya 1998] [Stursberg, Kowalewski 1999]
@ to approximation by piecew. affine / multi-affine vector fields

[Asarin, Dang, Girard 06]
@ and to Taylor approximations [Piazza et al. 05, Lanotte, Tini 05]

[11,18]

For Lipschitz-continuous ODEs, imprecision generally is
@ linear in grid width (though with different constants),
@ exponential in length of time frame.

e.g., [Girard 2002; Asarin, Dang, Girard 2006]
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Impact on decidability

Due to the (worst-case) exponential deviation over time, such
hybridizations are not sufficient for approximate (up to some ¢)
computation of the reachable state space over unbounded time frames.

Hence, questions like

@ “If the distance of the reachable state space from a set of bad states is
larger than ¢ then provide a proof of this fact.”

for flows lacking a closed-form solution are i.g. not “decidable” by
hybridization and related approximation schemes.

[Platzer, Clarke 2006]

...unless the flow is attracting such that it cancels the accumulating error.

[Asarin, Dang, Girard 2006]
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Principles of hybrid state-space exploration:

Iterating a 1st-order definable map
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Checking safety

...in a finite Kripke structure: ...in a hybrid automaton:

o

o

For increasing n, calculate the set Similar fixpoint construction
Reach=" of states reachable in at
most n steps.

Chain ReachS! C Reach=? C ... / AN
has only a finite ascending
sub-chain due to finiteness of
state-space.

Set |,y Reach™" of reachable
states can be constructed in
finitely many steps.

/

Unsafe

Check for intersection with set of need not terminate,

unsafe states. but yields an effective proce-
dure for falsification.
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Making the idea operational: the ingredients

Idea: lterate transition relation and continuous dynamics until an unsafe state
is hit:

Initial Step 1 Step 2 Step 3 Step 4 %

VA N N NS NI N

NN /7N /Y N /YN /7

initial

unsafe

Result: Terminates iff HA is unsafe.
Requires: Effective representations of transition relation, continuous dynamics,
and initial, intermediate, and unsafe state sets s.t.

© Calculation of the state set reachable within n € N steps is
effective,

@ Emptiness of intersection of unsafe state set with the state set
reachable in n steps is decidable.

(implemented in, e.g., HyTech [Henzinger, Ho, Wong-Toi, 1995-])
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From hybrid automata to logic
A

N =x +At

At [y <y 124t
<10

x=10—2x:=0,y:=%—-1

Convexity of behaviors required, continuity is not FO-expressible!
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Essentials of polynomial HA

@ Finite set X of discrete states, finite vector x of cont. variables

@ An activity predicate act, € FOL(RR, =, 4, x) defines the possible
evolution of the continuous state while the system is in discrete state o

@ A transition predicate trans, ,, € FOL(R,=,+, x) defines guard
and effect of transition from discrete state o to discrete state o’

@ A path is a sequence ((00,¥0), (01,¥1),...) € (£ x R¥)*? entailing
an alternation of transitions and activities:

° (§:: Vi, X :=Yiy1) = transq, ;. , if /is odd
° (X:=y; x:=yj;1) = acty, and 0; = 0;41 if i is even
e (x:=yo) k= initial 5,

Decidability of FOL(R, =, +, x) yields decision procedures for temporal
properties of paths of finitely fixed length
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Reachability

of a final discrete state o’ from an initial discrete state o and through an
execution containing n transitions can be formalized through the

inductively defined predicate ¢7  ,, where
0 false, if o#0’ ,
ool acty, if o=o0',
g*) 6[X1/X] A B
1
et = \/ Ix1, X - | transg,or[x1, %2/ X, X] A
oex actyr[x2/ X]
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Safety of hybrid automata

= An unsafe state is reachable within n steps iff
Unsafe, = \/ Reaché/"/\ﬁsafegf
o'ex
is satisfiable, where

Reach! = \/ \/ &k o Alnitials[x /x]

I'ENS,, [

characterizes the continuous states reachable in at most n steps within
discrete state o’.

= An unsafe state is reachable iff there is some n € N for which Unsafe,
is satisfiable.
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The semi-decision procedure

© FOL(R,=,+, x) is decidable. [Tarski 1948]
© Unsafe, is a formula of FOL(R, =, +, x).

= For arbitrary n € N it is decidable whether an unsafe state is reachable
within n steps.

© By successively testing increasing n, this yields a semi-decision
procedure for reachability of unsafe states:
© Select some ne N,
@ check Unsafe,.
© If this yields true then an unsafe state is reachable.
Report this and terminate.
@ Otherwise select strictly larger n € N and redo from step (b).
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The semi-decision procedure — contd.

Note that in general the semi-decision procedure can only
detect being unsafe, yet does not terminate iff the HA is
safe. Hence, it

@ can be used for falsifying HA
& but not for verifying them

However, there are cases where Reach?,"+1 = Reachi," holds for some
n € N s.t. the reachable state set can be calculated in a finite number of

steps.
But the reachability problem is undecidable in general!
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Decidability

The problem is undecidable already for very restricted subclasses of hybrid
automata:

@ Stopwatch automata [Cerans 1992; Wilke 1994;
Henzinger, Kopke, Puri, Varaiya 1995]

® 3-dimensional piecewise constant derivative systems
[Asarin, Maler, Pnueli 1995]

o ..

Decidable subclasses tend to abandon interplay between changes in continuous
dynamics and transition selection /effect, or the dimensionality is extremely low:

® Timed automata [Alur, Dill 1994] and initialized rectangular automata
[Henzinger, Kopke, Puri, Varaiya 1995]

® multi-priced timed automata [Larsen, Rasmussen 2005], priced timed
automata with pos. and neg. rates [Boyer, Brihaye, Bruyére, Raskin 2007]

® 2-dimensional piecewise constant derivative systems [Maler, Pnueli 1994],
also non-deterministic [Asarin, Schneider, Yovine 2001]
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Iterating over the state-space

...how do we do this in practice

@ on very large state spaces, both continuous and discrete?
@ for non-polynomial assignments / pre-post-relations?
@ for non-linear differential equations?
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SAT Modulo Theory

An engine for
bounded model checking of
linear hybrid automata
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R e R T I T I

Method:

@ construct formula that is satisfiable iff error trace of length k exists

o formula is a k—fold unwinding of the system’s transition relation,
concatenated with a characterization of the initial state(s) and the
(unsafe) state to be reached

@ use appropriate decision procedure to decide satisfiability of the
formula

@ usually BMC is carried out incrementally for k =0,1,2,... until an
error trace is found or tired
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Bounded Model Checking (BMC) algorithm

© For given i € N check for satisfiability of
. < init(xg) A trans(xg,x1) /\ ... A\ trans(x,-l,x,-)>
= o) A...Nd(x) '
If test succeeds then report violation of goal.

© Otherwise repeat with larger /.
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BMC of Linear Hybrid Automata

Initial state:
a2 A —o3 A x2=0.0

Jumps:

ol Aot = (X' >12) A (¥ =05-x) Ati=0

Flows:
(x +2t) < xH < (xF +3¢)
ol Aot = A (X <12)
A (t>0)

Quantifier-free Boolean combinations of linear arithmetic
constraints over the reals

Parallel composition corresponds to conjunction of formulae
— No need to build product automaton
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Ingredients of a Solver for BMC of LHA

BMC of LHA yields very large boolean combination of linear arithmetic
facts.

Davis Putnam based SAT-Solver:

© tackle instances with > 10.000 variables
© efficient handling of disjunctions
@ Boolean variables only

Linear Programming Solver:

© solves large conjunctions of linear arithmetic inequations
© efficient handling of continuous variables (> 10°)
@ no disjunctions

Idea: Combine both methods to overcome shortcomings.
~» SAT modulo theory
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(Old-fashioned) DPLL Procedure

VyV X X

xVyVa) | Decide

A (xVy)

A (yVz) ¥,2,2 Deduce

A (xVyV2z) P = -

A (xVyVz) ecide
2,z z Deduce
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(Simplified) SAT Modulo Theory Scheme: LinSAT

Davis Putnam Linear Programming
Input formula:

x

DPLL search

© traversing possible truth-value assignments of Boolean part
© incrementally (de-)constructing a conjunctive arithmetic constraint system
© querying external solver to determine consistency of arithm. constr. syst.
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(Simplified) SAT Modulo Theory Scheme: LinSAT

Davis Putnam Linear Programming
y Input formula:

2e+C+D>2 @Z[E—}C/\D)

2f+A+B>2 /\(?—)A/\B)

Frgte>1 A(fVgVe)

Z+F>1 A (V)

3%+2+C+D>3 . N(e— (CVD)Ag)
A (A= (4x—2y >9))
N (B— (2x—4y <-T))
A(C— (x+y<5)
A (D= (x<T)

DPLL search

© traversing possible truth-value assignments of Boolean part
© incrementally (de-)constructing a conjunctive arithmetic constraint system
© querying external solver to determine consistency of arithm. constr. syst.
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(Simplified) SAT Modulo Theory Scheme: LinSAT

Davis Putnam Linear Programming

C+D>2
2f+A+B>2
frg>1

grf>1

x

DPLL search
© traversing possible truth-value assignments of Boolean part
© incrementally (de-)constructing a conjunctive arithmetic constraint system

© querying external solver to determine consistency of arithm. constr. syst.
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(Simplified) SAT Modulo Theory Scheme: LinSAT

Davis Putnam Linear Programming

y o B

2f+A+B>2
7+g21 Deduce C, D

grf>1

DPLL search

© traversing possible truth-value assignments of Boolean part
© incrementally (de-)constructing a conjunctive arithmetic constraint system
© querying external solver to determine consistency of arithm. constr. syst.
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(Simplified) SAT Modulo Theory Scheme: LinSAT

Davis Putnam Linear Programming

D

A+B>2

Deduce C, D

DPLL search

© traversing possible truth-value assignments of Boolean part
© incrementally (de-)constructing a conjunctive arithmetic constraint system
© querying external solver to determine consistency of arithm. constr. syst.
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(Simplified) SAT Modulo Theory Scheme: LinSAT

Davis Putnam Linear Programming

D
v A

Conflict !

Deduce C, D

Deduce A, B
Irreducible infeasible subsystem is {A, B, C}

Learned conflict clause: A+ B +C > 1

DPLL search

@ traversing possible truth-value assignments of Boolean part
© incrementally (de-)constructing a conjunctive arithmetic constraint system
© querying external solver to determine consistency of arithm. constr. syst.
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(Simplified) SAT Modulo Theory Scheme: LinSAT

Davis Putnam Linear Programming

D

-

Deduce C, D

v v

LYY
-

f

Deduce A, B

Learned conflict clause: A+ B+ C >1

DPLL search

© traversing possible truth-value assignments of Boolean part
© incrementally (de-)constructing a conjunctive arithmetic constraint system
© querying external solver to determine consistency of arithm. constr. syst.
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(Simplified) SAT Modulo Theory Scheme: LinSAT

Davis Putnam Linear Programming

y D

Conflict ! Deduce C, D

f

Deduce A, B Deduce g, g

Learned conflict clause: A+ B+ C >1

DPLL search

@ traversing possible truth-value assignments of Boolean part
© incrementally (de-)constructing a conjunctive arithmetic constraint system
© querying external solver to determine consistency of arithm. constr. syst.
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(Simplified) SAT Modulo Theory Scheme: LinSAT

Davis Putnam Linear Programming

2f+A+B>2

Deduce C, D
g+f>1

26+C+D>3 f

x

Deduce A, B Deduce g, g

Learned conflict clause: A+ B+ C >1

DPLL search

© traversing possible truth-value assignments of Boolean part
© incrementally (de-)constructing a conjunctive arithmetic constraint system
© querying external solver to determine consistency of arithm. constr. syst.
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(Simplified) SAT Modulo Theory Scheme: LinSAT

Davis Putnam Linear Programming

D
Y A

Deduce g, f, A B
Deduce C from conflict cl
Deduce D

Deduce C, D

Deduce A, B Deduce g, g

Learned conflict clause: A+ B+ C >1

DPLL search

© traversing possible truth-value assignments of Boolean part
© incrementally (de-)constructing a conjunctive arithmetic constraint system
© querying external solver to determine consistency of arithm. constr. syst.
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Deciding the conjunctive T-problems

For T being linear arithmetic over R, this can be done by linear
programming:

n m
AD Aijx < b iff Ax<b
i=1j=1

~ Solving LP maximize c¢’x

subjectto Ax <b
with arbitrary ¢ provides consistency information.
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Deciding the conjunctive T-problems (cntd.)

To cope with systems C containing strict inequations 3 [ A; jx;<bj, one
classically: introduces a slack variable ¢,
@ then replaces ij:l A,'JXj<bj by ij:l A; jxjte <b;,
@ solves the resultant LP L, maximizing the objective
function ¢

~+ C is satisfiable iff L is satisfiable with optimum solution
> 0.

more elegantly: treat ¢ symbolically:
@ use 1 and ¢ as fundamental units of the number system,

@ represent all numbers and coefficients in inequations as
linear combinations of 1 and ¢

[Dutertre, de Moura 2006: Yices]
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Extracting reasons for T-conflicts

Goal: In case that the original constraint system

C— N 271 Aixi<b;
AN Nk 2j1Aigxj <b;

is infeasible, we want a subset / C {1,..., n} such that
@ the subsystem C|; of the constraint system containing
only the conjuncts from [ also is infeasible,
@ yet the subsystem is irreducible in the sense that any
proper subset J of | designates a feasible system C|,.
Such an irreducible infeasible subsystem (11S) is a prime
implicant of all the possible reasons for failure of the
constraint system C.
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Extracting 1S

Provided constraint system C contains only non-strict inequations,

@ extraction of IIS can be reduced to finding extremal solutions of a dual
system of linear inequations, similar to Farkas’ Lemma (Gleeson & Ryan
1990; Pfetsch, 2002)

@ to keep the objective function bounded, one can use dual LP

maximize w'y

subjectto ATy = 0
b’y =1
y > 0
where w; = {_1 if b <0,
! 0 if b >0

@ choice of w guarantees boundedness of objective function
— optimal solution exists whenever the LP is feasible.
! For such a solution, / ={i | y; # 0} is an IIS.
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SAT modulo theory for LinSAT

@ SAT modulo theory solvers reasoning over linear arithmetic as a theory are
readily available: E.g.,

o LPSAT [Wolfman & Weld, 1999]

o |ICS [Filliatre, Owre, RueR, Shankar 2001], Simplics [de Moura,
Dutertre 2005], Yices [Dutertre, de Moura 2006]

o MathSAT [Audemard, Bertoli, Cimatti, Kornilowicz, Sebastiani,
Bozzano, Juntilla, van Rossum, Schulz 2002-]

o SVC [Barrett, Dill, Levitt 1996], CVC [Stump, Barrett, Dill 2002], CVC
Lite [Barrett, Berezin 2004], CVC3 [Barrett, Fuchs, Ge, Hagen,
Jovanovic 2006]

o HySAT | [Herde & Franzle, 2004]

@ ...

@ Their use for analyzing linear hybrid automata has been advocated a number
of times (e.g. in [Audemard, Bozzano, Cimatti, Sebastiani 2004]).

@ They combine symbolic handling of discrete state components (via SAT
solving) with symbolic handling of continuous state components.

@ Formulae arising in BMC have a specific structure, which can be exploited
for accelerating SAT search [Strichman 2004]
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@ learning schemes employed in SAT solvers account for a major fraction
of the running time

@ creation of a conflict clause is even more expensive in a combined
solver as it entails the extraction of an IIS

@ idea: exploit symmetric structure to add isomorphic copies of a conflict
clause to the problem

@ thus multiplying the benefit taken from the time-consuming reasoning
process
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Pimp my SMT Solver: Decision Strategies

- N

General-Purpose Decision Heuristics:

@ distant cycles of the transition relation are being satisfied
independently

@ until they finally turn out to be incompatible, often entailing the need
to backtrack over long distances

For BMC we can try decision strategies respecting the temporal structure!
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Pimp my SMT Solver: Decision Strategies

Tl —

Forward—Heuristics:
@ select decision variables in the natural order induced by the linear
structure of the BMC formula
@ e.g. starting with variables from cycle 0, then from cycle 1, 2, etc.
@ thereby extending prefixes of legal runs of the system

@ allows conflicts to be detected and resolved more locally
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@ when carrying out BMC incrementally the consecutive formulas share
a large number of clauses

@ thus, when moving from instance k to k + 1 (or doing them in
parallel), we can conjoin the conflict clauses derived when solving the
k—instance to the k + 1-instance (and vice versa)

@ only sound for conflict clauses inferred from clauses which are common
to both instances
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Satisfiability solving in
undecidable arithmetic domains

ISAT algorithm
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Classical Lazy TP Layout

arithmetic
constraint system )

DPLL-SAT consistent: Arithmetic

+ conflict-driven learning yes/no reasoner

+ non—chronol. backtrack.
- explanation:

(minimal) infeasible
subsystem

Problems with extending it to richer arithmetic domains:
@ undecidability: answer of arithmetic reasoner no longer two-valued;
don’t know cases arise

@ explanations: how to generate (nearly) minimal infeasible subsystems
of undecidable constraint systems?
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The Task

Find satisfying assignments (or prove absence thereof) for large (thousands
of Boolean connectives) formulae of shape

(by = x2 —cosyr < 2y1 +sinz + e“1)

A (xs =tanysVtany, >z V...)

AN

AN (%:—sinx/\x;;>5/\X3<7/\X4>12/\...)
A\

Conventional solvers
@ do either address much smaller fragments of arithmetic
o decidable theories: no transcendental fct.s, no ODEs
@ or tackle only small formulae
e some dozens of Boolean connectives.
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Algorithmic basis:

Interval constraint propagation
(Hull consistency version)
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Interval Constraint Solving (1)

@ Complex constraints are rewritten to “triplets” (primitive constraints):

C - hléx/\Z
xX24y<6 ~ : A hZh+4y
A hy <6

@ “Forward” interval propagation yields justification for constraint satisfaction:
x € [—2,2]
N y e [-2,2]

0

hg S 6 is
satisfied in box

M. Frénzle (CvO) Automatic Analysis of Hybrid Systems 2008/09/17-18 140 / 227



Interval Constraint Solving (1)

® Complex constraints are rewritten to “triplets” (primitive constraints):

c hi £x7N2
x2+y§6 ~ o N hzéhl-l-y
AN hy <6

@ Interval propagation (fwd & bwd) yields witness for unsatisfiability:

hz S 6 is
unsat. in box
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Interval Constraint Solving (1)

® Complex constraints are rewritten to “triplets” (primitive constraints):

c hi £x7N2
x2+y§6 ~ o N hzéhl-l-y
AN hy <6

@ Interval prop. (fwd & bwd until fixpoint is reached) yields contraction of box:

x € [-10, 10]
A y € [-10,10]
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Interval Constraint Solving (1)

® Complex constraints are rewritten to “triplets” (primitive constraints):

c hi £x7N2
x2+y§6 ~ o N hzéhl-l-y
AN hy <6

@ Interval prop. (fwd & bwd until fixpoint is reached) yields contraction of box:
x € [-10, 10]
A y € [-10,10]

0

x € [—4,4]
A y € [-10,6]
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Interval Constraint Solving (1)

® Complex constraints are rewritten to “triplets” (primitive constraints):

c hi £x7N2
x2+y§6 ~ o N hzéhl-l-y
AN hy <6

@ Interval prop. (fwd & bwd until fixpoint is reached) yields contraction of box:

Constraint is not satisfied

by the contracted box!

x € [—4,4]
A y € [-10,6]
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x € [-100, 100]
y € [-100,100]

TR

\

x € [=y/5, V(5]

x €[-23,23]

x € [-10,10]
y €10,100]

M. Frénzle (CvO) Automatic Analysis of Hybrid Systems
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Interval contraction

Backward propagation yields rectangular overapproximation of
non-rectangular pre-images.

Thus, interval contraction provides a highly incomplete deduction system:

[0) m)
y

X -

>3O X
v o Ibm

A — he(0,0) &= h>5
A o)

~> enhance through branch-and-prune approach.
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Schematic Interval-CP based CS Alg.

Given: Constraint / clauseset C ={cy,...,¢n},
initial box (= cartesian product of intervals) B in Rfree(C)l /
BIfree(C)\

Goal: Find box B’ C B containing satisfying valuations throughout
or show non-existence of such B'.
Alg.: @ L:={B}
Q If L # () then take some box b:€ L, (LIFO)
otherwise report “unsatisfiable” and stop.
© Use contraction to determine a sub-box b’ C b. (Unit
Prop.)
Q If b’ = () then set L := L\ {b}, goto 2.
© Use forward interval propagation to determine whether
all constraints are satisfied throughout b’; if so then
report b’ as satisfying and stop.
Q If b’ C bthenset L:=L\{b}U{b'}, goto 2.
@ Split b into subboxes b; and by, set
L:=L\{b}U{by, by}, goto 2.
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Lazy TP: Tightening the Interaction

arithmetic
constraint system

e
DPLL-SAT . i i
consistent: Arithmetic
+ conflict—driven learning yes /no reasoner
+ non-chronol. backtrack.
| G
(minimal) infeasible
subsystem

enters / removes constraints &
triggers individual constraint propagations

Boolean DPLL-SAT Arithmetic

. control flow .
constraint . . . constraint
+ conflict-driven learning

propagation : + non—chronol. backtrack. - propagation

~N—

reports narrowing results

M. Frénzle (CvO) Automatic Analysis of Hybrid Systems 2008/09/17-18 144 / 227



Properties of Modified Layout

enters / removes constraints &
triggers individual constraint propagations

Boolean DPLL-SAT Arithmetic

. control flow .
constraint . . . constraint
+ conflict—driven learning

propagation : + non-chronol. backtrack. - jpropagation

~N—

reports narrowing results

@ SAT engine has introspection into CP
@ thus can keep track of inferences and their reasons
©) can use recent SAT mechanisms for generalizing reasons of conflicts
and learning them, thus pruning the search tree
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How iSAT works

5

[ 2

c:

G :

¢

g

(ma V —c V d) o Use Tseitin-style (i.e. definitional) transformation to
A(=aV —bV ¢ rewrite input formula into a conjunction of constraints:
A (¢ V —d) > n-ary disjunctions of bounds

> arithmetic constraints having at most one operation symbo
A (bV x>-2)

A(x>4V y<0V h>62)
e Boolean variables are regarded as 0-1 integer variables.

A h=x2 Allows identification of literals with bounds on Booleans:
AN h=-2y b=b>1
A h3=hy + by ~b=b<0

o Float variables hy, hy, hs are used for decomposition
of complex constraint x> — 2y > 6.2.
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How iSAT works

c: (—a V —c V d)

o: A (-aV —bV c)
c: A (—c V —d)
A (bV x>-2)

A(x>4V y<0V h3>62)

6: N h=x2
c: ANhp=-2-y

cg: N h3=h+h
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How iSAT works

c: (—a V —c V d)

o: A (-aV —bV c)

c: A (—c V —d)

A (bV x>-2)

A(x>4V y<0V h; >62)

6: N h=x2
c: ANhp=-2-y

cg: N h3=h+h
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How iSAT works

c: (—a V —c V d)

o: A (-aV —bV c)

c: A (—c V —d)

A (bV x>-2)

A(x>4V y<0V h; >62)

6: N h=x2
c: ANhp=-2-y

cg: N h3=h+h

c: A (—aV —c)
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How iSAT works

S 2V ==Vvd b1 (ax1 ybe( c<0 yim( b<0 yiw(x>2)
Co

o: A (-aV bV < C4
c: A (—c V —d)
A (bV x>-2)

A(x>4V y<0V h3>62)

6: N h=x2
c: ANhp=-2-y

cg: N h3=h+h

c: A (—aV —c)
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How iSAT works

5

[ 2

c:

G :

¢

g

Cy:

Fa V=&V d b1 (ax1 ybe( c<0 yim( b<0 yiw(x>2)
Co

A (~aV —bV c) - -
A (—c V —d) DL 2: y>4 o

a
A (bV x>-2)

A(x>4V y<0V h; >62)

A b =x2

AN h=-2y
N h3 =hy+ hy
A (—a V —c)
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How iSAT works

S 2V ==Vvd b1 (ax1 ybe( c<0 yim( b<0 yiw(x>2)
Co G

o: A (-aV —bV c) C
c: A (—c V —d)
A (bV x>-2)

A(x>4V y<0V h; >62)

6: N h=x2

c: ANhp=-2-y

cg: N h3=h+h

c: A (—aV —c)
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How iSAT works

c: (—a V —c V d)

o: A (-aV —bV c)

c: A (—c V —d)
A (bV x>-2)

A(x>4V y<0V h; >62)

6: N h=x2

c: ANhp=-2-y
cg: N h3=h+h
c: A (—aV —c)
cao: A(x<—2Vy<3V x>3) « conflict clause = symbolic description

of a rectangular region of the search space

which is excluded from future search
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How iSAT works

S 2V ==Vvd DL1: (a>1 fGa( c<0 yim( b<0 fiw(x>2)
Co G

o: A (-aV —bV c) C
c: A (—c V —d)
A (bV x>-2)

A(x>4V y<0V h; >62)

6: N h=x2
c: ANhp=-2-y

cg: N h3=h+h

c: A (—aV —c)
cap: N (x<-2V y<3V x>3)
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How iSAT works

S 2V ==Vvd b1 (ax1 ybe( c<0 yim( b<0 yiw(x>2)
(o] Q C4

o: A (-aV —bV c)
c: A (—c V —d)
A (bV x>-2)

A(x>4V y<0V h; >62)

6: N h=x2

c: ANhp=-2-y X . 0.
e Continue do split and deduce until either
cg: A h3=h+h .
> formula turns out to be UNSAT (unresolvable conflict)

G: A (maV —c) > solver is left with ‘sufficiently small’ portion of the
cao: A(x<—2Vy<3V x>3) search space for which it cannot derive any contradiction

o Avoid infinite splitting and deduction:

> minimal splitting width
> discard a deduced bound if it yields small progress only
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The Impact of Learning: Runtime

time out

100000 Examples:
10000 BMC Of
1000 @ platoon ctrl.
z @ bounc. ball
g @ gingerbread map
= 10 @ oscillatory logistic map
2 -
g Intersect. of geometric bo-
dies
01
001 Size:
Up to 2400 vars,
0.9% 001 001 o1 1 10 100 w00 > 103 Boolean connectives.

with learning [s]

[2.5 GHz AMD Opteron, 4 GByte physical memory, Linux]
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The Competition: ABsolver

10000 | . ]
time out N
ZOWAY *
1000 | % y i
>500k:L x % % '
200 | oo, : $ + i
3 >1°0k,:1' i . o
W .
£ 10 F . ;g E
5 >10k1 - ¥ X
2 , p X
o B ’ * ' .
< P>tk X
£ -
01 >1001 +o L ]
L o P E
O0LE 101 P
000LF .. e - 7
>L1 . >15 small conjunctive systems ~ +
linear systems X
L non-linear systems ¥
1e-04 L 1 1 1 1 L 1
1e-0 0.001 0.01 0.1 1 10 100 1000

runtime iSAT [s]

ABsolver. Bauer, Pister, Tautschnig, “Tool support for the analysis of
hybrid systems and models”, DATE '07
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Hybrid BMC in Practice

ETCS Train separation in HySAT Il
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Bounded Model Checking of Hybrid Systems (1)

Given:
Xn Xn1 Non-linear discrete-time hybrid
Delay | = dynamical system
x — state vector
™ X1 = F(Xp,i,) i — input vector
on = g(Xnin) o — output vector
> f — next-state function
- g — output function
i, o, f, g potentially non-linear.
Goal:

Check whether some unsafe state is reachable within k steps of the system
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Bounded Model Checking of Hybrid Systems

Method:
@ Construct formula that is satisfiable if error trace of length k exists

@ Formula is a k—fold unrolling of the transition relation, concatenated with a
characterization of the initial state(s) and the (unsafe) state to be reached

Sl

@ Use appropriate decision procedure to decide satisfiability of the formula
Needed:
Solvers for large, non-linear arithmetic formulae with a rich Boolean structure

M. Frénzle (CvO) Automatic Analysis of Hybrid Systems 2008/09/17-18 151 / 227



Bounded Model Checking with HySAT

—b/
X =

Safety property: SOLUTION:
There's no sequence of ° (m‘i,o:ﬂ;o); ol
e1: [1, 1]
02: 1, 11
/o, 314<x<315 oo
Xi=x2 41 e4: 1, 11
o5: [1, 1]
@6: [0, 0]
o7: [1, 1]
8: [0, 0]
09: [1, 11
T @10: [1, 1]
boole b; e11: [0, 0]

float [0.0, 1000.0] x;

input values such that

CRL * fol'oa;;: 2]
- Characterization of initial state. e1: [1.25992, 1.25992]

x = 2.0; ©2: [2.5874, 2.5874]

TRANS @3: [7.69464, 7.69464]
- Transition relation. HySAT ©4: [1.97422, 1.97422]
@5: [4.89756, 4.89756]

b=>= =58 i 06: [24.9861, 24.9861]

B =5 557 = i, DA o7: [2.92347, 2.92347]
TARGET ©8: [9.5467, 9.5467]

- State(s) to be reached. 09: [2.12138, 2.12138]

X >= 3.14 and x <= 3.15; 010: [5.50024, 5.50024]

o11: [31.2526, 31.2526]

012: [3.14989, 3.14989]
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BMC of Matlab/Simulink Model

Example: Train Separation in Absolute Braking Distance

e

==

7

==

dies

cios

Minimal admissible distance d between two successive trains equals
braking distance dj of the second train plus a safety distance S.

First train reports position of its tail to the second

Controller in second train automatically initiates braking to maintain a safe distance.

train every 8 seconds.

M. Frénzle (CvO) Automatic Analysis

of Hybrid Systems
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BMC of Matlab/Simulink Model

Model of Controller & Train Dynamics

Property to be checked: Does the controller guarantee
that collisions don’t occur in any possible scenario of use?
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BMC of Matlab/Simulink Model

Translation to HySAT

- Switch block: Passes through the first input or the third input
- based on the value of the second input.

brake -> a = a_brake;
'brake -> a = a_free;
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BMC of Matlab/Simulink Model

Translation to HySAT

- Euler approximation of integrator block

xr’ = xr +dt * v;
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BMC of Matlab/Simulink Model

Translation to HySAT

- Relay block: When the relay is on, it remains on until the input
- drops below the value of the switch off point parameter. When the
- relay is off, it remains off until the input exceeds the value of
- the switch on point parameter.

('is_on and h >= param_on ) -> ( is_on’ and brake);
(!is_on and h < param_on ) -> (!is_on’ and !brake);
( is_on and h <= param_off) -> (!is_on’ and !brake);
( is_on and h > param_off) -> ( is_in’ and brake);
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BMC of Matlab/Simulink Model

Simulation of the Model Error Trace found by HySAT

05 1 —
Posz—
70
30 T T T T T T
25) 1 u=
20 1
151 1
101 1
5| ]
U L L L L L L ]
0 10 20 30 40 50 60 70
1 T T T T T T
al—
05F \ l 1 &=
0 ]
-0.5- 1
b ]
-1.5¢ . , . h .
0 10 20 30 40 50 66 unwindings
ey 7809 variables
800
600 69968 decisions
400 .
ik 27047 conflicts
o . . . . . ~ 5e8
0 10 20 30 40 50

~ 20 minutes
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Direct reasoning over
images and pre-images of ODEs
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active

& o
G = —siny
dy

at = ax — Gy

inactive
dx __
E — O
dy _

a =

@ Linear and non-linear ordinary Differential Equations (ODEs)
describing continous behaviour in the discrete modes of a hybrid
system

@ Want to do BMC on these models w/o prior hybridisation

M. Frénzle (CvO) Automatic Analysis of Hybrid Systems
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The Problem

Given: a system of time-invariant ODEs

d

% = ﬂ(xlv"')xn)
dx, .

dt = f,—,(Xl,...,Xn)

plus three boxes B, I, E C R".

Problem: determine whether E is reachable from B along a trajectory
satisfying the ODE and not leaving /.

Added value: Prune unconnected parts of B and E:

2008/09/17-18 161 / 227
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Problem: Safely determine whether E is unreachable from B along a
trajectory satisfying the ODE and not leaving /.

Some approaches:

© Interval-based safe numeric approximation of ODEs
[Moore 1965, Lohner 1987, Stauning 1997]

(used in Hypertech [Henzinger, Horowitz, Majumdar,
Wong-Toi 2000])

@ CLP(F): a symbolic, constraint-based technology for
reasoning about ODEs grounded in (in-)equational
constraints obtained from Taylor expansions
[Hickey, Wittenberg 2004]
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Safe Approximation

A

flowbox

startbox

postbox

=
\ \

tie TOI

Should also be tight! And efficient to compute!

~
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Euler’s Method

T~ T~ T T T T T T~

~ N U ~

T T T T
o _
| | | | | t
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Taylor Series

Exact solution x(t) has slope determined by f in each point: % = f(x(t))
Taylor expansion of exact solution:

Al dx

f%(to)

h? d?x
20 dt?
h" d"x
+ o e (to)

N hn+1 drH—lX
(n+1)! dt»t?

x(tg + h) =x(to) +

+ (to) +...

(Lagrange Remainder)
(to +6h), with0 <0 <1
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Taylor Series

x(to + h) =x(to) + = —(to)
Ne——

dt( x(to))-f(x(to))
h" d"x
+ Ry (to)
hn+1 dn+1
L (n ) dtn+1

unknown

(o +6h), with0 <0 <1

Can use interval arithm. to evaluate f(x(t)), etc.,
if x(tg) is set-valued!
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Bounding Box

x A

T I >
t, t0+h t
dx
3t(t) < max(F(B)) ¢ ol ¢ € [ty o + A
(1) > min(f(B

If we only knew B...

Automatic Analysis of Hybrid Systems

M. Frénzle (CvO)
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Bounding Box [Lohner]

Given: Initial value problem:
% = f(x), x(tg) = xp may also be a box
Theorem (Lohner): If
[B] := xo + [0, h] - £([B])
and
" BYC B
then the initial value problem above has exactly one solution
over [ty, ty + h] which lies entirely within [B!] — Bounding
Box.
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Algorithm

To get an enclosure ...
@ Determine bounding box and stepsize
@ Evaluate Taylor series up to desired order over startbox

@ Evaluate remainder term over bounding box
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Bounding Box

‘.‘
<< SO S
“‘\““_“
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N
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Algorithm

@ Find bounding box with greedy algorithm
@ Generate derivatives symbolically

@ Simplify expressions to reduce alias effects on variables
@ Evaluate expressions with interval arithmetic

o Taylor series
¢ Lagrange remainder
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Example Il: Stable Oscillator

9 —y, = x x=1[10,12], yo = [-1,0]

T T T 17T 17 171
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Wrapping Effect

b _y & x, x=110,12], yo = [-1,0]

12X U5 11 105 1o 02 0.3 04

9.5 9 85 0 0.1
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Fight Wrapping Effect

Lohner, Stauning, . ..: use coordinate transformation

[c,d]

[a, b] x
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Stable Oscillator

b —y &= x x=[10,12], yo = [-1,0]

15 T T

10 BE!
%%‘& 4 %
X

I = |
o t = 6.00748
e =T

= £= 0286473 7
=T = t= 0.593339% 7
& t = 0.900205
M &5 E ¢ = 120707 % |

15 ! ! | | !
-15 -10 -5 0 5 10 15
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Stable Oscillator

15
y
10
SRNIES
5 NS N N RN
R P R
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t = [190, 200]

200
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Damped Oscillator

-y — 08 x,d—{:—x+03 ¥, xo=[10,15],y0=[—2,1]
6 T

y
4l ® g% R
2r @ g t=0 7
ok i
&
$ev
0 4
6 4
8l 4
0k 4
BN 4
BT s o 5 10 15

. Frénzle (CvO) Automatic Analysis of Hybrid Systems 2008/09/17-18 177 / 227



Damped Oscillator

b=y —08-x, L =-—x+03y, x=[10,15], yo = [-2,1]

M. Frénzle (CvO) Automatic Analysis of Hybrid Systems 2008/09/17-18 177 / 227



Damped Oscillator

& —y—08-x, ¥ =—x+03y, x=[10,15], yo = [-2,1]
15 T T T

T
X

10 =

|
@
T
L

-10 1 1 1 1 1
0
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Use in ICP: Tighten Target Box

15 N ! initial gostb’dx

I
I
-~

@ Given target box (including phase space and time)
@ Intersect target box with enclosure

@ Remove elements with empty intersection
(narrows also time-window of interest)
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Backward Propagation

@ Use temporally reversed ODEs
@ Use start box as target box and do normal forward propagation

@ Intersect resulting target box with original start box

Fwd. and bwd. propagation do
@ narrow the start box B and target box E — also iteratively!
@ narrow the time window for both B and E,

@ thus give fresh meat to constraint propagation along adjacent parts of
the transition sequence!
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Controlling Complexity: Partitioning

@ Partition ODEs: Group together ODEs with common variables

@ Deduction process alternates between different partitions and between

forward and backward pruning:
TOI: [0, horizon]

forward propagation L> P1 Tol P2 Tol T
k Lo ,
backward propagation oI oI .—>

T3

context P1 \ \ context P2 \ \ context P3 \
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@ Taylor-based numerical method with error enclosure

o Tightly integrated with non-linear arithmetic constraint solving:
@ provides an interval contractor, just like ICP

E
\E/\ﬁ«%g 77777 )
,,,,,,, _ i Lf\/N

o temporally symmetric (fwd. and bwd. contraction), unlike traditional
image computation

o refutes trajectory bundles based on partial knowledge

@ experimental: first proof-of-concept implemented.
[Eggers, Franzle, Herde, ATVA 2008]
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Other Approaches to ODE Analysis

Automatic derivation of
safe finite-state approximations

&

Mechanized Lyapunov-based methods
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Model-checking through discretization

Idea:

Hybrid automata are mapped to fini- y
te state through overapproximation,

then subjected to finite-state symbo-

lic model-checking

Problems:

@ effective construction of the
overapproximation

o find appropriate discretization

(avoid “false negatives”)

M. Frénzle (CvO) Automatic Analysis of Hybrid Systems
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HSolver

Overapproximation via Constraint-based
Reasoning

Stefan Ratschan, Czech Academy of
Sciences, Prague, Czech Rep.
Shikun She, Beihang University,
Beijing, China
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Starting Point: Interval Grid Method

Stursberg/Kowalewski et. al., one-mode case:

4} 4\) 4\

A A A A
] ] ] ]
)} 4h) 4\

A A A A
] ] ] ]
71N 71N i\

@ put transitions between all neighboring hyperrectangles (boxes), mark
all as initial /unsafe
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Starting Point: Interval Grid Method

Stursberg/Kowalewski et. al., one-mode case:

-
-
-

xe [-5,-1]
@ put transitions between all neighboring hyperrectangles (boxes), mark
all as initial /unsafe

@ remove impossible transitions/marks (interval arithmetic check on
boundaries/boxes)
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Starting Point: Interval Grid Method

Stursberg/Kowalewski et. al., one-mode case:

-
-
-

xe [-5,1]
@ put transitions between all neighboring hyperrectangles (boxes), mark
all as initial /unsafe

@ remove impossible transitions/marks (interval arithmetic check on
boundaries/boxes)

Result: finite abstraction
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Interval arithmetic

Is a method for calculating an interval covering the possible values of a real
operator if its arguments range over intervals:

2. Al 1 [b,B] = la+b A+ Bl
[a,Al ° [b,B] = [min{ab,aB,Ab, AB}, max{ab,aB, Ab, AB)|
min ([a, Al [6,B]) = [min(a, b}, min[A, BY]
° B min{sinx | x € [a, Al},
sin (13,4 = [ max{sin x | x € [a, Al} ]
° B min{f(x) | x € [a,A] x [b,B] x ...},
flla,Alb,Bl,...) = [ max(f(x) | x € [2,A] x [b,B] x ..} ]

Theorem: For each term t with free varlables A
{t(v—x)|x€[a Al x[b,B] x }Ct(le[aA] vo — [b,B],...)
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Interval Grid Method 11

Check safety on resulting finite abstraction

if safe: finished, otherwise: refine grid;
continue until success

More modes: separate grid for each mode

Jumps: also check using interval arithmetic
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Advantages:

@ can deal with constants that are only known up to intervals

@ interval tests cheap (e.g., compare to explicit computation of
continuous reach sets, or full decision procedures)

Disadvantages:

© may require a very fine grid to provide an affirmative answer (curse of
dimensionality)

@ ignores the continuous behavior within the grid elements
Let's remove them!
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Removing Disadvantages

Objective: reflect more information in abstraction without creating more
boxes by splitting

Observation: we do not need to include information on unreachable state
space, remove such parts from boxes

Method: formulate constraints that hold on reachable parts of state space,
remove non-solutions by constraint solver.
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Reach Set Pruning

A point in a box B can be reachable
@ from the initial set via a flow in B
@ from a jump via a flow in B

@ from a neighboring box via a flow in B

Init

= formulate corresponding constraints, remove all points from box that
do not fulfill at least one of these constraints.
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Constraints in Specification

As before, we specify system using constraints involving ODEs:

@ Flow(s,x, ‘ét)

e eg., s—off—>5_xsm( x)+1
o Jump(s,x,s’ x’)

o eg., (s=off A\Ax>10) — (s"=onAx’'=0)
@ Init(s,x)

e eg,s=off A\Ax=0
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Reachability Constraints

Lemma (n-dimensional mean value theorem): For a box B,

mode s, if a point (y1,...,y,) € B is reachable from a point
(x1,...,xn) € B via a flow in B then

[ ] [ ]
dt € R>o /\ dai,...,ak,a1,...,3k l(a1,...,ak) € BA
1<i<n

Flow(s, (a1, ..., ak), (31,...,ak)) Ayi = xi+ a; -]

Yi

time
ta t

Denote this constraint by flowg(s,x,y).

M. Frénzle (CvO) Automatic Analysis of Hybrid Systems 2008/09/17-18 192 / 227



Reachability Constraints

Lemma: For a box B C R¥, mode s, if y € B is reachable from the initial
set via a flow in B then

Ix € BInit(s,x) N flowg(s,x,y)]

Lemma: For a box B C R¥, mode s, y € B, (s,y) is reachable from a
jump from a box B* and mode s* via a flow in B then

Ix* e B*Ix € B [Jump(s™,x",s,x) N\ flowg(s,x,y)]
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Reachability Constraints

Lemma: For a box B C R, mode s, if y € B is reachable from a
neighboring box over a face F of B and a flow in B then

Ix € F [incomingg(s,x) /\ flowg(s,x,y)],
where incoming(s,x) is of the form
3%1,..., %Xk [Flow(s,x, (X1,...,xk))AX; r 0]

where r € {<, >}, j €{1,..., k} depends on the face F

5 y

for corners etc. a little bit more involved
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Using Constraints

These constraints can be used for removing definitely unreachable parts
from boxes:
© instantiate the constraints by substituting Flow, Jump, Init into their
definition,
@ take each individual box,
© apply interval constraint propagation wrt. the constraints to the box.

t

@ safe overapproximation, incl. correct handling of rounding errors

@ result not necessarily tight

[Ratschan & She, 2004-, http://hsolver.sourceforge.net]
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Automated Stability Proofs

Lyapunov-based Methods
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Lyapunov’s direct method for showing L. stability

@ Observation: Stabilizing systems often amounts to diminishing energy
in certain subsystems.
@ Idea: Show stabilization by

© seeking an appropriate ‘generalized energy function”, and
@ showing that it decreases along the trajectories of the controlled
system.
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Lyapunov’s direct method

1. Model system dynamics as DE

y

—=
N
\ ~ -
X
x= f(x)
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Lyapunov’s direct method

2. Select witness function V : R" - R

e V positive definite: V(x) > 0and (V(x) =0 < x=0)
@ V continuously differentiable.

/ / ) , , / ,’ // // /
o J / / /’ , , , /’
/7 J7 ! / L--Tr T T T T
V , / ! Tkl / -=7 / / /
, // ' / ~r-7 / / / /
_—— / I / / ! / [—
/ T = / Loy e /
/ , i /oy = / / /
i, 7 T @A Lo
; Y A A L AR S SR e
/ / ’ ’ ’ / / / / /
/ / / 7 7 / / / / /
A S A A A A Y A
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Lyapunov’s direct method

3. Analyze growth of witness function along trajectories.
@ Non-increase of x — V/(x — x¢q) along trajectories satisfying

dx . . TR
G = f(x) implies Lyapunov stability in xeq.
T T LT T
// , /I // /I , , , , ,
7—~_/‘“~L , ; / N”_/_/_77/777/
V )/ ){/ === S , , )/
/ = r / / /
. y % / / / / )
/ TSl = oy ! Lo -rFmT
’ // 7~ Y e ’ / /
L N -e- Loy
/ Y AV S\ A A e 1
/ N7 L ’ / /
/7 // // // // // /&/ / /
A4 PRSP AN (S (N S S ——
X
[av )%
(o~ Xeg) -, S (x — Xeq)| ) < 0 forall x.
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Automation: ldea

© Take a parametric set of candidate Lyapunov functions
o for example, polynomials of degree 2k

@ Fit parameters such that Lyapunov’s direct condition is satisfied
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Methods for fitting functions

@ Linear matrix inequalities & quadratic programming
[Pettersson & Lennartson, 1996]

@ limited to polynomials of degree 2

o problematic scalability (monolithic matrix inequality)

@ numerical stability issues
@ Non-linear arithmetic constraint solving
uses the Lyapunov condition directly as a constraint on the parameters
solvable iff there exists an Lyapunov fct. in the class
solvability thus implies stability
linear ODE case: Rodriguez-Carbonell & Tiwari, 2002,
general (incl. transcendental fct.s in ODE): Ratschan & She, 2006

©

¢ ¢ ¢
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@ f(x) right-hand side of ODE
o V(p,x) is a fct. of

@ parameters p,
o state variables x;

%(p,x) its partial derivatives

@ Decide whether
OV

Ipvx: | —(x)

f <
3 e g )| ) <0

is true

@ successfully pursued using the ICP-based constraint solver RSolver
[Ratschan 2002-], cf. [Ratschan & She, 2006]
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Extension to Probabilistic Hybrid Systems

Quantifying the probability of misbehavior
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Stochastic
Constraint satisfaction ; constraint satisfaction

SAT Theory Solver SSAT / SCP
+ large Boolean + rich theories, + stochastic con—
formulae e.g. arithmetics straint problems
— propositional — conjunctive — finite domain
variables only systems only only
SMT SSMT

combinations of straint problems

+ atoms from + atoms from

+ large Boolean E + stochastic con—
rich theories : rich theories

BMC / stability proofs / ... BMC / stability proofs / ...
of hybrid systems of probabilistic hybrid systems
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Example: The Summer School Pause Dilemma

t := 0; cookies := 0; toilet := false; chats := 0

t<=15&
cookies >=7
toilet

chats >= 2

Wandering
around

t:=t+0.5;
cookies := cookies +
min(4,remaining/100)

t:=t+2;
toilet := true

t<t+l
chats++

U <t+l
chats++
H remaining =

Being in time w. probability > 0.75 enforcable? c”exp(-Y)
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Example: The Summer School Pause

t := 0; cookies := 0; toilet := false; chats := 0

t<=15&
cookies >=7
toilet
t>15 Wandering chats >=2
. t:=(10+2t)/3
¥ ti=(16+21) /3

Dilemma

[0303 0

]

0.4

t:=t+2;
toilet :=true | t:=t+l

t<t+l
chats++

U <t+l
chats++

Being in time w. probability > 0.75 enforcable? ‘

M. Frénzle (CvO) Automatic Analysis of Hybrid Systems

t:=t+0.5;
cookies := cookies +
min(4,remaining/100)

F"@Wf‘ <
= . ~

‘ remaining =
c " exp(-t)
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Worst-Case Probability of Reaching Target

Given

@ a PHA A,

® a hybrid state (o, x),

@ a set of target locations T1,
the maximum probability Pf‘G)XJ of reaching TL from (o, x) within k € N
steps is

1 if o€ TL,
k 0 if TLAk=0
P(O’,X) - ' 1Y g )
k .
maXi:(U,x)#g(t;)Zj <p’j . Pasgil,.j(O‘,x]> if o g TLAk > 0.
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Probabilistic Bounded Reachability

Given:
@ a PHA A,
@ a set of target locations T1,
® a depth bound k € N,
@ a probability threshold tolerable € [0, 1].

Probabilistic Bounded Reachability Problem:
o ls MaX (s x) an initial state P{(o‘,x) < tolerable ?

@ l.e., is accumulated probability over all paths of reaching bad state
under malicious adversary within k steps acceptable?
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Approach

SSMT

solving

[} [}

| |

reachab. : :

property . .

! !

Analysis : Symbolic :
problem : encoding : Certificate
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Stochastic Satisfiability Modulo Theory
(SSMT)
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Stochastic satisfiability modulo theory (SSMT)

@ Inspired by Stochastic CP and Stochastic SAT (SSAT), e.g.
[Papadimitriou 85] [Tarim, Manandhar, Walsh 06] [Balafoutis, Stergiou 06]
[Bordeaux, Samulowitz 07] [Littmann, Majercik 98, dto. + Pitassi 01]

@ Extends it to infinite domains (for innermost existentially quantified
variables).

@ Extends SSAT to SSAT(T) akin to DPLL vs. DPLL(T).

An SSMT formula consists of
©Q an SMT formula ¢ over some (arithmetic) theory T, e.g.

©=(x>0V2a-sin(db) >3) A\ (y >0V 2a-sin(db) <1)A...

© a prefix of existentially and of randomly quantified variables with
finite domains, e.g.

Ix €{0,1} H<(0,076)Y(110,4)>y e{0,1} d...3...4...
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Quantification in SSMT

Objective: Determine probability of satisfaction of ¢ under existential
and randomized choices of quantified variables:

1)

2)

existential

randomized

3 x € dom(x)
Probability corresponds to optimal choice within

range dom(x).

vy 1), (Vi pm)) ¥ € dom(y)

Probability corresponds to random choice within
range dom(y).

p;i is probability of setting y to value v;.

M. Frénzle (CvO)
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Randomized Quantification

Galton Board: At each nail, ball bounces left or right with some probability
porl—np,resp. (e.g. p=0.5)

)
@0
© 0 @
o000
)
®
k= 0 1 2 3 4
— 1 4 6 4 1
Pk= 1 16 16 16 16

H<(0)p0)v(1)pl)»(2>p2))(3)p3))(4)p4)>pr0b1 E {O) 1) 2) 3) 4}
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Stochastic satisfiability modulo theory (SSMT)

Uyx €10,1,2,3,4

3 3y € {left, middle, right}
2

gz €{0,1,2,3,4}:
bOHO OB DO b b o ®
@ o @ o @ o

PO bbb pddpddddpdd
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Semantics of an SSMT formula

O = @1x; €dom(xy)...Qnx, € dom(x,) : @

Probability of satisfaction Pr(®):

Quantifier-free base cases:

1. Pr(e: o) = 0 if ¢ is unsatisfiable.
2. Pr(e:o) =1 if ¢ is satisfiable.

3 £ Maximum over all alternatives:

3. Pr(3xeD Q:¢) = r"/neaI>)< Pr(O: olv/x]).

d £ Weighted sum of all alternatives:

4, Pr(dgxeD O: @)= > p-Pr(O:olv/x]).
(v,p)ed
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Semantics of an SSMT formula: Example

© = dxe{0,1} 006,104y €10,1}:
(x >0V 2a-sin(4b) >3)A(y >0V 2a-sin(4b) < 1)

Pr=06-0+04-1=04

b Pr=06-1+04-1=1
“(1,0.4) (0,0.6) T (1,0.4)

(0,0.6)

2a-sin(4b) >3 2a-sin(4b) >3

2a-sin(4b) <1 2a-sin(4b) <1
unsat sat sat sat
Pr=20 Pr=1 Pr=1 Pr=1
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Translating PHA Problems
to SSMT Problems
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Translating PHA into SSMT

[ Je, € (1,2} : j

bad

[ H((O,O‘Oﬁ),(1,0‘94)>rtr €{0,1}: J

source /A guard A trans /\ distr A action /A target
o T =T—At-f
(cooineA (T 290°) Aley = DA true AT T, T 88 feoar) o )V
( AT > 110°)Alesr = 2)A(rw —=0)A  (t' =t +At) A bad’) v
o T =T—At-f
(coolineN(T > 110°)A (e = 2l = 1A (T 7, T 78 Jeso) )
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Init(xg) Bad(xg)
VAN Trans(xo, Xl) Vv Bad(xl)
dt1dgprdtodyps ... It dypi - | A Trans(x1,x>) A | V Bad(x>)
alternating choices A V...
A Trans(xXg_1,Xx) V Bad (xy)
k-bounded reach set hits bad state
BMC(k)

@ Alternating quantifier prefix encodes alternation of
@ nondeterministic transition selection
@ probabilistic choice between transition variants

@ Pr(®) = accumulated probability over all paths of reaching bad state

under malicious adversary within k steps = max s x) initial (o)

MaX (g x) initial P’(‘G‘X) > tolerable iff Pr(®) > tolerable
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SSMT Solving
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SSMT algorithm

Problem: Determine whether Pr(®) > tolerable, where

(]

® = Pre: @ is an SSMT formula
@ is a Boolean combination of (non-linear) arithmetic constraints
Pr(®) the satisfaction probability of @

tolerable is a constant, the probabilistic satisfaction threshold.

Solution: Take appropriate SMT solver, implant branching rules for
quantifiers, add rigorous proof-tree pruning:

ISAT solver for mixed Boolean and non-linear arithmetic problems
[Franzle, Herde, Ratschan, Schubert, Teige 2006+2007]

iISAT + branching rules for quantifier handling + pruning rules
~> SiSAT [Teige and Frénzle, CPAIOR 2008]
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Naive SSMT solving

© Enumerate assignments to quantified variables
@ Call subordinate SMT solver on resulting instances
© Aggregate results accord. to SSMT semantics, compare to tolerable

© = dxe{0,1} dy0,06),1,04)y €10,1}:
(x >0V 2a-sin(4b) >3)A(y >0V 2a-sin(4b) < 1)

max(0.4,1) =1
= x=1
Pr:0.6-0+0.4~1:0.4 > Pr=06-14+04-1=1
(0,0.6) ~(1,04) (0,0.6) T (1,04)
2a-sin(4b) >3 2a-sin(4b) >3
2a-sin(4b) < 1 2a-sin(4b) < 1
unsat sat sat sat
Pr=0 Pr=1 Pr=1 Pr=1
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Efficient quantifier handling

Given:
o O= dxe{0,1} djop6),104)y €{0,1}:
(x >0V 2a-sin(4b) >3)A(y >0V 2a-sin(4b) < 1),
@ lower threshold t; = 0.3,

@ upper threshold ¢, = 0.5.

Objective:

? ?

@ Pr(®)<t; or Pr(®)>1t, or compute t; < Pr(®)<t, ?
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Efficient quantifier handling

© = dxe{0,1} 4006104y €{0,1}:
(x >0V 2a-sin(4b) > 3)A(y >0V 2a-sin(4b) < 1)

=03t =05 x Pr(®) > 0.6

<
~
N —
S X =
N
N
N

Pr>06-1=0.6

!

Pr=1

2a-sin(4b) < 1
satisfiable
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Efficient quantifier handling

© = dxe{0,1} 4006104y €{0,1}:
(x >0V 2a-sin(4b) > 3)A(y >0V 2a-sin(4b) < 1)

=03, t,=05 Pr(®) > 0.6
\\\\\\X T

=1

=03, t,=05 a Pr>06-1=06

2a-sin(4b) < 1
satisfiable

Pruning occurs
@ when satisfaction probability of investigated branches > ¢,
@ when probability mass of remaining branches < t,,
® based on inferences in SMT solving
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First experimental results

Pr>0.25

Pr>05

no SDB, w/o TH —— | |
SDB, w/o TH
SDB, t=0.25

‘Pr>073

‘ ‘ ‘ 10000
Pr>06 | Pr>08 wio Tl
=0
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100 | =0
=1 100 |
= =
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01} 01
001 | 001
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unwinding depth

6 8 10

unwinding depth

Impact of thresholding (left) and solution-directed backjumping (right)

SSMT often traverses only minor fraction of quantifier domains!
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@ Hybrid systems
@ are a reasonable formalization of the interaction of embedded control
and physical environment
@ there is rapidly growing body of theory pertaining to hybrid systems
@ the theory bridges various fields of science, among them
@ control theory
@ discrete event systems
@ numerical analysis
@ arithmetic constraint solving

@ Arithmetic constraint solving
@ is an enabler for fully symbolic analysis of hybrid systems
@ thus providing prospects for scalable automatic analysis procedures;
@ its solving power is progressing much more rapidly than the advances in
computing hardware
o yet still in its infancy.
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