Part II:
Symbolic reachability for prefix rewriting
static Random r = new Random();
static void m() {
 if (r.nextBoolean()) {
 s(); right(); if (r.nextBoolean()) m();
 } else {
 up(); m(); down();
 }
}
static void s() {
 if (r.nextBoolean()) return;
 up(); m(); down();
}
public static void main() { s(); }
static void s() {
 var st: stack of {s_0, ..., s_5, ...}

 s_0: if (r.nextBoolean())
 s_1: return;
 s_2: up();
 s_3: m();
 s_4: down();
 s_5:
}

s_0 → s_1 s_0 → s_2
s_1 → ε
s_2 → up_0 s_3
s_3 → m_0 s_4
s_4 → down_0 s_5
s_5 → ε
Symbolic reachability in prefix rewriting

Recall: program state \((g, \ell, n, (\ell_1, n_1) \ldots (\ell_k, n_k))\) modelled as a word
\(g \langle \ell, n \rangle \langle \ell_1, n_1 \rangle \ldots \langle \ell_k, n_k \rangle\).

Denote by \(G\) the alphabet of valuations of globals.

Denote by \(L\) the alphabet of pairs \(\langle \ell, n \rangle\).

The set of possible programs states is given by \(GL^*\)
A subset of GL^* words is regular if it can be recognized by a finite automaton.

Typically, the sets I and D of initial and dangerous program states are regular sets. (Even very simple ones, like $g \cap L^*$.)

Challenge: show that if $S \subseteq GL^*$ is (effectively) regular, then so are $pre^*(S)$ and $post^*(S)$.

This gives a procedure to check if $I \cap pre^*(D) = \emptyset$ or $post^*(I) \cap D = \emptyset$.
Symbolic search

Forward symbolic search

Initialize $S := I$

Iterate $S := S \cup post(S)$ until fixpoint.

Backward search: replace I by D, replace $post$ by pre.

Questions:

- Are $S \cup post(S)$ and $S \cup pre(S)$ regular for regular S?
- Does the search terminate?

We answer these questions for backward search, the forward case is similar.
If S regular, then $S \cup \text{pre}(S)$ regular

We represent a regular set $S \subseteq GL^*$ by an NFA.

- G as set of initial states, L as alphabet.
- gw recognized if $g \xrightarrow{w} q$ for some final state q.

Example: $G = \{g_0, g_1\}$ and $L = \{l_0, l_1\}$

Automaton coding the set $g_0 l_1^* l_0 + l_1 l_1$:
\[
R = \{ \; g_0 \, l_0 \rightarrow g_0 \; , \; g_1 \, l_1 \rightarrow g_0 \; , \; g_1 \, l_1 \rightarrow g_1 \, l_1 \, l_0 \; \}
\]
\[R = \{ \ g_0 l_0 \rightarrow g_0 \ , \ g_1 l_1 \rightarrow g_0 \ , \ g_1 l_1 \rightarrow g_1 l_1 l_0 \ \} \]
\[g_0 l_0 \rightarrow g_0 \]
\[g_0 l_0 \rightarrow g_0 \]
$g_1 l_1 \to g_0$
\[g_1 l_1 \rightarrow g_0 \]
\[g_1 l_1 \rightarrow g_1 l_1 l_0 \]
$$g_1 l_1 \rightarrow g_1 l_1 l_0$$
\[R = \{ \ g_0 l_0 \rightarrow g_0 , \ g_1 l_1 \rightarrow g_0 , \ g_1 l_1 \rightarrow g_1 l_1 l_0 \ \} \]
\[R = \{ \, g_0 l_0 \rightarrow g_0 \, , \, g_1 l_1 \rightarrow g_0 \, , \, g_1 l_1 \rightarrow g_1 l_1 l_0 \, \} \]
\[R = \{ \ g_0 \ l_0 \rightarrow g_0 \ , \ g_1 \ l_1 \rightarrow g_0 \ , \ g_1 \ l_1 \rightarrow g_1 \ l_1 \ l_0 \ \} \]
\[R = \{ \ g_0 l_0 \rightarrow g_0 \ , \ g_1 l_1 \rightarrow g_0 \ , \ g_1 l_1 \rightarrow g_1 l_1 l_0 \ \} \]
\[g_0 l_0 \rightarrow g_0 \]
\[g_0 l_0 \rightarrow g_0 \]
\[g_1 l_1 \rightarrow g_0 \]
$g_1 l_1 \rightarrow g_0$
$g_1 l_1 \rightarrow g_1 l_1 l_0$
\[g_1 \, l_1 \rightarrow g_1 \, l_1 \, l_0 \]
\[R = \{ g_0 l_0 \rightarrow g_0, \quad g_1 l_1 \rightarrow g_0, \quad g_1 l_1 \rightarrow g_1 l_1 l_0 \} \]
\[R = \{ \text{ } g_0 l_0 \rightarrow g_0 \text{ , } g_1 l_1 \rightarrow g_0 \text{ , } g_1 l_1 \rightarrow g_1 l_1 l_0 \text{ } \} \]
\[R = \{ \quad g_0 l_0 \rightarrow g_0 \quad , \quad g_1 l_1 \rightarrow g_0 \quad , \quad g_1 l_1 \rightarrow g_1 l_1 l_0 \quad \} \]
Termination fails

\[G = \{g_0, g_1\}, \quad L = \{l_0, l_1\} \]

\[R = \{ g_0 \ l_0 \rightarrow g_0, \ g_1 \ l_1 \rightarrow g_0, \ g_1 \ l_1 \rightarrow g_1 \ l_1 \ l_0 \} \]
Termination fails

\[G = \{g_0, g_1\}, \quad L = \{l_0, l_1\} \]

\[R = \{ g_0 \, l_0 \rightarrow g_0, \quad g_1 \, l_1 \rightarrow g_0, \quad g_1 \, l_1 \rightarrow g_1 \, l_1 \, l_0 \} \]

\[S_0 = D = g_0 \, l_0 \, l_1^* \, l_0 + g_1 \, l_1 \]
Termination fails

\[G = \{ g_0, g_1 \}, \quad L = \{ l_0, l_1 \} \]

\[R = \{ g_0 \, l_0 \rightarrow g_0, \quad g_1 \, l_1 \rightarrow g_0, \quad g_1 \, l_1 \rightarrow g_1 \, l_1 \, l_0 \} \]

\[S_0 = D = g_0 \, l_0 \, l_1^* \, l_0 + g_1 \, l_1 \]

\[S_1 = S_0 \cup \text{pre}(S_0) = g_0 \, (l_0 + l_0^2) \, l_1^* \, l_0 + g_1 \, l_1 \, (\epsilon + l_0) \, l_1^* \, (\epsilon + l_0) \]
Termination fails

\[G = \{g_0, g_1\}, \quad L = \{l_0, l_1\} \]

\[R = \{ g_0 \, l_0 \rightarrow g_0, \quad g_1 \, l_1 \rightarrow g_0, \quad g_1 \, l_1 \rightarrow g_1 \, l_1 \, l_0 \} \]

\[S_0 = D = g_0 \, l_0 \star l_0 + g_1 \, l_1 \]

\[S_1 = S_0 \cup \text{pre}(S_0) = g_0 (l_0 + l_0^2) \star l_0 + g_1 \, l_1 (\epsilon + l_0) \star (\epsilon + l_0) \]

\[S_i = S_{i-1} \cup \text{pre}(S_{i-1}) = g_0 (l_0 + \ldots + l_0^{i+1}) l_1^* l_0 + g_1 \, l_1 (\epsilon + l_0 + \ldots + l_0^i) \star (\epsilon + l_0) \]
However, the fixpoint

\[\text{pre}^*(D) = g_0 l_0^* l_1^* l_0 + g_1 l_1 l_0^* l_1^*(\epsilon + l_0) \]

is regular.

\textit{How can we compute it?}
Accelerations

By definition, \(pre(D) = \bigcup_{i \geq 0} S_i \)
where \(S_0 = D \) and \(S_{i+1} = S_i \cup pre(S_i) \) for every \(i \geq 0 \)

If convergence fails, try to compute an acceleration:
a sequence \(T_0 \subseteq T_1 \subseteq T_2 \ldots \) such that

(a) \(\forall i \geq 0: S_i \subseteq T_i \)
(b) \(\forall i \geq 0: T_i \subseteq \bigcup_{j \geq 0} S_j = pre(D) \)

Property (a) ensures capture of (at least) the whole set \(pre(D) \)
Property (b) ensures that only elements of \(pre(D) \) are captured

The acceleration guarantees termination if

(c) \(\exists i \geq 0: T_{i+1} = T_i \)
An acceleration for prefix rewriting

Idea: reuse the same states
An acceleration for prefix rewriting

Idea: reuse the same states

\[R = \{ g_0 l_0 \rightarrow g_0, g_1 l_1 \rightarrow g_0, g_1 l_1 \rightarrow g_1 l_1 l_0 \} \]
An acceleration for prefix rewriting

Idea: reuse the same states

\[
R = \{ g_0 l_0 \rightarrow g_0 , \ g_1 l_1 \rightarrow g_0 , \ g_1 l_1 \rightarrow g_1 l_1 l_0 \}
\]
An acceleration for prefix rewriting

Idea: reuse the same states

\[g_0 l_0 \rightarrow g_0 \]
An acceleration for prefix rewriting

Idea: reuse the same states

\[g_0 l_0 \rightarrow g_0 \]
An acceleration for prefix rewriting

Idea: reuse the same states

\[g_0 l_0 \rightarrow g_0 \]
An acceleration for prefix rewriting

Idea: reuse the same states

\[g_1 l_1 \rightarrow g_0 \]
An acceleration for prefix rewriting

Idea: reuse the same states

\[g_1 l_1 \rightarrow g_0 \]
An acceleration for prefix rewriting

Idea: reuse the same states

\[g_1 l_1 \rightarrow g_0 \]
An acceleration for prefix rewriting

Idea: reuse the same states

\[g_1 l_1 \rightarrow g_1 l_1 l_0 \]
An acceleration for prefix rewriting

Idea: reuse the same states

\[R = \{ g_0 l_0 \rightarrow g_0, g_1 l_1 \rightarrow g_0, g_1 l_1 \rightarrow g_1 l_1 l_0 \} \]
An acceleration for prefix rewriting

Idea: reuse the same states

\[R = \{ g_0 l_0 \rightarrow g_0, g_1 l_1 \rightarrow g_0, g_1 l_1 \rightarrow g_1 l_1 l_0 \} \]
An acceleration for prefix rewriting

Idea: reuse the same states

\[R = \{ g_0 l_0 \rightarrow g_0, g_1 l_1 \rightarrow g_0, g_1 l_1 \rightarrow g_1 l_1 l_0 \} \]
An acceleration for prefix rewriting

Idea: reuse the same states

\[g_0 l_0 \rightarrow g_0 \]
An acceleration for prefix rewriting

Idea: reuse the same states

\[g_0 \ l_0 \rightarrow g_0 \]
An acceleration for prefix rewriting

Idea: reuse the same states

\[g_1 l \rightarrow g \]

\[g_1 \rightarrow g_0 \]
An acceleration for prefix rewriting

Idea: reuse the same states

\[g_1 l_1 \rightarrow g_0 \]
An acceleration for prefix rewriting

Idea: reuse the same states

$g_1 l_1 \rightarrow g_1 l_1 l_0$
An acceleration for prefix rewriting

Idea: reuse the same states

$g_1 l_1 \rightarrow g_1 l_1 l_0$
An acceleration for prefix rewriting

Idea: reuse the same states

\[g_1 l_1 \rightarrow g_1 l_1 l_0 \]
An acceleration for prefix rewriting

Idea: reuse the same states

\[R = \{ g_0 l_0 \rightarrow g_0, g_1 l_1 \rightarrow g_0, g_1 l_1 \rightarrow g_1 l_1 l_0 \} \]
An acceleration for prefix rewriting

Idea: reuse the same states

\[R = \{ g_0 l_0 \rightarrow g_0, \ g_1 l_1 \rightarrow g_0, \ g_1 l_1 \rightarrow g_1 l_1 l_0 \} \]
But does it work . . .?

All predecessors are computed, and termination guaranteed

But: we might be adding non-predecessors
But does it work . . .?

All predecessors are computed, and termination guaranteed

But: we might be adding non-predecessors

\[R = \{ g_0 \ l_0 \rightarrow g_0, \ g_1 \ l_1 \rightarrow g_0, \ g_1 \ l_1 \rightarrow g_1 \ l_1 \ l_0 \} \]
But does it work . . . ?

All predecessors are computed, and termination guaranteed

But: we might be adding non-predecessors

\[g_0 l_0 \rightarrow g_0 \]
But does it work . . . ?

All predecessors are computed, and termination guaranteed

But: we might be adding non-predecessors

\[g_0 l_0 \rightarrow g_0 \]
But does it work . . . ?

All predecessors are computed, and termination guaranteed

But: we might be adding non-predecessors

\[R = \{ g_0 l_0 \rightarrow g_0, g_1 l_1 \rightarrow g_0, g_1 l_1 \rightarrow g_1 l_1 l_0 \} \]

Fortunately: correct if initial states have no incoming arcs.
Forward search and complexity

Symbolic forward search with regular sets can be accelerated in a similar way.

Recall input: Alphabet $\Sigma = G \cup L$, set R of rules, NFA $\mathcal{A} = (Q, L, \rightarrow_0, G, F)$ recognizing subset of $G L^*$.

Complexity of backward search: $O(|Q|^2 \cdot |R|)$ time, $O(|Q| \cdot |R| + | \rightarrow_0 |)$ space.

Complexity of forward search: $O(|G| \cdot |R| \cdot (|Q \setminus G| + |R|) + |G| \cdot | \rightarrow_0 |)$ time and space.
Reachable configurations of the plotter program

\[\langle q, u_0 \rangle \]

\[\langle q, r_0 \rangle \]

\[\langle q, m_0 \rangle \]

\[\langle q, d_0 \rangle \]

\[\langle q, s_0 \rangle \]

\[\langle q, s_0 \rangle \]

\[\langle q, r_0 \rangle \]

\[\langle q, m_0 \rangle \]

\[\langle q, d_0 \rangle \]

\[\langle q, s_0 \rangle \]

\[\langle q, r_0 \rangle \]

\[\langle q, m_0 \rangle \]

\[\langle q, d_0 \rangle \]

\[\langle q, s_0 \rangle \]

\[\langle q, r_0 \rangle \]

\[\langle q, m_0 \rangle \]

\[\langle q, d_0 \rangle \]

\[\langle q, s_0 \rangle \]

\[\langle q, r_0 \rangle \]

\[\langle q, m_0 \rangle \]

\[\langle q, d_0 \rangle \]

\[\langle q, s_0 \rangle \]

\[\langle q, r_0 \rangle \]

\[\langle q, m_0 \rangle \]

\[\langle q, d_0 \rangle \]

\[\langle q, s_0 \rangle \]

\[\langle q, r_0 \rangle \]

\[\langle q, m_0 \rangle \]

\[\langle q, d_0 \rangle \]

\[\langle q, s_0 \rangle \]

\[\langle q, r_0 \rangle \]

\[\langle q, m_0 \rangle \]

\[\langle q, d_0 \rangle \]

\[\langle q, s_0 \rangle \]

\[\langle q, r_0 \rangle \]

\[\langle q, m_0 \rangle \]

\[\langle q, d_0 \rangle \]

\[\langle q, s_0 \rangle \]

\[\langle q, r_0 \rangle \]

\[\langle q, m_0 \rangle \]

\[\langle q, d_0 \rangle \]

\[\langle q, s_0 \rangle \]

\[\langle q, r_0 \rangle \]

\[\langle q, m_0 \rangle \]

\[\langle q, d_0 \rangle \]

\[\langle q, s_0 \rangle \]

\[\langle q, r_0 \rangle \]

\[\langle q, m_0 \rangle \]

\[\langle q, d_0 \rangle \]

\[\langle q, s_0 \rangle \]

\[\langle q, r_0 \rangle \]

\[\langle q, m_0 \rangle \]

\[\langle q, d_0 \rangle \]

\[\langle q, s_0 \rangle \]
Let $I = g_0 l_0$ and $D = g L^*$.

D can be repeatedly reached from I iff

$$g_0 l_0 \xrightarrow{*} g' l w$$

and

$$g' l \xrightarrow{*} g v \xrightarrow{*} g' l u$$

for some g', l, w, v, u.

Repeated reachability can be reduced to computing several pre^*.