forsynchronization

OUTLINE

e Model Checking in a Nutshell
® Timed automata and TCTL

e A UPPAAL Tutorial

e Data stuctures & central algorithms
e UPPAAL input languages

Timed Automata: Syntax

Clocks: x y

Guard =clock constraint

-

x<=5&y>3 Reset

Action perfomed on clocks
a /
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Timed Automata, TCTL
& Verification Problems

Timed Automata: Semantics

Clocks: x y
Guard =clock constraint

-

Reset
x<=5&y>3 Action perfomed on clocks

Action
used
for synchronization

State

(location , x=v , y=u) where v,uare inR

Transitions
o AN (n,x=24,y=3.1415) —2 ~  (m, x=0, y=3.1415 )
\ 1.1

(n, x=2.4,y=31415) — - (n,x=35,y=4.2415)

Timed Automata with Znvariants

/- @ Clocks: x y

X<=5&y>3

Location Transitions /4
Invariants a

(n, x=24,y=3.1415)

1.1
(m, x=2.4,y=31415) — > (n,x=3.5, y=4.2415)
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Timed Automata: Example
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Timed Automata: Example

4 -
e Timed Automata
o P / - —
z—f;—; ————— yARun i =
L / Finite Automata + Clock Constraints + Clock resets
2 4 6 8 10
time ——=
Clock Constraints Semantics (definition)
= dlock valuations: V(C) v:C—R:o
g:=x~n| g&g = state: (I,v) where lelL and veV(C)

where

= xisa clock variable
"~ e{,>, 5>

= nis a natural number

action transition (1,v)——(I',v') iff ()22t ()
g(v) and v'=v[r] and Inv(l')(v")

delay Transition (I,v) ——(1,v+d) iff
Inv(l)(v+d") whenever d'<d eR=o
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Modeling Concurrency CCS Parallel Composition (implemented in UPPAAL)

= Products of automata

g a x:=0 g a x:=0
= CCS Parallel composition . then
® implemented in UPPAAL g a x=0 gram=0

g c x:=0 g&g’ x:=0
g’ c? y:=0
e @@

13 where a is an action c! or c? or t, and c is a channel name 14

The UPPAAL Model

= Networks of Timed Automata + Integer Variables +....

y<=4 Two-way synchronization

............. on complementary actions.

/@ Verification Problems

Example transitions

(1, mi,...., X=2, y=3.5, i=3....)

2z2m2,......,.x=0, y=3.5 i=]...)

Location Reachability (def.) (Timed) Language Inclusion, L(A) c L(B)

n is reachable from m if there is a sequence of transitions: (Bar o) (B3 1) e oee (B 1) € L(A)
If
(m, u) * o (n,v) A can perform a,att, aatt; ... ... a, att,”
(lor U) —22 (Toy tp+t0) 2 (I, ) e o




Verification Problems

= Timed Language Equivalence & Inclusion ®
e 1-clock, finte traces, decidable [Ouaknine & Worrell 04]
e 1-clock, infinite traces & Buchi-conditions, undecidable [Abdulla et al 05]

= Universality ®

= Untimed Language Inclusion ©

(Un)Timed (Bi)simulation ©

Reachability Analysis/Emptiness ©

Optimal Reachability (synthesis problem) ©

e Ifa location is reachable, what is the minimal delay before reaching the
location?

Computation Tree Logic, CTL
Clarke & Emerson 1980

Syntax
=P |=¢love | EXo|E[pU]IA[$U9]

where P e AP (atomic propositions)

Derived Operators

AGp EGp EF p AFp
¢ P 1 \\: g P s
~ ,'/'
o 21

Timed CTL = CTL + clock constraints

Note that the semantics of TA defines a transition system
where each state has a Computation Tree

Liveness: p - -> q p leads to ¢”

AG (p imply AF q)

Timed CTL (a simplified version)

Syntax
du=pl=odldveolEXG|EDU ]| ADU ¢]

where P < AP (atomic propositions) OF Clock constraint
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Timed CTL (a simplified version)

Syntax
bu=pl=oldvelEX|EDU ]| ADU o]

where P e AP (atomic propositions) OF Clock constraint

Derived Operators

AGp EGp EF p AFp
<~\
./ ; O/@\: O/@ O/@
1
7

A[] P in UPPAAL E[] P in UPPAAL E<> P in UPPAAL A<>P in UPPAAL




Derived Operators (cont.) Bounded Liveness

[TACAS 98]

AG (p |mply AF q) Verify: "whenver p is true,
q should be true within 10 sec

./p p P-->(qandx<10)

Use extra clock x
q Add x:=0 on all edges
q q leading to P

p-->qin UPPAAL
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Bounded Liveness/Responsiveness Bounded Liveness/Responsiveness

(reachability analysis, more efficient?) (reachability analysis, more efficient?)
[TACAS 98] [TACAS 98]

This is not really correct;

“not Pg” ‘should be added as guard

Verify: "whenver p is true,
Pb:=

Verify: "whenver p is true,
q should be true within 10 sec

q should be true within 10 sec

AG ((P, and x>10) imply q) AG ((P, and x>10)imply q)
Use extra clock x and boolean P,
Add P,:= tt and x:=0 on all edges
leading to location P

Use extra clock x and boolean P,
Add P, := tt and x:=0 on all edges
leading to location P

Pb:=ﬁ—' shaul! be

On all eadges leaving q
28
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Problem with Zenoness/Time-stop EXAMPLE

We want to specify "whenever P is true,

y< =5C>< y< =® Q should be true within 10 time units
Q =s <=5

29 30




EXAMPLE
<=5 We want to specify "whenever P is true,
y<= Q should be true within 10 time units
®<=5
Ppi=true AG ((P, and x>10)imply Q)
x:=0

3t

Solution with UPPAAL

Check Zeno-freeness by an extra observer
System | | ZenoCheck

A
X<=1
X=1 Check (yes means “no zeno loops”)
x:=0 ZenoCheck.A - - > ZenoCheck.B
ZenoCheck e

Committed location!
33

EXAMPLE

We want to specify "whenever P is true,
Q should be true within 10 time units

y<=5
(o

Pp:=true
x:=0

AG ((P, and x>10) imply q)

is satisfied !

REACHABILITY ANALYSIS
using Regions

Infinite State Space!

— =2 —~
—a-{\tﬂz—’-( 1) gives rise to the
— ’ infinite transition system:
...... ()
z =27

However, the reachability problem is decidable © Alur&Dill 1991
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Region: From infinite to finite

Concrete State Symbolic state (region)

(n, x=2.2,y=1.5) (n, ' )

1 oo '
2 ) > —
(9]
1 1
X X
i 2 3 1 2 3

An equivalence class (i.e. a region)
There are only finte many such!! 36




Region equivalence (Intuition)

‘ u =z v iff (I,u) and (l,v) may reach
the same set of egivalence classes
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Region equivalence (Intuition)

y
2 -
| ‘ u = v iff (I,u) and (I,v) may reach
) (e the same set of eqivalence classes
/ 1 2 3 x
uzv
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Region equivalence (Intuition)

] ‘ u=z v iff (I,u) and (I,v) may reach
g the same set of eqivalence classes

Region equivalence /a/urand il 19907

= u,v are clock assignments
= uav iff
e For all clocks x,
either (1) u(x)>Cxand v(x)>Cx
or  (2) Lu)l=lv(x)
® For all clocks X, if u(x)<=Cx,
{u(x)}=0 iff {v(x)}=0
® Forall clocks x, y, if u(x)<=Cx and u(y)<=Cy
{uGO)I<={u(y)} f {v(x)}<=A{v(y)}

Region equivalence (alternatively)

y
u = v iff u and v satisfy exactly
2 the same set of constraintsin
‘ the form of
L xi~mand xi-xj~ n
where ~ isin {<,>,<,>}
and m,n < MAX
1 2 3 x
This is not quite correct;
=Y

we need to consider the MAX
more carefully
41
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Region Graph

Finite-State Transition System!!

O — .
x:=0
(m, | y——(m, ')
1 2 30 x
OBS: there are only n
Finite many regions I(m, [u]) — (n, [v]) if (m, u) (nyv)

a2




Theorem

u~v implies
® u(x:=0)~ v(x:=0)
® u+n~ v+n for all natural number n
e forall d<1: u+d ~ v+d’ for some d’'<1

"Region equivalence’ is preserved by "addition” and reset.
(also preserved by “subtraction” if clock values are "bounded”)
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AG(—.(CSl ACS, ))
@X<1 v.='x::®>1 » @
W V>1
Timed case <1 : @ @

Fischers again

Untimed case

\A B C
1 | [ -
z=0 0<a<1 z=1
™~
I A
— (F o E D
1 |¢_ ! |(_< 1 |
z2>2 z =12 l<ze<?

¥
ALB2,v=2 | | ALB2v=2 | | ALB2v=2 | |ALB2v=2
0<x<1 0<y<x<l [ 0<y<x=1p 0<y<i
1<x

Partial
A1,A2,v=1 A1,A2,v=1 A1,A2,v=1 A1,A2,v=1 Region Graph
x=y=0 0 <x=y <1 x=y=1 1<x,y

B1,CS2,v=1

No further behaviour possible!!
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Region graph of
a simple timed automata
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Problems with Region Construction

= Too many ‘regions’
® Sensitive to the maximal constants
® e.g. x>1,000,000, y>1,000,000 as guards in TA

= The number of regions is highly exponential in the
number of clocks and the maximal constants.
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REACHABILITY ANALYSIS
using ZONES
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Zones: From infinite to finite

State Symbolic state (zone)
(n,x=3.2,y=2.5) (n, 1<x<4,1<y<3)

Zone:
conjunction of

y X-y~n, X~n

(00}




Symbolic Transitions

Le=x<=4 1<=x, 1<=y
y le=y<=3 V| 2<=x-y<=3
delays to '
(|
—x
x>3
Yy y 32<x, 1<=y S
2<mxy<=
conjuncts to Y
a x>3
X
y:=0 projects to 3<x,y=0
y:=0

Thus (n, 1<=x<=4,1<=y<=3) =a=>(m, 3<x,y=0)]
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Fischers cont.

<10 X::$)’\)§>10
@ ()
Untimed case

[Ava2v=1 —— aLB2v=2 ——{ a1,cs2,v=2 —] B1,cs2,v=1 —— cs1,cs2,v=1]
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Fischer’s Protocol
analysis using zones

(o -
3 ; 2 | =
(3 /
L aal ¢
["CZ"”Y @X<10 vt >(:=OCB\1/X>IOV:1

Y:=0, Y>10 .

Y<10 Vem2 ver

+

Criticial Section

Fischers cont.

<10 Xi= >10
@ (e
Untimed case

[Aazv=t F—— avB2.v=2 F——{ a1,cs2,v=2 —] B1,cs2,v=1 —— cs1,cs2,v=1 ]

Taking time into account

Fischers cont.

@ <10 x:=>1o ~ @

i >10
@<10 umal @ = @
Untimed case

[A1,n2,v=1 F——{ A1,B2,v=2 ——{ A1,cs2,v=2 — B1,c52,v=1 |—— cs1,c52,v=1 |

Taking time into account
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Fischers cont.

@ <10 _ X::>10 3 @

<10 y_,Y:i= >10,
Untimed case

[ALa2,v=1 F——{ A1B2,v=2 —— A1,cs2,v=2 — B1,cs2,v=1 |——] cs1,cs2,v=1 ]

Taking time into account




Fischers cont.

x<10 _ x::>1o ~

(esi

Untimed case

- >10
o @

[A1,A2,v=1 ——] A1,B2,v=2 ——{ A1,c82,v=2 | B1,c52,v=1 |——[ cs1,c52,v=1 |

Taking time into account
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Zones = Conjuctive constraints

= Azone Zis a conjunctive formula:
g &g &... &g,
where g; may be x; ~ b; or x-x~b;
= Use a zero-clock x, (constant 0), we have
{xx ~ by | ~is < or<,ij<n}
= This can be represented as a MATRIX, DBM
(Difference Bound Matrices)
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Fischers cont.

><<10 \ ::>10 »

(esi

Untimed case

= >10

[ A1A2,v=1 F—— A1,82,v=2 ——{ AL,cs2,v=2 | B1,cs2,v=1 |——] cs1,c52,v=1 ]

Taking time into account

Solution set as semantics
= Let Z be a zone (a set of constraints)
= Let[Z]={u | uis a solution of Z}

(We shall simply write Z instead [Z] )

Operations on Zones

Post-condition (Delay): SP(Z) or ZT
e [Z1]={u+d| d e R, ue[Z]}

Pre-condition: WP(Z) or Z{ (the dual of Z1)
o [7l]={u| u+de[Z] for some deR}

Reset: {x}Zor Z(x:=0)
o [{x}Z]={u[0/x] | u e[Z]}

Conjunction
* [78g]=[Z][g]
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Two more operations on Zones

= Inclusion checking: ZicZ>
= solution sets

= Emptiness checking: Z = @
= no solution

60
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Theorem on Zones

The set of zones is closed
under all zone operations

® That is, the result of the operations on a zone is a zone
e Thus, there will be a zone to represent the sets: [Z1], [ZV], [{x}Z]
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Now, we have a search problem

(no,Zo)

/TN

EF®
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One-step reachability: si— sj

= Delay: (n,Z) > (n,Z") where Z'= ZT A inv(n)

= Action: (n,Z) > (m,Z") where Z'= {x}(Z Ag)

if ‘—9—9.“

Reach: (n,Z) —(m,Z’) if (n,Z) >->(m,Z")
= Successors(n,Z)={(m,Z") | (n,Z2) ——(m,Z"), Z'+D}
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