Description Logics

Franz Baader
Theoretical Computer Science
TU Dresden
Germany

1. Motivation and introduction to Description Logics
2. Tableau-based reasoning procedures
3. Automata-based reasoning procedures
4. Complexity of reasoning in Description Logics
5. Reasoning in inexpressive Description Logics
Reasoning procedures

requirements

1. The procedure should be a decision procedure for the problem.

2. The procedure should be as efficient as possible:
 preferably optimal w.r.t. the (worst-case) complexity of the problem

3. The procedure should be practical:
 easy to implement and optimize, and behave well in applications

The tableau-based reasoning procedure for ALC

- satisfies the first requirement, as shown in the previous lecture.

- Highly-optimized implementations in systems like FaCT and RACER demonstrate that it satisfies the third requirement.

- It does not satisfy the second requirement in the presence of GCI's.
Tableau-based procedures

- the consistency problem for \mathcal{ALC} with GCIs is ExpTime-complete, but it is very hard to design a tableau-based algorithm that is better than NExpTime:
 - exponentially long chains of role successors may be generated before blocking occurs
 - to each individual in the chain, non-deterministic rules may be applied

- termination requires blocking:
 - proof of termination and soundness becomes more complicated
 - for more expressive DLs (e.g., with number restrictions and inverse roles) one needs sophisticated blocking conditions
Automata-based procedures

For simplicity, we restrict the attention to satisfiability, i.e., consistency of an ABox of the form \(\{C_0(a_0)\} \) w.r.t. a general TBox \(\mathcal{T} \).

- Show that \(C_0 \) is satisfiable w.r.t. \(\mathcal{T} \) iff \(\mathcal{T} \) and \(\{C_0(a_0)\} \) have a tree-shaped model with root \(a_0 \).
- Translate \(C_0, \mathcal{T} \) into a tree automaton \(A_{C_0,\mathcal{T}} \) that accepts exactly the tree-shaped models of \(\mathcal{T} \) and \(\{C_0(a_0)\} \).
- Test \(A_{C_0,\mathcal{T}} \) for emptiness: is there a tree accepted by \(A_{C_0,\mathcal{T}} \)?
Automata-based procedures advantages and disadvantages

+ separation between DL-dependent part (translation) from DL-independent part (emptiness test)

+ termination is not an issue if we use automata working on infinite trees

+ well-suited for showing ExpTime upper-bounds:
 translation is exponential, emptiness test polynomial

 — usually also best-case exponential:
 translation required before emptiness test can be applied

 — no optimized implementations available
Infinite trees

We consider infinite trees with a fixed out-degree \(k \), whose nodes are labeled with elements from a finite alphabet \(\Sigma \):

Example: \(k = 2 \) and \(\Sigma = \{a, b\} \)

This tree is described by the mapping \(t : \{0, 1\}^* \rightarrow \Sigma \) with

\[
\begin{cases}
 b & \text{if } u \text{ starts with 0} \\
 a & \text{otherwise}
\end{cases}
\]

\(k \)-ary tree over \(\Sigma \):

\(t : \{0, \ldots, k - 1\}^* \rightarrow \Sigma \)
Automata on infinite trees

informal description

The automaton labels nodes of the tree with states.

\[Q = \{ q_0, q_1, q_2 \} \]
\[I = \{ q_0 \} \]
\[(q_0, a) \rightarrow (q_1, q_2) \]
\[(q_0, a) \rightarrow (q_2, q_1) \]
\[(q_1, b) \rightarrow (q_1, q_1) \]
\[(q_2, a) \rightarrow (q_2, q_2) \]

The root is labeled with an initial state.

The labeling of the other nodes must be compatible with the transition relation.

The transition relation may be non-deterministic.
Automata on infinite trees

A looping automaton working on k-ary trees is of the form $\mathcal{A} = (Q, \Sigma, I, \Delta)$ where

- Q is a finite set of states, and $I \subseteq Q$ the set of initial states;
- Σ is a finite alphabet;
- $\Delta \subseteq Q \times \Sigma \times Q^k$ is the transition relation.

A run of this automaton on a k-ary tree
$t : \{0, \ldots, k-1\}^* \rightarrow \Sigma$ is a k-ary tree
$r : \{0, \ldots, k-1\}^* \rightarrow Q$ such that

- $(r(u), t(u)) \rightarrow (r(u0), \ldots, r(u(k-1))) \in \Delta$.

The run is called initial if
- $r(\epsilon) \in I$.

Looping automaton: no additional condition based on accepting states
Accepted tree language

The tree language accepted by the looping automaton \mathcal{A} is

$$L(\mathcal{A}) := \{ t \mid \text{there is an initial run of } \mathcal{A} \text{ on the } k\text{-ary tree } t\}$$

Consider the following binary tree language over $\Sigma = \{a, b\}$:

$$L := \{ t \mid a \text{ never occurs below a } b \text{ in } t\}$$

$\mathcal{A} = (Q, \Sigma, I, \Delta)$ with

- $Q := \{q_a, q_b\}$;
- $I := \{q_a, q_b\}$;
- $\Delta := \{(q_b, b) \rightarrow (q_b, q_b)\} \cup \{(q_a, a) \rightarrow (q, q') \mid q, q' \in Q\}$
Accepted tree language

The tree language accepted by the looping automaton A is

$$L(A) := \{ t \mid \text{there is a run of } A \text{ on the } k\text{-ary tree } t \}$$

Consider the following binary tree language over $\Sigma = \{a, b\}$:

$$L := \{ t \mid a \text{ never occurs below a } b \text{ in } t \}$$

$A = (Q, \Sigma, I, \Delta)$ with

- $Q := \{q_a, q_b\}$;
- $I := \{q_a, q_b\}$;
- $\Delta := \{(q_b, b) \rightarrow (q_b, q_b)\} \cup \{(q_a, a) \rightarrow (q, q') \mid q, q' \in Q\}$
The emptiness problem for looping tree automata

Given: a looping tree automaton A
Question: is $L(A) = \emptyset$?

Top-down approach:
- label root with an initial state;
- apply transition relation to label successor nodes.

Problem:
- termination requires blocking if states are repeated on a path;
- if the automaton is non-deterministic, then we must consider all possible initial states and transitions.

NP
The emptiness test

Bottom-up approach

- Compute all **bad** states, i.e., states that cannot occur in a run.
- \(L(\mathcal{A}) = \emptyset \) iff all initial states are bad.

\[
\begin{align*}
\text{Bad}_0(\mathcal{A}) & := \emptyset \\
\text{Bad}_1(\mathcal{A}) & := \{ q \mid \text{there is no transition } (q, \cdot) \rightarrow (\cdots) \} \\
i & := 1 \\
\text{while } \text{Bad}_i(\mathcal{A}) \neq \text{Bad}_{i-1}(\mathcal{A}) \text{ do} \\
\quad \text{Bad}_{i+1}(\mathcal{A}) & := \text{Bad}_i(\mathcal{A}) \cup \{ q \mid \text{for all transitions } (q, \cdot) \rightarrow (q_1, \ldots, q_k) \\
& \quad \text{there is } j \text{ with } q_j \in \text{Bad}_i(\mathcal{A}) \} \\
i & := i + 1 \\
\text{od} \\
\text{Answer "empty" iff } I \subseteq \text{Bad}_i(\mathcal{A})
\end{align*}
\]
The emptiness test

The algorithm decides the emptiness problem in polynomial time:

- the while-loop always terminates after at most $|Q|$ iterations:
 \[\text{Bad}_0(\mathcal{A}) \subseteq \text{Bad}_1(\mathcal{A}) \subseteq \text{Bad}_2(\mathcal{A}) \subseteq \ldots \subseteq \text{Bad}_k(\mathcal{A}) = \text{Bad}_{k+1}(\mathcal{A}) \]
 for some $k \leq |Q|$;

- every single iteration of the loop can be done in polynomial time;

- if $q \in \text{Bad}_i(\mathcal{A})$ for some $i \geq 0$ then q cannot occur in a run of \mathcal{A};

- if $q \not\in \text{Bad}_k(\mathcal{A})$ then there is a run containing q as label of the root; for some tree

- if $i \in I \setminus \text{Bad}_k(\mathcal{A})$ then there is an initial run.
Tree model property of \mathcal{ALC}.

Interpretations can be viewed as graphs:
- nodes are the elements of Δ^I;
- interpretation of roles yields edges;
- interpretation of concepts yields node labels.

Starting with a given node, the graph can be unraveled into a tree without "changing membership" in concepts.
Tree model property of \mathcal{ALC}.

\mathcal{T} general \mathcal{ALC}-TBox, C \mathcal{ALC}-concept:

C is satisfiable w.r.t. \mathcal{T} iff

there is a tree model of \mathcal{T} whose root belongs to C.
Subdescriptions of \mathcal{ALC}-concept descriptions

- $C \in N_C$: $\text{Sub}(A) := \{A\}$ for $A \in N_C$;
- $C = C_1 \cap C_2$ or $C = C_1 \cup C_2$: $\text{Sub}(C) := \{C\} \cup \text{Sub}(C_1) \cup \text{Sub}(C_2)$;
- $C = \neg D$ or $C = \exists r.D$ or $C = \forall r.D$: $\text{Sub}(C) := \{C\} \cup \text{Sub}(D)$.

$\text{Sub}(A \cap \exists r.(A \cup B)) = \{A \cap \exists r.(A \cup B), A, \exists r.(A \cup B), A \cup B, B\}$

$\text{Sub}(\mathcal{T}) := \bigcup_{\mathcal{C} \subseteq D \in \mathcal{T}} \text{Sub}(C) \cup \text{Sub}(D)$

- the cardinality of $\text{Sub}(C)$ is bounded by the size of C;
- the size of the elements of $\text{Sub}(C)$ is bounded by the size of C;
- cardinality and size of $\text{Sub}(\mathcal{T})$ is polynomial in the size of \mathcal{T}.
Extension of tree models to trees labeled with subdescriptions

Let \mathcal{T} be a general TBox, C_0 a concept description, and \mathcal{I} a tree model of \mathcal{T} whose root belongs to C_0.

Extend node labels to subdescriptions from $S := \text{Sub}(\mathcal{T}) \cup \text{Sub}(C_0)$:

$$\ell(d) := \{C \in S \mid d \in C^\mathcal{I}\}.$$

```
I
{A}
{B}
{A}
{B}
{A}

a_0 \in A^\mathcal{I}
\ell(a_0) = \{A, A \sqcup B, \exists r.B, \exists s.A\}

b_0
{A} r
{A} r
s
s

a_1 \quad b_1\quad c_1
\ell(b_0) = \{B, A \sqcup B, \exists r.A, \exists s.A\}
\ell(c_0) = \{A, A \sqcup B\}

r
\ell(a_1) = \{A, \exists r.B\}

s
\ell(b_1) = \{B, \exists r.A\}

s
\ell(c_1) = \{A, A \sqcup B\}

Sub(\mathcal{T}) \cup \text{Sub}(A) = \{A, \exists r.B, B, \exists r.A, A \sqcup B, \exists s.A\}
```
Tree automaton

main idea

Given \mathcal{T} and C_0, construct a looping automaton that accepts the extended tree models of \mathcal{T} whose root label contains C_0.

Problem: mismatch between the underlying kinds of trees

1. Edge labels: extended tree models have roles as edge labels, automata work on trees without edge labels

Solution: add role names to node label of successors

$$\{r, A, A \sqcup B, \exists r. B, \exists s. A\}$$

$$\{r, B, A \sqcup B, \exists r. A, \exists s. A\}$$

$$\{s, A, A \sqcup B\}$$
Tree automaton

Problem: mismatch between the underlying kinds of trees

2. Varying arity: extended tree models have no fixed number of successors, automata work on trees with fixed arity \(k \)

Solution: take as \(k \) the number of all existential restrictions in \(S \)

\[S = \{ A, \exists r. B, B, \exists r. A, A \sqcup B, \exists s. A \} \rightarrow k = 3 \]

- a given tree model can be modified into one where nodes have at most \(k \) successors
- for missing successors we can generated dummies

\[\{ r, B, A \sqcup B, \exists r. A, \exists s. A \} \quad \{ s, A, A \sqcup B \} \]
Preliminaries

required to define the trees that our automata are supposed to accept

Let \mathcal{T} be a general TBox and C_0 a concept description.

Normalization 1:
Without loss of generality we assume that the GCIs in \mathcal{T} are of the form $\top \subseteq D$:

$$C \subseteq D \text{ can be replaced by } \top \subseteq \neg C \cup D$$

Normalization 2:
Without loss of generality we assume that C_0 and all concept descriptions in \mathcal{T} are in negation normal form (NNF).

We define

$$S := \text{Sub}(\mathcal{T}) \cup \text{Sub}(C_0)$$

$$k := \text{card}(\{C \in S \mid C \text{ is an existential restriction}\})$$
Hintikka trees

the trees that our automata are supposed to accept

The node labels of these trees are Hintikka sets.

A set \(L \subseteq S \cup N_R \) is called Hintikka set if \(L = \emptyset \) or

- \(L \) contains exactly one role name occurring in \(S \);

- if \(\top \subseteq D \in \mathcal{T} \) then \(D \in L \);

- if \(C \cap D \in L \) then \(\{ C, D \} \subseteq L \);

- if \(C \cup D \in L \) then \(\{ C, D \} \cap L \neq \emptyset \);

- \(\{ A, \neg A \} \not\subseteq L \) for all concept names \(A \).

\[\mathcal{H} \]

set of all Hintikka sets
Hintikka trees are the trees that our automata are supposed to accept.

The k-ary tree $h : \{0, \ldots, k - 1\}^* \rightarrow \mathcal{H}$ is a Hintikka tree for \mathcal{T} and C_0 if

- $C_0 \in h(\varepsilon)$;
- For all nodes u, the tuple $(h(u), h(u0), \ldots, h(u(k - 1)))$ satisfies the following Hintikka successor conditions:
 - if $h(u) = \emptyset$ then $h(u_i) = \emptyset$ for all $i \in \{0, \ldots, k - 1\}$;
 - if $\exists r. C \in h(u)$ then there is an i with $\{C, r\} \subseteq h(u_i)$;
 - if $\forall r. C \in h(u)$ and $r \in h(u_i)$ then $C \in h(u_i)$.

C_0 is satisfiable w.r.t. \mathcal{T} iff there is a Hintikka tree for \mathcal{T} and C_0.
Tree automaton accepting the Hintikka trees for \mathcal{T} and C_0

$A_{C_0,\mathcal{T}} := (Q, \Sigma, I, \Delta)$ where

- $Q := \Sigma := \mathcal{H}$; states and node labels are Hintikka sets
- $I := \{L \in Q \mid C_0 \in L\}$; initial states contain C_0
- $\Delta := \{(q, \sigma, q_0, \ldots, q_{k-1}) \in Q \times \Sigma \times Q^k \mid$
 \hspace{1cm} $q = \sigma$ and $(q, q_0, \ldots, q_{k-1})$ satisfies the Hintikka successor condition\}
 run identical to tree

The k-ary tree $h : \{0, \ldots, k - 1\}^* \to \mathcal{H}$ is accepted by $A_{C_0,\mathcal{T}}$

iff

it is a Hintikka tree for \mathcal{T} and C_0
Main result

Satisfiability of \mathcal{ALC}-concept descriptions w.r.t. general \mathcal{ALC}-TBoxes can be decided in exponential time.

1. C_0 is satisfiable w.r.t. \mathcal{T} iff there is a Hintikka tree for \mathcal{T} and C_0
 iff $L(\mathcal{A}_{C_0,\mathcal{T}}) \neq \emptyset$

2. The size of $\mathcal{A}_{C_0,\mathcal{T}}$ is exponential in the size of C_0 and \mathcal{T}.

3. The emptiness test is polynomial in the size of $\mathcal{A}_{C_0,\mathcal{T}}$.

Note:

this bound is worst-case optimal since one can show
ExpTime hardness of the problem