Probabilistic Model Checking

Marta Kwiatkowska

Oxford University Computing Laboratory

VTSA’10 Summer School, Luxembourg, September 2010
Course overview

• 2 sessions (Tue/Wed am): 4 × 1.5 hour lectures
 – Introduction
 – 1 – Discrete time Markov chains (DTMCs)
 – 2 – Markov decision processes (MDPs)
 – 3 – LTL model checking for DTMCs/MDPs
 – 4 – Probabilistic timed automata (PTAs)

• For extended versions of this material
 – and an accompanying list of references
 – see: http://www.prismmodelchecker.org/lectures/
Probabilistic models

<table>
<thead>
<tr>
<th>Discrete time</th>
<th>Fully probabilistic</th>
<th>Nondeterministic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discrete-time Markov chains (DTMCs)</td>
<td>Markov decision processes (MDPs) (probabilistic automata)</td>
<td></td>
</tr>
<tr>
<td>Continuous time</td>
<td>Continuous-time Markov chains (CTMCs)</td>
<td>Probabilistic timed automata (PTAs)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CTMDPs/IMCs</td>
</tr>
</tbody>
</table>
Part 4

Probabilistic Timed Automata
Recall – MDPs

• Markov decision processes (MDPs)
 – mix probability and nondeterminism
 – in a state, there is a nondeterministic choice between multiple probability distributions over successor states

• Adversaries
 – resolve nondeterministic choices based on history so far
 – properties quantify over all possible adversaries
 – e.g. $P_{<0.1}[\Diamond \text{err}]$ – maximum probability of an error is < 0.1
Real-world protocol examples

• **Systems with probability, nondeterminism and real-time**
 – e.g. communication protocols, randomised security protocols

• **Randomised back-off schemes**
 – Ethernet, WiFi (802.11), Zigbee (802.15.4)

• **Random choice of waiting time**
 – Bluetooth device discovery phase
 – Root contention in IEEE 1394 FireWire

• **Random choice over a set of possible addresses**
 – IPv4 dynamic configuration (link-local addressing)

• **Random choice of a destination**
 – Crowds anonymity, gossip-based routing
Overview (Part 4)

- Time, clocks and zones
- Probabilistic timed automata (PTAs)
 - definition, examples, semantics, time divergence
- PTCTL: A temporal logic for PTAs
 - syntax, examples, semantics
- Model checking for PTAs
 - the region graph
 - digital clocks
 - zone-based approaches:
 - (i) forwards reachability
 - (ii) backwards reachability
 - (iii) game-based abstraction refinement
- Costs and rewards
Time, clocks and clock valuations

• **Dense time domain:** non-negative reals $\mathbb{R}_{\geq 0}$
 - from this point on, we will abbreviate $\mathbb{R}_{\geq 0}$ to \mathbb{R}

• **Finite set of clocks** $x \in X$
 - variables taking values from time domain \mathbb{R}
 - increase at the same rate as real time

• **A clock valuation is a tuple** $v \in \mathbb{R}^X$. Some notation:
 - $v(x)$: value of clock x in v
 - $v+t$: time increment of t for v
 - $(v+t)(x) = v(x)+t \quad \forall x \in X$
 - $v[Y:=0]$: clock reset of clocks $Y \subseteq X$ in v
 - $v[Y:=0](x) = 0$ if $x \in Y$ and $v(x)$ otherwise
Zones (clock constraints)

- **Zones (clock constraints) over clocks** X, denoted $\text{Zones}(X)$:

\[
\zeta ::= x \leq d \mid c \leq x \mid x+c \leq y+d \mid \neg \zeta \mid \zeta \lor \zeta
\]

- where $x, y \in X$ and $c, d \in \mathbb{N}$
- used for both syntax of PTAs/properties and algorithms

- **Can derive:**
 - logical connectives, e.g. $\zeta_1 \land \zeta_2 \equiv \neg(\neg \zeta_1 \lor \neg \zeta_2)$
 - strict inequalities, through negation, e.g. $x > 5 \equiv \neg(x \leq 5)$...

- **Some useful classes of zones:**
 - **closed**: no strict inequalities (e.g. $x > 5$)
 - **diagonal-free**: no comparisons between clocks (e.g. $x \leq y$)
 - **convex**: define a convex set, efficient to manipulate
Zones and clock valuations

• A clock valuation \(v \) satisfies a zone \(\zeta \), written \(v \triangleright \zeta \) if
 – \(\zeta \) resolves to true after substituting each clock \(x \) with \(v(x) \)

• The semantics of a zone \(\zeta \in \text{Zones}(X) \) is the set of clock valuations which satisfy it (i.e. a subset of \(\mathbb{R}^X \))
 – NB: multiple zones may have the same semantics
 – e.g. \((x \leq 2) \land (y \leq 1) \land (x \leq y + 2)\) and \((x \leq 2) \land (y \leq 1) \land (x \leq y + 3)\)

• We consider only canonical zones
 – i.e. zones for which the constraints are as ‘tight’ as possible
 – \(O(|X|^3) \) algorithm to compute (unique) canonical zone [Dil89]
 – allows us to use syntax for zones interchangeably with semantic, set-theoretic operations
c-equivalence and c-closure

- Clock valuations v and v' are **c-equivalent** if for any $x, y \in X$
 - either $v(x) = v'(x)$, or $v(x) > c$ and $v'(x) > c$
 - either $v(x) - v(y) = v'(x) - v'(y)$ or $v(x) - v(y) > c$ and $v'(x) - v'(y) > c$

- The **c-closure** of the zone ζ, denoted $\text{close}(\zeta, c)$, equals
 - the greatest zone $\zeta' \supseteq \zeta$ such that, for any $v' \in \zeta'$, there exists $v \in \zeta$ and v and v' are c-equivalent
 - c-closure ignores all constraints which are greater than c
 - for a given c, there are only a **finite number** of c-closed zones
Operations on zones – Set theoretic

- Intersection of two zones: $\zeta_1 \cap \zeta_2$
Operations on zones – Set theoretic

- Union of two zones: $\zeta_1 \cup \zeta_2$
Operations on zones – Set theoretic

• Difference of two zones: $\zeta_1 \setminus \zeta_2$
Operations on zones – Clock resets

- \(\zeta[Y:=0] = \{ v[Y:=0] \mid v \triangleright \zeta \} \)
 - clock valuations obtained from \(\zeta \) by resetting the clocks in \(Y \)
Operations on zones – Clock resets

- \([Y:=0]ζ = \{ v \mid v[Y:=0] ▶ ∇ζ \}\)
 - clock valuations which are in \(ζ\) if the clocks in \(Y\) are reset
Operations on zones: Projections

- Forwards diagonal projection
- \(\triangleright \zeta = \{ v \mid \exists t \geq 0 . (v-t) \triangleright \zeta \} \)
 - contains the clock valuations that can be reached from \(\zeta \) by letting time pass
Operations on zones: Projections

- Backwards diagonal projection
- \(\preceq \) \(\zeta \) = \{ \(v \mid \exists t \geq 0 . ((v+t) \triangleright \zeta \wedge \forall t'<t . ((v+t') \triangleright \zeta')) \} \)
 - contains the clock valuations that, by letting time pass, reach a clock valuation in \(\zeta \) and remain in \(\zeta' \) until \(\zeta \) is reached
Operations on zones: c–closure

- c–closure: $\text{close}(\zeta, c)$
 - ignores all constraints which are greater than c
Overview (Part 4)

• Time, clocks and zones
• **Probabilistic timed automata (PTAs)**
 – definition, examples, semantics, time divergence
• PTCTL: A temporal logic for PTAs
 – syntax, examples, semantics
• Model checking for PTAs
 – the region graph
 – digital clocks
 – zone-based approaches:
 – (i) forwards reachability
 – (ii) backwards reachability
 – (iii) game-based abstraction refinement
• Costs and rewards
Probabilistic timed automata (PTAs)

- Probabilistic timed automata (PTAs)
 - Markov decision processes (MDPs) + real-valued clocks
 - or: timed automata + discrete probabilistic choice
 - model probabilistic, nondeterministic and timed behaviour

- Syntax: A PTA is a tuple \((\text{Loc}, \text{l}_{\text{init}}, \text{Act}, \text{X}, \text{inv}, \text{prob}, \text{L})\)
 - \text{Loc} is a finite set of locations
 - \text{l}_{\text{init}} \in \text{Loc} is the initial location
 - \text{Act} is a finite set of actions
 - \text{X} is a finite set of clocks
 - \text{inv} : \text{Loc} \rightarrow \text{Zones}(\text{X})
 is the invariant condition
 - \text{prob} \subseteq \text{Loc} \times \text{Zones}(\text{X}) \times \text{Dist}(\text{Loc} \times 2^\text{X})
 is the probabilistic edge relation
 - \text{L} : \text{Loc} \rightarrow \text{AP} is a labelling function
Probabilistic edge relation

- **Probabilistic edge relation**
 - $\text{prob} \subseteq \text{Loc} \times \text{Zones}(X) \times \text{Act} \times \text{Dist}(\text{Loc} \times 2^X)$

- **Probabilistic edge** $(l, g, a, p) \in \text{prob}$
 - l is the source location
 - g is the guard
 - a is the action
 - p target distribution

- **Edge** (l, g, a, p, l', Y)
 - from probabilistic edge (l, g, a, p) where $p(l', Y) > 0$
 - l' is the target location
 - Y is the set of clocks to be reset
PTA – Example

- **Models a simple probabilistic communication protocol**
 - starts in location di; after between 1 and 2 time units, the protocol attempts to send the data:
 - with probability 0.9 data is sent correctly, move to location sr
 - with probability 0.1 data is lost, move to location si
 - in location si, after 2 to 3 time units, attempts to resend
 - correctly sent with probability 0.95 and lost with probability 0.05
PTAs – Behaviour

- **A state of a PTA is a pair** \((l,v) \in \text{Loc} \times \mathbb{R}^X\) **such that** \(v \triangleright inv(l)\)

- **A PTAs start in the initial location with all clocks set to zero**
 - let \(0\) denote the clock valuation where all clocks have value 0

- **For any state** \((l,v)\), **there is nondeterministic choice between making a discrete transition and letting time pass**
 - **discrete transition** \((l,g,a,p)\) **enabled if** \(v \triangleright g\) **and probability of moving to location** \(l’\) **and resetting the clocks** \(Y\) **equals** \(p(l’,Y)\)
 - **time transition** available only if invariant \(inv(l)\) **is continuously satisfied while time elapses**
PTA – Example

PTA:

Example execution:

(di,x=0)

1.1

(di,x=1.1)

0.9

send

0.1

x≥2

retry

x:=0

0.95

x:=0

0.05

x≤2

send

0.1

x:=0

0.9

x≥1

x:=0

0.1

0.9

x≤3

sr

true

0.05

(si,x=0)

8.66

(si,x=2.7)

2.7

(si,x=0)

⋱

(si,x=0)

⋱

(sr,x=8.66)

0.95

retry

0.05

(sr,x=0)

⋱

(sr,x=0)

⋱
PTAs – Formal semantics

- Formally, the semantics of a PTA P is an infinite-state MDP $M_P = (S_P, s_{\text{init}}, \text{Steps}, L_P)$ with:

 - **States**: $S_P = \{ (l,v) \in \text{Loc} \times \mathbb{R}^X \text{ such that } v \triangleright \text{inv}(l) \}$

 - **Initial state**: $s_{\text{init}} = (l_{\text{init}}, 0)$

 - **Steps**: $S_P \rightarrow 2^{(\text{Act} \cup \mathbb{R}) \times \text{Dist}(S)}$ such that $(\alpha, \mu) \in \text{Steps}(l,v)$ iff:
 - (time transition) $\alpha = t \in \mathbb{R}$, $\mu(l,v+t) = 1$ and $v+t' \triangleright \text{inv}(l)$ for all $t' \leq t$
 - (discrete transition) $\alpha = a \in \text{Act}$ and there exists $(l,g,a,p) \in \text{prob}$ such that $v \triangleright g$ and, for any $(l',v') \in S_P$: $\mu(l',v') = \sum_{Y \subseteq X \land v[Y:=0]=v'} p(l',Y)$

 - **Labelling**: $L_P(l,v) = L(l)$

actions of MDP M_P are the actions of PTA P or real time delays

multiple resets may give same clock valuation
We restrict our attention to **time divergent** behaviour
- a common restriction imposed in real-time systems
- unrealisable behaviour (i.e. corresponding to time not advancing beyond a time bound) is disregarded
- also called **non-zeno** behaviour

For a path \(\omega = s_0(\alpha_0, \mu_0)s_1(\alpha_1, \mu_1)s_2(\alpha_2, \mu_2) \ldots \) in the MDP \(M_P \)
- \(D_\omega(n) \) denotes the **duration** up to state \(s_n \)
- i.e. \(D_\omega(n) = \sum \{ | \alpha_i | : 0 \leq i < n \land \alpha_i \in \mathbb{R} \} \)

A path \(\omega \) is **time divergent** if, for any \(t \in \mathbb{R}_{\geq 0} \):
- there exists \(j \in \mathbb{N} \) such that \(D_\omega(j) > t \)

Example of non-divergent path:
- \(s_0(1, \mu_0)s_0(0.5, \mu_0)s_0(0.25, \mu_0)s_0(0.125, \mu_0)s_0 \ldots \)
An adversary of M_p is divergent if, for each state $s \in S_p$:
- the probability of divergent paths under A is 1
- i.e. $\Pr^A_s\{ \omega \in \text{Path}^A(s) \mid \omega \text{ is divergent} \} = 1$

Motivation for probabilistic definition of divergence:
- in this PTA, any adversary has one non-divergent path:
 - takes the loop in l_0 infinitely often, without 1 time unit passing
 - but the probability of such behaviour is 0
 - a stronger notion of divergence would mean no divergent adversaries exist for this PTA
Overview (Part 4)

• Time, clocks and zones
• Probabilistic timed automata (PTAs)
 – definition, examples, semantics, time divergence
• PTCTL: A temporal logic for PTAs
 – syntax, examples, semantics
• Model checking for PTAs
 – the region graph
 – digital clocks
 – zone–based approaches:
 – (i) forwards reachability
 – (ii) backwards reachability
 – (iii) game–based abstraction refinement
• Costs and rewards
PTCTL – Syntax

- **PTCTL**: Probabilistic timed computation tree logic
 - derived from PCTL [BdA95] and TCTL [AD94]

- **Syntax**:

 \[\phi ::= \text{true} \mid a \mid \zeta \mid z. \phi \mid \phi \land \phi \mid \neg \phi \mid P_{\sim p} [\phi U \phi] \]

- **where**:
 - where \(Z \) is a set of formula clocks, \(\zeta \in \text{Zones}(X \cup Z) \), \(z \in Z \),
 - \(a \) is an atomic proposition, \(p \in [0,1] \) and \(\sim \in \{<,>,\leq,\geq\} \)
PTCTL – Examples

• \(z \cdot P_{>0.99}[\text{packet2unsent} \cup \text{packet1delivered} \land (z<5)] \)
 – “with probability greater than 0.99, the system delivers packet 1 within 5 time units and does not try to send packet 2 in the meantime”

• \(z \cdot P_{>0.95}[\text{x} \leq 3 \cup (z=8)] \)
 – “with probability at least 0.95, the system clock x does not exceed 3 before 8 time units elapse”

• \(z \cdot P_{\leq0.1} [\text{G (failure} \lor (z \leq 60))] \)
 – “the system fails after the first 60 time units have elapsed with probability at most 0.01”
PTCTL – Semantics

- Let \((l, v) \in S_p\) and \(\varepsilon \in \mathbb{R}^Z\) be a formula clock valuation

 combined clock valuation of \(v\) and \(\varepsilon\) satisfies \(\zeta\)

 \[
 - (l, v), \varepsilon \models a \iff a \in L(l, v)
 - (l, v), \varepsilon \models \zeta \iff v, \varepsilon \triangleright \zeta
 - (l, v), \varepsilon \models z.\phi \iff (l, v), \varepsilon[z:=0] \models \phi
 - (l, v), \varepsilon \models \phi_1 \land \phi_2 \iff (l, v), \varepsilon \models \phi_1 \text{ and } (l, v), \varepsilon \models \phi_2
 - (l, v), \varepsilon \models \neg \phi \iff (l, v), \varepsilon \models \phi \text{ is false}
 - (l, v), \varepsilon \models P_{\sim p}[\psi] \iff Pr^{A_{(l, v)}\{ \omega \in \mathrm{Path}^{A}(l, v) \mid \omega, \varepsilon \models \psi \} \sim p}

 for all adversaries \(A \in \text{Adv}_{M_p}\)

 the probability of a path satisfying \(\psi\) meets \(\sim p\)

 for all divergent adversaries
PTCTL – Semantics of until

• Let \(\omega \) be a path in \(M_P \) and \(\mathcal{E} \) be a formula clock valuation
 – \(\omega, \mathcal{E} \models \psi \) satisfaction of \(\psi \) by \(\omega \), assuming \(\mathcal{E} \) initially

• \(\omega, \mathcal{E} \models \phi_1 U \phi_2 \) if and only if
 there exists \(i \in \mathbb{N} \) and \(t \in D_\omega(i+1) - D_\omega(i) \) such that
 – \(\omega(i)+t, \mathcal{E}+(D_\omega(i)+t) \models \phi_2 \)
 – \(\forall t' \leq t . \omega(i)+t', \mathcal{E}+(D_\omega(i)+t') \models \phi_1 \lor \phi_2 \)
 – \(\forall j<i . \forall t' \leq D_\omega(j+1) - D_\omega(j) . \omega(j)+t', \mathcal{E}+(D_\omega(j)+t') \models \phi_1 \lor \phi_2 \)

• Condition “\(\phi_1 \lor \phi_2 \)” different from PCTL and CSL
 – usually \(\phi_2 \) becomes true and \(\phi_1 \) is true until this point
 – difference due to the density of the time domain
 – to allow for open intervals use disjunction \(\phi_1 \lor \phi_2 \)
 – for example consider \(x \leq 5 \) U \(x > 5 \) and \(x < 5 \) U \(x \geq 5 \)
Probabilistic reachability in PTAs

• For simplicity, in some cases, we just consider probabilistic reachability, rather than full PTCTL model checking
 – i.e. min/max probability of reaching a set of target locations
 – can also encode time-bounded reachability (with extra clock)

• Still captures a wide range of properties
 – probabilistic reachability: “with probability at least 0.999, a data packet is correctly delivered”
 – probabilistic invariance: “with probability 0.875 or greater, the system never aborts”
 – probabilistic time-bounded reachability: “with probability 0.01 or less, a data packet is lost within 5 time units”
 – bounded response: “with probability 0.99 or greater, a data packet will always be delivered within 5 time units”
Overview (Part 4)

- Time, clocks and zones
- Probabilistic timed automata (PTAs)
 - definition, examples, semantics, time divergence
- PTCTL: A temporal logic for PTAs
 - syntax, examples, semantics
- Model checking for PTAs
 - the region graph
 - digital clocks
 - zone-based approaches:
 - (i) forwards reachability
 - (ii) backwards reachability
 - (iii) game-based abstraction refinement
- Costs and rewards
Several different approaches developed
- basic idea: reduce to the analysis of a finite-state model
- in most cases, this is a Markov decision process (MDP)

Region graph construction [KNSS02]
- shows decidability, but gives exponential complexity

Digital clocks approach [KNPS06]
- (slightly) restricted classes of PTAs
- works well in practice, still some scalability limitations

Zone-based approaches:
- (preferred approach for non-probabilistic timed automata)
- forwards reachability [KNSS02]
- backwards reachability [KNSW07]
- game-based abstraction refinement [KNP09c]
The region graph

- **Region graph construction for PTAs** [KNSS02]
 - adapts region graph construction for timed automata [ACD93]
 - partitions PTA states into a **finite** set of regions
 - based on notion of clock equivalence
 - construction is also dependent on PTCTL formula

- **For a PTA P and PTCTL formula \(\phi \)**
 - construct a **time-abstract, finite-state MDP** \(R(\phi) \)
 - translate PTCTL formula \(\phi \) to PCTL formula \(\phi' \)
 - \(\phi \) is preserved by region equivalence
 - i.e. \(\phi \) holds in a state of \(M_P \) if and only if \(\phi' \) holds in the corresponding state of \(R(\phi) \)
 - model check \(R(\phi) \) using standard methods for MDPs
The region graph – Clock equivalence

- **Regions are sets of clock equivalent clock valuations**

- **Some notation:**
 - let c be largest constant appearing in PTA or PTCTL formula
 - let $\lfloor t \rfloor$ denotes the integral part of t
 - t and t' agree on their integral parts if and only if
 1. $\lfloor t \rfloor = \lfloor t' \rfloor$
 2. t and t' are both integers or neither is an integer

- **The clock valuations v and v' are clock equivalent ($v \equiv v'$) if:**
 - for all clocks $x \in X$, either:
 - $v(x)$ and $v'(x)$ agree on their integral parts
 - $v(x) > c$ and $v'(x) > c$
 - for all clock pairs $x, y \in X$, either:
 - $v(x) - v(x')$ and $v'(x) - v'(x')$ agree on their integral parts
 - $v(x) - v(x') > c$ and $v'(x) - v'(x') > c
Region graph – Clock equivalence

- Example regions (for 2 clocks \(x \) and \(y \))

\[
\begin{align*}
x = 1 & \land y = 2 \\
x < y & \land 1 < x < 2 & \land 1 < y < 2 \\
x = y & \land 0 < x < 1 \\
y = 1 & \land 2 < x < 3
\end{align*}
\]
Region graph – Clock equivalence

- **Fundamental result**: if $v \equiv v'$, then $v \triangleright \zeta \iff v' \triangleright \zeta$
 - it follows that $r \triangleright \zeta$ is well defined for a region r

- r' is the **successor region** of r, written $\text{succ}(r) = r'$, if
 - for each $v \in r$, there exists $t > 0$ such that $v + t \in r'$
 and $v + t' \in r \cup r'$ for all $t' < t$
The region graph

- The region graph MDP is \((S_R, s_{\text{init}}, \text{Steps}_R, L_R)\) where...
 - the set of states \(S_R\) comprises pairs \((l,r)\) such that \(l\) is a location and \(r\) is a region over \(X \cup Z\)
 - the initial state is \((l_{\text{init}}, 0)\)
 - the set of actions is \(\{\text{succ}\} \cup \text{Act}\)
 - \(\text{succ}\) is a unique action denoting passage of time
 - the probabilistic transition function \(\text{Steps}_R\) is defined as:
 - \(S_R \times 2^{\{\text{succ}\} \cup \text{Act} \times \text{Dist}(S_R)}\)
 - \((\text{succ}, \mu) \in \text{Steps}_R(l,r)\) iff \(\mu(l, \text{succ}(r)) = 1\)
 - \((a, \mu) \in \text{Steps}_R(l,r)\) if and only if \(\exists (l, g, a, p) \in \text{prob}\) such that
 \[
 r \triangleright g \text{ and, for any } (l', r') \in S_R: \quad \mu(l', r') = \sum_{Y \subseteq X \land r[Y:=0]=r'} p(l', Y)
 \]
 - the labelling is given by: \(L_R(l,r) = L(l)\)
Region graph – Example

- PTCTL formula: $z.P_{\sim_p} [\text{true U (sr<4)}]$

\[
\begin{align*}
(di, x = z = 0) & \xrightarrow{\text{succ}} (di, 0 < x = z < 1) & (di, x = z = 1) & \xrightarrow{\text{succ}} (di, 1 < x = z < 2) \\
& & (sr, x = 0 \land z = 1) & (si, x = 0 \land z = 1)
\end{align*}
\]
Region graph construction

- **Region graph**
 - useful for establishing **decidability** of model checking
 - or proving **complexity** results for model checking algorithms

- **But…**
 - the number of regions is **exponential** in the number of clocks and the size of largest constant
 - so model checking based on this is extremely expensive
 - and so not implemented (even for timed automata)

- **Improved approaches based on:**
 - digital clocks
 - zones (unions of regions)
Overview (Part 4)

• Time, clocks and zones
• Probabilistic timed automata (PTAs)
 – definition, examples, semantics, time divergence
• PTCTL: A temporal logic for PTAs
 – syntax, examples, semantics
• Model checking for PTAs
 – the region graph
 – digital clocks
 – zone-based approaches:
 – (i) forwards reachability
 – (ii) backwards reachability
 – (iii) game-based abstraction refinement
• Costs and rewards
Digital clocks

- **Simple idea**: Clocks can only take integer (digital) values
 - i.e. time domain is \mathbb{N} as opposed to \mathbb{R}
 - based on notion of ε-digitisation [HMP92]

- **Only applies to a restricted class of PTAs; zones must be**:
 - **closed** – no strict inequalities (e.g. $x > 5$)

- **Digital clocks semantics yields a finite-state MDP**
 - state space is a subset of $\text{Loc} \times \mathbb{N}^X$, rather than $\text{Loc} \times \mathbb{R}^X$
 - clocks bounded by c_{max} (max constant in PTA and formula)
 - then use standard techniques for finite-state MDPs
Example – Digital clocks

MDP: (digital clocks)

(di, x=0) → (di, x=1) → (di, x=2)

0.9 → 0.1 → 0.9

(sr, x=0 ∧ z=1) → (si, x=0 ∧ z=1) → (sr, x=0 ∧ z=2)

(si, x=1 ∧ z=2) → (si, x=2 ∧ z=3)

(si, x=3 ∧ z=3)

PTA:

x ≤ 2
x ≥ 1

send
 retry

sr
true

x := 0
0.9
0.1

x := 0
0.95
0.05

x := 0
...
Digital clocks

• Digital clocks approach preserves:
 – minimum/maximum reachability probabilities
 – a subset of PTCTL properties
 – (no nesting, only closed zones in formulae)
 – only works for the initial state of the PTA
 – (but can be extended to any state with integer clock values)

• In practice:
 – translation from PTA to MDP can often be done manually
 – (by encoding the PTA directly into the PRISM language)
 – automated translations exist: mcpta and PRISM
 – many case studies, despite “closed” restriction

• Problem: can lead to very large MDPs
 – alleviated partially by efficient symbolic model checking
Digital clocks do not preserve PTCTL

Consider the PTCTL formula \(\phi = z.P_{<1} [\text{true U} (a \land z \leq 1)] \)
- \(a \) is an atomic proposition only true in location \(l_1 \)

Digital semantics:
- No state satisfies \(\phi \) since for any state we have
 \[\text{Prob}^A(s, \varepsilon[z:=0], \text{true U} (a \land z \leq 1)) = 1 \] for some adversary \(A \)
- Hence \(P_{<1} [\text{true U} \phi] \) is trivially \textbf{true in all states}
Digital clocks do not preserve PTCTL

- Consider the PTCTL formula $\phi = z.P_{<1} [\text{true} \cup (a \land z \leq 1)]$
 - a is an atomic proposition only true in location l_1
- Dense time semantics:
 - any state (l_0, v) where $v(x) \in (1, 2)$ satisfies ϕ
 - more than one time unit must pass before we can reach l_1
 - hence $P_{<1} [\text{true} \cup \phi]$ is not true in the initial state
Overview (Part 4)

• Time, clocks and zones
• Probabilistic timed automata (PTAs)
 – definition, examples, semantics, time divergence
• PTCTL: A temporal logic for PTAs
 – syntax, examples, semantics
• Model checking for PTAs
 – the region graph
 – digital clocks
 – zone-based approaches:
 – (i) forwards reachability
 – (ii) backwards reachability
 – (iii) game-based abstraction refinement
• Costs and rewards
Zone–based approaches

• An alternative is to use zones to construct an MDP

• Conventional symbolic model checking relies on computing
 – $\text{post}(S')$ the states that can be reached from a state in S' in a single step
 – $\text{pre}(S')$ the states that can reach S' in a single step

• Extend these operators to include time passage
 – $\text{dpost}[e](S')$ the states that can be reached from a state in S' by traversing the edge e
 – $\text{tpost}(S')$ the states that can be reached from a state in S' by letting time elapse
 – $\text{pre}[e](S')$ the states that can reach S' by traversing the edge e
 – $\text{tpre}(S')$ the states that can reach S' by letting time elapse
Zone–based approaches

- **Symbolic states** \((l, \zeta)\) where
 - \(l \in \text{Loc} \) (location)
 - \(\zeta\) is a zone over PTA clocks and formula clocks
 - generally fewer zones than regions

- **\(t_{\text{post}}(l, \zeta) = (l, \neg \zeta \land \text{inv}(l))\)**
 - \(\neg \zeta\) can be reached from \(\zeta\) by letting time pass
 - \(\neg \zeta \land \text{inv}(l)\) must satisfy the **invariant** of the location \(l\)

- **\(t_{\text{pre}}(l, \zeta) = (l, \neg \zeta \land \text{inv}(l))\)**
 - \(\neg \zeta\) can reach \(\zeta\) by letting time pass
 - \(\neg \zeta \land \text{inv}(l)\) must satisfy the **invariant** of the location \(l\)
Zone-based approaches

- For an edge \(e = (l, g, a, p, l', Y) \) where
 - \(l \) is the source
 - \(g \) is the guard
 - \(a \) is the action
 - \(l' \) is the target
 - \(Y \) is the clock reset

- \(dpost[e](l, \zeta) = (l', (\zeta \land g)[Y:=0]) \)
 - \(\zeta \land g \) satisfy the guard of the edge
 - \((\zeta \land g)[Y:=0] \) reset the clocks \(Y \)

- \(dpre[e](l', \zeta') = (l, [Y:=0]\zeta' \land (g \land inv(l))) \)
 - \([Y:=0]\zeta' \) the clocks \(Y \) were reset
 - \([Y:=0]\zeta' \land (g \land inv(l)) \) satisfied guard and invariant of \(l \)
Forwards reachability

• Based on the operation \(\text{post}[e](l, \zeta) = \text{tpost}(\text{dpost}[e](l, \zeta)) \)

 \((l', v') \in \text{post}[e](l, \zeta) \) if there exists \((l, v) \in (l, \zeta)\) such that after traversing edge \(e \) and letting time pass one can reach \((l', v')\)

• Forwards algorithm (part 1)

 – start with initial state \(S_F = \{ \text{tpost}((l_{\text{init}}, 0)) \} \) then iterate

 for each symbolic state \((l, \zeta) \in S_F\) and edge \(e \)

 add \(\text{post}[e](l, \zeta) \) to \(S_F \)

 – until set of symbolic states \(S_F \) does not change

• To ensure termination need to take c–closure of each zone encountered (c is the largest constant in the PTA)
Forwards reachability

• **Forwards algorithm (part 2)**
 - construct finite state MDP \((S_F,(l_{\text{init}},0),\text{Steps}_F,L_F)\)

 - states \(S_F\) (returned from first part of the algorithm)
 - \(L_F(l,\zeta) = L(l)\) for all \((l,\zeta) \in S_F\)
 - \(\mu \in \text{Steps}_F(l,\zeta)\) if and only if

 there exists a probabilistic edge \((l,g,a,p)\) of PTA
 such that for any \((l',\zeta') \in Z:\n
\[
\mu(l',\zeta') = \sum \{ | p(l',X) | (l,g,\sigma,p,l',X) \in \text{edges}(p) \wedge \text{post}[e](l,\zeta) = (l',\zeta') \}
\]

summation over all the edges of \((l,g,a,p)\) such that applying \text{post} to \((l,\zeta)\) leads to the symbolic state \((l',\zeta')\)
Forwards reachability – Example

PTA:
- l_0: $x := 0$
- l_1: $y := 0$
- l_2: $x = 0 \land y = 0$
- l_3: $x = 0 \land y = 1$

MDP:
- $(l_0, x \leq y)$
- $(l_0, x = y)$

$P_{true} = 0.5$
$P_{false} = 0.5$
Forwards reachability – Limitations

• Problem reduced to analysis of finite-state MDP, but...

• Only obtain upper bounds on maximum probabilities
 – caused by when edges are combined

• Suppose \(\text{post}[e_1](l, \zeta) = (l_1, \zeta_1) \) and \(\text{post}[e_2](l, \zeta) = (l_2, \zeta_2) \)
 – where \(e_1 \) and \(e_2 \) from the same probabilistic edge

• By definition of \(\text{post} \)
 – there exists \((l, v_i) \in (l, \zeta) \) such that a state in \((l_i, \zeta_i) \) can be reached by traversing the edge \(e_i \) and letting time pass

• Problem
 – we combine these transitions but are \((l, v_1) \) and \((l, v_2) \) the same?
 – may not exist states in \((l, \zeta) \) for which both edges are enabled
Forwards reachability – Example

- Maximum probability of reaching l_3 is 0.5 in the PTA
 - for the left branch need to take the first transition when $x=1$
 - for the right branch need to take the first transition when $x=0$
- However, in the forwards reachability graph probability is 1
 - can reach l_3 via either branch from $(l_0, x=y)$

PTA:

\[
\begin{align*}
l_0 \xrightarrow{\text{true}} l_1 & \quad y:=0 \\
x=0 \land y=1 & \quad 0.5 \quad x:=0 \\
l_1 \xrightarrow{0.5} l_2 & \quad x=0 \land y=0 \\
l_2 \xrightarrow{0.5} l_3 & \quad y:=0 \\
l_3 \xrightarrow{0.5} l_0 & \quad x=0 \land y=0
\end{align*}
\]

MDP:

\[
\begin{align*}
(l_0, x\leq y) & \quad 0.5 \quad (l_0, x=y) \\
(l_0, x=y) & \quad 0.5 \quad (l_0, x=y)
\end{align*}
\]
Backwards reachability

• An alternative zone-based method: backwards reachability
 – state-space exploration in opposite direction, from target to initial states; uses pre rather than post operator

• Basic ideas: (see [KNSW07] for details)
 – construct a finite-state MDP comprising symbolic states
 – need to keep track of branching structure and take conjunctions of symbolic states if necessary
 – MDP yields maximum reachability probabilities for PTA
 – for min. probs, do graph-based analysis and convert to max.

• Advantages:
 – gives (exact) minimum/maximum reachability probabilities
 – extends to full PTCTL model checking

• Disadvantage:
 – operations to implement are expensive, limits applicability
 – (requires manipulation of non-convex zones)
Overview (Part 4)

• Time, clocks and zones
• Probabilistic timed automata (PTAs)
 – definition, examples, semantics, time divergence
• PTCTL: A temporal logic for PTAs
 – syntax, examples, semantics
• Model checking for PTAs
 – the region graph
 – digital clocks
 – zone-based approaches:
 – (i) forwards reachability
 – (ii) backwards reachability
 – (iii) game-based abstraction refinement
• Costs and rewards
Abstraction

• Very successful in (non-probabilistic) formal methods
 – essential for verification of large/infinite-state systems
 – hide details irrelevant to the property of interest
 – yields smaller/finite model which is easier/feasible to verify
 – loss of precision: verification can return “don’t know”

• Construct abstract model of a concrete system
 – e.g. based on a partition of the concrete state space
 – an abstract state represents a set of concrete states

• Automatic generation of abstractions using refinement
 – start with a simple coarse abstraction; iteratively refine
Abstraction of MDPs

- Abstraction increases degree of nondeterminism
 - i.e. minimum probabilities are lower and maximums higher

\[
\begin{align*}
0 & \quad p_s^{\text{min}} & \quad p_s^{\text{max}} & \quad 1 \\
\end{align*}
\]

- We construct abstractions of MDPs using stochastic games

 \[
 \text{abstract}
 \]

- yields lower/upper bounds for min/max probabilities

\[
\begin{align*}
0 & \quad p_s^{\text{min}} & \quad p_s^{\text{max}} & \quad 1 \\
\end{align*}
\]
Abstraction refinement

- Consider (max) difference between lower/upper bounds
 - gives a **quantitative measure** of the abstraction’s precision

- If the difference ("error") is too great, **refine** the abstraction
 - a finer partition yields a more precise abstraction
 - lower/upper bounds can tell us **where** to refine (which states)
 - (memoryless) strategies can tell us **how** to refine
Abstraction–refinement loop

- Quantitative abstraction–refinement loop for MDPs

- Refinements yield strictly finer partition
- Guaranteed to converge for finite models
- Guaranteed to converge for infinite models with finite bisimulation
Abstraction refinement for PTAs

- Model checking for PTAs using abstraction refinement

Initial abstraction from forwards reachability

Initial partition → abstract → Abstraction

New partition → abstract → model check → Bounds and strategies

Returns bounds

Splitting of zones (DBMs)

Guaranteed convergence for any $\epsilon \geq 0$

Abstraction computed and stored using zones (DBMs)
Abstraction refinement for PTAs

• Computes reachability probabilities in PTAs
 – minimum or maximum, exact values (“error” $\epsilon=0$)
 – also time–bounded reachability, with extra clock

• Integrated in PRISM (development release)
 – PRISM modelling language extended with clocks
 – implemented using DBMs

• In practice, performs very well
 – faster than digital clocks or backwards on large example set
 – (sometimes by several orders of magnitude)
 – handles larger PTAs than the digital clocks approach
Overview (Part 4)

- Time, clocks and zones
- Probabilistic timed automata (PTAs)
 - definition, examples, semantics, time divergence
- PTCTL: A temporal logic for PTAs
 - syntax, examples, semantics
- Model checking for PTAs
 - the region graph
 - digital clocks
 - zone-based approaches:
 - (i) forwards reachability
 - (ii) backwards reachability
 - (iii) game-based abstraction refinement
- Costs and rewards
Costs and rewards

- Like other models, we can define a reward structure \((\rho, \iota)\) for a probabilistic timed automaton.

- \(\rho : \text{Loc} \rightarrow \mathbb{R}_{\geq 0}\) location reward function
 - \(\rho(l)\) is the rate at which the reward is accumulated in location \(l\).

- \(\iota : \text{Act} \rightarrow \mathbb{R}_{\geq 0}\) action reward function
 - \(\iota(a)\) is the reward associated with performing the action \(a\).

- Generalises notion for uniformly priced timed automata.

- A useful special case is the elapsed time
 - \(\rho(l) = 1\) for all locations \(l \in \text{Loc}\)
 - \(\iota(a) = 0\) for all actions \(a \in \text{Act}\).
Expected reachability

• Expected reachability:
 – min./max. expected cumulated reward until some set of states (locations) is reached

• Example properties
 – “the maximum expected time until a data packet is delivered”
 – “the minimum expected number of retransmissions before the message is correctly delivered”
 – “the maximum expected number of lost messages within the first 200 seconds”

• Model checking
 – digital clocks semantics preserves expected reachability
 – so can use existing MDP reward model checking techniques
 – no zone–based approaches (yet)
Summary

- **Probabilistic timed automata (PTAs)**
 - combine probability, nondeterminism, real-time
 - well suited for e.g. for randomised communication protocols
 - MDPs + clocks (or timed automata + discrete probability)
 - extension with continuous distributions exists, but model checking only approximate

- **PTCTL: Temporal logic for properties of PTAs**
 - but many useful properties expressible with just reachability

- **PTA model checking**
 - region graph: decidability results, exponential complexity
 - digital clocks: simple and effective, some scalability issues
 - forwards reachability: only upper bounds on max. prob.s
 - backwards reachability: exact results but often expensive
 - abstraction refinement using stochastic games: performs well
 - tool support: PRISM, mcpt, UPPAAL-Pro
Thanks for your attention

More info here: www.prismmodelchecker.org