OUTLINE

- Model Checking in a Nutshell
- Timed automata and TCTL
- A UPPAAL Tutorial
 - Data stuctures & central algorithms
 - UPPAAL input languages

Timed Automata, TCTL & Verification Problems

Timed Automata: Syntax

Timed Automata: Semantics

Timed Automata with *Invariants*

Timed Automata: Example

Timed Automata: Example

X>=2 X:=0 X:=0

Timed Automata: Example

Timed Automata: Example

Timed Automata

=

Finite Automata + Clock Constraints + Clock resets

Clock Constraints

$g ::= x \sim n \mid g \& g$

where

- x is a clock variable
- ~ ∈ {<,>,≤,≥}
- n is a natural number

Semantics (definition)

- <u>clock valuations</u>: V(C) $v: C \rightarrow R \ge 0$
- *state*: (l,v) where $l \in L$ and $v \in V(C)$
- <u>action transition</u> $(l,v) \xrightarrow{a} (l',v')$ iff $(l,v) \xrightarrow{g \ a \ r} (l',v')$ $(l,v') \xrightarrow{g \ a \ r} (l',v')$ and $(l,v) \xrightarrow{g \ a \ r} (l',v')$
- <u>delay Transition</u> $(l,v) \xrightarrow{d} (l,v+d)$ iff $Inv(l)(v+d') \text{ whenever } d' \leq d \in R_{\geq 0}$

Modeling Concurrency

- Products of automata
- CCS Parallel composition
 - implemented in UPPAAL

CCS Parallel Composition (implemented in UPPAAL)

where a is an action c! or c? or τ , and c is a channel name

The UPPAAL Model

= Networks of Timed Automata + Integer Variables +....

15

Verification Problems

Location Reachability (def.)

(Timed) Language Inclusion, $L(A) \subseteq L(B)$

 $(a_0, t_0) (a_1, t_1) \dots (a_n, t_n) \in L(A)$

 \boldsymbol{n} is reachable from \boldsymbol{m} if there is a sequence of transitions:

"A can perform a_0 at t_0 , a_1 at t_1 a_n at t_n " $(I_0,u_0) \stackrel{t_0}{-\!\!\!-\!\!\!-\!\!\!-\!\!\!-} (I_0,u_0{+}t_0) \stackrel{a_0}{-\!\!\!\!-\!\!\!\!-\!\!\!\!-} (I_1,u_1) \dots \dots$

Verification Problems

- Timed Language Equivalence & Inclusion ☺

 - 1-clock, finite traces, decidable [Ouaknine & Worrell 04]
 1-clock, infinite traces & Buchi-conditions, undecidable [Abdula et al 05]
- Universality ⊗
- Untimed Language Inclusion ©
- (Un)Timed (Bi)simulation ☺
- Reachability Analysis/Emptiness ©
- Optimal Reachability (synthesis problem) ©
 - If a location is reachable, what is the minimal delay before reaching the location?

Timed CTL = CTL + clock constraints

Note that the semantics of TA defines a transition system where each state has a Computation Tree

Computation Tree Logic, CTL

Clarke & Emerson 1980

Syntax

 $\phi ::= P \mid \neg \phi \mid \phi \lor \phi \mid EX \phi \mid E[\phi \cup \phi] \mid A[\phi \cup \phi]$

where $\mathbf{P} \in \mathsf{AP}$ (atomic propositions)

Derived Operators

Liveness: p - -> q

"p leads to q"

Timed CTL (a simplified version)

Syntax

 $\varphi \, :: \, = \, \frac{\mathsf{p}}{\mathsf{p}} \, | \, \neg \, \varphi \, | \, \varphi \vee \varphi \, | \, \mathsf{EX} \, \varphi \, | \, \mathsf{E}[\varphi \, \mathsf{U} \, \varphi] \, | \, \mathsf{A}[\varphi \, \mathsf{U} \, \varphi]$ where $\boldsymbol{p} \in \mathsf{AP}$ (atomic propositions) **Or** Clock constraint

Timed CTL (a simplified version)

Syntax

 $\phi ::= \mathbf{p} \mid \neg \phi \mid \phi \lor \phi \mid \mathsf{EX} \phi \mid \mathsf{E}[\phi \cup \phi] \mid \mathsf{A}[\phi \cup \phi]$ where $\boldsymbol{p} \in \mathsf{AP}$ (atomic propositions) **Or Clock constraint**

Derived Operators

Derived Operators (cont.)

Bounded Liveness

[TACAS 98]

Verify: "whenver p is true, q should be true within 10 sec

P--> (q and x<10)

Use extra clock x
Add x:=0 on all edges
leading to P

Bounded Liveness/Responsiveness

(reachability analysis, more efficient?)

[TACAS 98]

Verify: "whenver p is true, q should be true within 10 sec

AG ((P_b and x>10) imply q)

Use extra clock x and boolean P_b Add P_b := tt and x:=0 on all edges leading to location P

Bounded Liveness/Responsiveness

(reachability analysis, more efficient?)

[TACAS 98]

Verify: "whenver p is true, q should be true within 10 sec

AG ((P_b and x>10) imply q)

Use extra clock x and boolean P_b Add $P_b := tt$ and x := 0 on all edges leading to location P

Problem with Zenoness/Time-stop

y<=5

EXAMPLE

We want to specify "whenever P is true, Q should be true within 10 time units

EXAMPLE

EXAMPLE

We want to specify "whenever P is true, Q should be true within 10 time units

AG ((P_b and x>10) imply Q)

We want to specify "whenever P is true, Q should be true within 10 time units

AG ((P_b and x>10) imply q) is satisfied !!!

22

Solution with UPPAAL

Check Zeno-freeness by an extra observer System || ZenoCheck

REACHABILITY ANALYSIS using Regions

24

Infinite State Space!

However, the reachability problem is decidable © Alur&Dill 1991

Region: From infinite to finite

Region equivalence (Intuition)

 $u \cong v$ iff (I,u) and (I,v) may reach the same set of eqivalence classes Region equivalence (Intuition)

Region equivalence (Intuition)

Region equivalence [Alur and Dill 1990]

- u,v are clock assignments
- u≈v iff
 - For all clocks x,

 - For all clocks x,
 either (1) u(x)>Cx and v(x)>Cx
 or (2) Lu(x)]=Lv(x) J
 For all clocks x, if u(x)<=Cx,
 {u(x)}=0 iff {v(x)}=0
 For all clocks x, y, if u(x)<=Cx and u(y)<=Cy
 {u(x)}<={u(y)} iff {v(x)}<={v(y)}

Region equivalence (alternatively)

 $u \cong v$ iff u and v satisfy exactly the same set of constraints in the form of

 $xi \sim m$ and $xi-xj \sim n$ where \sim is in $\{<,>,\leq,\geq\}$ and m,n < MAX

This is not quite correct; we need to consider the MAX more carefully

Region Graph

Finite-State Transition System!!

Theorem

u≈v implies

- u(x:=0) ≈ v(x:=0)
- $\bullet \ u + n \approx v + n \ \text{for all natural number } n \\$
- for all d<1: $u+d \approx v+d'$ for some d'<1

"Region equivalence' is preserved by "addition" and reset. (also preserved by "subtraction" if clock values are "bounded")

Region graph of a simple timed automata

 $AG(\neg(CS_1 \land CS_2))$ Fischers again Untimed case Partial A1,A2,v=1 Region Graph A1,A2,v=1 A1,B2,v=2 A1,B2,v=2 0 <y < x<1 A1,B2,v=2 0 <y < x=1 A1,CS2,v=2 A1,B2,v=2 1 <x,y A1,B2,v=2 B1,CS2,v=1 A1,CS2,v=2 1 <x,y No further behaviour possible!!

Problems with Region Construction

- Too many 'regions'
 - Sensitive to the maximal constants
 - e.g. x>1,000,000, y>1,000,000 as guards in TA
- The number of regions is highly exponential in the number of clocks and the maximal constants.

Zones: From infinite to finite

REACHABILITY ANALYSIS using ZONES

Symbolic Transitions

Zones = Conjuctive constraints

- A zone Z is a conjunctive formula:
 g₁ & g₂ & ... & g_n
 where g_i may be x_i ~ b_i or x_i-x_i~b_i
- Use a zero-clock x_0 (constant 0), we have $\{x_\Gamma x_j \sim b_j \mid \sim \text{is} < \text{or} \leq, \text{i}, \text{j} \leq n\}$
- This can be represented as a MATRIX, DBM (Difference Bound Matrices)

Solution set as semantics

- Let Z be a zone (a set of constraints)
- Let [Z]={u | u is a solution of Z}

(We shall simply write Z instead [Z])

Operations on Zones

- Post-condition (Delay): SP(Z) or Z^{\uparrow} • $[Z^{\uparrow}] = \{u+d | d \in R, u \in [Z]\}$
- Pre-condition: WP(Z) or Z↓ (the dual of Z↑)
 [Z↓] = {u| u+d∈[Z] for some d∈R}
- Reset: {x}Z or Z(x:=0)[{x}Z] = {u[0/x] | u ∈ [Z]}
- Conjunction
 [Z&g]=[Z]∩[g]

Two more operations on Zones

- Inclusion checking: Z₁⊆Z₂
 - solution sets
- Emptiness checking: Z = Ø
 - no solution

60

Theorem on Zones

The set of zones is closed under all zone operations

- That is, the result of the operations on a zone is a zone Thus, there will be a zone to represent the sets: $[Z^{\uparrow}]$, $[Z^{\downarrow}]$, $[\{x\}Z]$

One-step reachability: Si Sj

- Delay: $(n,Z) \rightarrow (n,Z')$ where $Z' = Z^{\uparrow} \land inv(n)$
- Action: $(n,Z) \rightarrow (m,Z')$ where $Z' = \{x\}(Z \land g)$

- Reach: $(n,Z) \sim (m,Z')$ if $(n,Z) \rightarrow (m,Z')$
- Successors(n,Z)= $\{(m,Z') \mid (n,Z) \frown (m,Z'), Z' \neq \emptyset\}$

Now, we have a search problem

EF 🟻