OUTLINE

• Model Checking in a Nutshell
• Timed automata and TCTL
• A UPPAAL Tutorial
 • Data structures & central algorithms
 • UPPAAL input languages

Timed Automata, TCTL & Verification Problems

Timed Automata: Syntax

Timed Automata: Semantics

Timed Automata with Invariants

Timed Automata: Example
Timed Automata: Example

Clock Constraints

\[g ::= x \sim n \mid g \land g \]

where
- \(x \) is a clock variable
- \(\sim \in \{<,>,\leq,\geq\} \)
- \(n \) is a natural number

Semantics (definition)

- **clock valuations**: \(V(C) \rightarrow R_{\geq 0} \)
- **state**: \((l, v) \) where \(l \in L \) and \(v \in V(C) \)
- **action transition**: \((l, v) \xrightarrow{a} (l', v') \) iff \(g(v) \) and \(v' = v[r] \) and \(Inv(l')(v') \)
- **delay transition**: \((l, v) \xrightarrow{\delta} (l, v + d) \) iff \(Inv(l)(v + d') \) whenever \(d \leq d' \in R_{\geq 0} \)

Timed Automata

\[\overset{\text{=}}{\text{=}} \]

Finite Automata + Clock Constraints + Clock resets
Modeling Concurrency

- Products of automata
- CCS Parallel composition
 - implemented in UPPAAL

CCS Parallel Composition (implemented in UPPAAL)

where \(a \) is an action \(c! \) or \(c? \) or \(\tau \), and \(c \) is a channel name

The UPPAAL Model

= Networks of Timed Automata + Integer Variables + ...

Example transitions:

\[
\begin{align*}
(l_0, m_0, \ldots, x=2, y=3.5, i=3, \ldots) & \rightarrow (l_0, m_0, \ldots, x=2, y=3.5, i=7, \ldots)
\end{align*}
\]

Verication Problems

Location Reachability (def.)

\(n \) is reachable from \(m \) if there is a sequence of transitions:

\[
\begin{align*}
(m, u) & \rightarrow^{\ast} (n, v)
\end{align*}
\]

(Timed) Language Inclusion, \(L(A) \subseteq L(B) \)

\[
\begin{align*}
(a_0, t_0)(a_1, t_1) \ldots (a_n, t_n) \in L(A)
\end{align*}
\]

If

- \(\Lambda \) can perform \(a_0 \) at \(t_0 \), \(a_1 \) at \(t_1 \) ... \(a_n \) at \(t_n \)
- \(\langle l_0, u_0 \rangle \) \(\rightarrow \langle l_0, u_0 + t_2 \rangle \) \(\rightarrow \langle l_0, u_0 \rangle \) \(\ldots \)
Verification Problems

- Timed Language Equivalence & Inclusion
 - 1-clock, finite traces, decidable [Ouaknine & Worrell 04]
 - 1-clock, infinite traces & Buchi-conditions, undecidable [Abdulla et al 05]
- Universality
- Untimed Language Inclusion
- (Un)Timed (B)simulation
- Reachability Analysis/Emptiness
- Optimal Reachability (synthesis problem)
 - If a location is reachable, what is the minimal delay before reaching the location?

Timed CTL = CTL + clock constraints

Note that the semantics of TA defines a transition system where each state has a Computation Tree

Computation Tree Logic, CTL
Clarke & Emerson 1980

Syntax

\[\phi ::= P \mid \neg \phi \mid \phi \lor \psi \mid \text{EX} \mid \text{E}[\phi U \psi] \mid \text{A}[\phi U \psi] \]

where \(P \in \text{AP (atomic propositions)}\)

Derived Operators

- \(\text{AG} \)
- \(\text{EG} \)
- \(\text{EF} \)
- \(\text{AF} \)

Liveness: \(p - \rightarrow q \) “\(p \) leads to \(q \)”

Timed CTL (a simplified version)

Syntax

\[\phi ::= P \mid \neg \phi \mid \phi \lor \psi \mid \text{EX} \mid \text{E}[\phi U \psi] \mid \text{A}[\phi U \psi] \]

where \(P \in \text{AP (atomic propositions)} \) OR Clock constraint

Derived Operators

- \(\text{AG} \)
- \(\text{EG} \)
- \(\text{EF} \)
- \(\text{AF} \)

Timed CTL (a simplified version)

Syntax

\[\phi ::= P \mid \neg \phi \mid \phi \lor \psi \mid \text{EX} \mid \text{E}[\phi U \psi] \mid \text{A}[\phi U \psi] \]

where \(P \in \text{AP (atomic propositions)} \) OR Clock constraint

Derived Operators

- \(\text{AG} \)
- \(\text{EG} \)
- \(\text{EF} \)
- \(\text{AF} \)
Derived Operators (cont.)

\[AG(p \implies AF q) \]

\[p \implies q \text{ in UPPAAL} \]

Bounded Liveness

Verify: "whenever p is true, q should be true within 10 sec

\[p \implies (q \text{ and } x<10) \]

Use extra clock x
Add \(x:=0 \) on all edges leading to P

Bounded Liveness/Responsiveness

(reachability analysis, more efficient?)

Verify: "whenever p is true, q should be true within 10 sec

\[AG((P_b \text{ and } x>10) \implies q) \]

Use extra clock x and boolean \(P_b \)
Add \(P_b:=tt \) and \(x:=0 \) on all edges leading to location P

Problem with Zenoness/Time-stop

EXAMPLE

We want to specify "whenever P is true, Q should be true within 10 time units

\[y\leq5 \]

\[(P_y:=5) \]

\[y\leq5 \]
We want to specify "whenever P is true, Q should be true within 10 time units"

\[p := \text{true} \quad x := 0 \]

\[\text{AG } (\text{P} \land x > 10) \Rightarrow Q \]

We want to specify "whenever P is true, Q should be true within 10 time units"

\[p := \text{true} \quad x := 0 \]

\[\text{AG } (\text{P} \land x > 10) \Rightarrow q \]

is satisfied !!!

Solution with UPPAAL

Check Zeno-freeness by an extra observer

System || ZenoCheck

A

X=1

Check (yes means "no zeno loops")

ZenoCheck.A -> ZenoCheck.B

Committed location!

Infinite State Space!

Region: From infinite to finite

Concrete State

\((n, x=2.2, y=1.5)\)

Symbolic state (region)

\((n, \ldots)\)

An equivalence class (i.e., a region)

There are only finite many such!!
Region equivalence (Intuition)

\[u \equiv v \iff (l, u) \text{ and } (l, v) \text{ may reach the same set of equivalence classes} \]

Region equivalence (alternatively)

\[u \equiv v \iff u \text{ and } v \text{ satisfy exactly the same set of constraints in the form of } x_i \sim m \text{ and } x_i \sim n \text{ where } \sim \text{ is in } \{<, >, \leq, \geq\} \text{ and } m, n < \text{MAX} \]

This is not quite correct; we need to consider the MAX more carefully.

Region equivalence \([\text{Alur and Dill 1990}]\)

- \(u, v\) are clock assignments
- \(u \equiv v\) iff
 - For all clocks \(x\),
 - either (1) \(u(x) > C_x\) and \(v(x) > C_x\)
 - or (2) \(\lfloor u(x) \rfloor = \lfloor v(x) \rfloor\)
 - For all clocks \(x\), if \(u(x) \leq C_x\),
 - \(\{u(x)\} = 0\) \(\iff\) \(\{v(x)\} = 0\)
 - For all clocks \(x, y\), if \(u(x) \leq C_x\) and \(u(y) \leq C_y\)
 - \(\{u(x)\} \leq \{u(y)\} \iff \{v(x)\} \leq \{v(y)\}\)

Region Graph

Finite-State Transition System!!

OBS: there are only Finite many regions

\[(m, [u]) \rightarrow (n, [v]) \text{ if } (m, u) \rightarrow (n, v) \]
Theorem

\[u \equiv v \implies \]
\[u(x:=0) \equiv v(x:=0) \]
\[u+n \equiv v+n \text{ for all natural number } n \]
\[\text{for all } d<1: u+d \equiv v+d' \text{ for some } d'<1 \]

"Region equivalence" is preserved by "addition" and reset.
(Also preserved by "subtraction" if clock values are "bounded")

Region graph of a simple timed automata

Fischers again

Problems with Region Construction

- Too many 'regions'
 - Sensitive to the maximal constants
 - e.g. \(x > 1,000,000, y > 1,000,000 \) as guards in TA
- The number of regions is highly exponential in the number of clocks and the maximal constants.

Zones: From infinite to finite

REACHABILITY ANALYSIS using ZONES
Symbolic Transitions

Fischer's Protocol analysis using zones

Thus \((n, 1 \leq x \leq 4, 1 \leq y \leq 3) \Rightarrow (m, 3 < x, y = 0)\)

Fischer's Protocol cont.

Taking time into account

Fischer's Protocol cont.
Fischers cont.

Untimed case

Taking time into account

Zones = Conjunctive constraints

- A zone Z is a conjunctive formula: $g_1 \land g_2 \land \ldots \land g_n$
 where g_i may be $x_i \sim b_i$ or $x_i-x_j \sim b_{ij}$
- Use a zero-clock x_0 (constant 0), we have
 $(x_i-x_j \sim b_{ij} \mid i,j \leq n)$
- This can be represented as a MATRIX, DBM
 (Difference Bound Matrices)

Solution set as semantics

- Let Z be a zone (a set of constraints)
- Let $[Z]=\{u \mid u$ is a solution of $Z\}$
 (We shall simply write Z instead $[Z]$)

Operations on Zones

- Post-condition (Delay): $SP(Z)$ or Z^\uparrow
 $\{Z^\uparrow\} = \{u+d \mid d \in \mathbb{R}, u \in [Z]\}$
- Pre-condition: $WP(Z)$ or Z^\downarrow (the dual of Z^\uparrow)
 $\{Z^\downarrow\} = \{u \mid u+d \in [Z]$ for some $d \in \mathbb{R}\}$
- Reset: $\{x\}Z$ or $Z(x:=0)$
 $\{x\}Z = \{u[0/x] \mid u \in [Z]\}$
- Conjunction
 $\{Z_1 \land Z_2\} = \{Z_1 \land Z_2\}$

Two more operations on Zones

- Inclusion checking: $Z_1 \subseteq Z_2$
 solution sets
- Emptiness checking: $Z = \emptyset$
 no solution
Theorem on Zones

The set of zones is closed under all zone operations

- That is, the result of the operations on a zone is a zone
- Thus, there will be a zone to represent the sets: $[Z^\uparrow]$, $[Z^\downarrow]$, $[(x)Z]

One-step reachability: $S_i \rightarrow S_j$

- **Delay:** $(n, Z) \rightarrow (n, Z')$ where $Z' = Z^\uparrow \land \text{inv}(n)$
- **Action:** $(n, Z) \rightarrow (m, Z')$ where $Z' = (x)(Z \land g)$

 ![Diagram of one-step reachability](image)

- **Reach:** $(n, Z) \sim (m, Z')$ if $(n, Z) \rightarrow (m, Z')$
- **Successors** $(n, Z) = \{(m, Z') | (n, Z) \sim (m, Z'), Z' \neq \emptyset\}$

Now, we have a search problem

![Diagram of a search problem](image)