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Finite tree automata

◮ tree recognizers

◮ generalize NFA from words to trees

= finite representations of infinite set of labeled trees

are a useful tool for verification procedures

◮ composition results
◮ closure under Boolean operations
◮ closure under transformations

◮ decision results, efficient algorithms

◮ expressiveness, close relationship with logic
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Verification of infinite state systems
regular model checking : static analysis of safety properties for
infinite state systems, using symbolic reachability verification
techniques.

reachable
configurations

initial
configurations

erroneous
configurations
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Concurrent readers/writers

Example from [Clavel et al. LNCS 4350 2007]

1. state(0, 0) = state(0, s(0))
2. state(r, 0) = state(s(r), 0)
3. state(r, s(w)) = state(r, w)
4. state(s(r), w) = state(r, w)

◮ writers can access the file if nobody else is accessing it (1)

◮ readers can access the file if no writer is accessing it (2)

◮ readers and writers can leave the file at any time (3,4)

Properties expected:

◮ mutual exclusion between readers and writers

◮ mutual exclusion between writers
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Concurrent readers/writers: reachable configurations

1. state(0, 0) = state(0, s(0))
2. state(r, 0) = state(s(r), 0)
3. state(r, s(w)) = state(r, w)
4. state(s(r), w) = state(r, w)

Initial configuration: state(0, 0)
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Concurrent readers/writers: reachable configurations

1. state(0, 0) = state(0, s(0))
2. state(r, 0) = state(s(r), 0)
3. state(r, s(w)) = state(r, w)
4. state(s(r), w) = state(r, w)

Reachable configura-
tions:

state(0, 0)
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Concurrent readers/writers: reachable configurations

1. state(0, 0) = state(0, s(0))
2. state(r, 0) = state(s(r), 0)
3. state(r, s(w)) = state(r, w)
4. state(s(r), w) = state(r, w)

Reachable configura-
tions:

state(0, 0) state
(

0, s(0)
)

1

3
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Concurrent readers/writers: reachable configurations

1. state(0, 0) = state(0, s(0))
2. state(r, 0) = state(s(r), 0)
3. state(r, s(w)) = state(r, w)
4. state(s(r), w) = state(r, w)

Reachable configura-
tions:

state(0, 0) state
(

0, s(0)
)

state
(

s(0), 0
)

state
(

s(s(0)), 0
)

...

1

32 4

2 4
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Concurrent readers/writers: finite representation

state(0, 0) state
(

0, s(0)
)

state
(

s(0), 0
)

state
(

s(s(0)), 0
)

...

1

32 4

2 4

q0 := 0
q := state(q0, q0) | state(q0, q1) | state(q1, q0) | state(q2, q0)
q1 := s(q0)
q2 := s(q1) | s(q2)
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Concurrent readers/writers: automata construction

1. state(0, 0) = state(0, s(0))

2. state(r, 0) = state(s(r), 0)

3. state(r, s(w)) = state(r, w)

4. state(s(r), w) = state(r, w)

q0 := 0
q := state(q0, q0)
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Concurrent readers/writers: automata construction

1. state(0, 0) = state(0, s(0))
state(0, 0) ∈ q ⇒ state(0, s(0)) ∈ q

2. state(r, 0) = state(s(r), 0)

3. state(r, s(w)) = state(r, w)

4. state(s(r), w) = state(r, w)

q0 := 0
q := state(q0, q0)
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Concurrent readers/writers: automata construction

1. state(0, 0) = state(0, s(0))
state(0, 0) ∈ q ⇒ state(0, s(0)) ∈ q

2. state(r, 0) = state(s(r), 0)

3. state(r, s(w)) = state(r, w)

4. state(s(r), w) = state(r, w)

q0 := 0
q := state(q0, q0) | state(q0, q1)
q1 := s(q0)
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Concurrent readers/writers: automata construction

1. state(0, 0) = state(0, s(0))

2. state(r, 0) = state(s(r), 0)
state(q0, 0) ∈ q ⇒ state(s(q0), 0) ∈ q

3. state(r, s(w)) = state(r, w)

4. state(s(r), w) = state(r, w)

q0 := 0
q := state(q0, q0) | state(q0, q1)
q1 := s(q0)
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Concurrent readers/writers: automata construction

1. state(0, 0) = state(0, s(0))

2. state(r, 0) = state(s(r), 0)
state(q0, 0) ∈ q ⇒ state(s(q0), 0) ∈ q

3. state(r, s(w)) = state(r, w)

4. state(s(r), w) = state(r, w)

q0 := 0
q := state(q0, q0) | state(q0, q1) | state(q1, q0)
q1 := s(q0)
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Concurrent readers/writers: automata construction

1. state(0, 0) = state(0, s(0))

2. state(r, 0) = state(s(r), 0)
state(q1, 0) ∈ q ⇒ state(s(q1), 0) ∈ q

3. state(r, s(w)) = state(r, w)

4. state(s(r), w) = state(r, w)

q0 := 0
q := state(q0, q0) | state(q0, q1) | state(q1, q0)
q1 := s(q0)
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Concurrent readers/writers: automata construction

1. state(0, 0) = state(0, s(0))

2. state(r, 0) = state(s(r), 0)
state(q1, 0) ∈ q ⇒ state(s(q1), 0) ∈ q

3. state(r, s(w)) = state(r, w)

4. state(s(r), w) = state(r, w)

q0 := 0
q := state(q0, q0) | state(q0, q1) | state(q1, q0) | state(q2, q0)
q1 := s(q0)

System Timbuk [Thomas Genet]. Automated construction, with
guess of accelaration q2 := s(q2) by user assistance.
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Concurrent readers/writers: automata construction

1. state(0, 0) = state(0, s(0))

2. state(r, 0) = state(s(r), 0)
state(q2, 0) ∈ q ⇒ state(s(q2), 0) ∈ q

3. state(r, s(w)) = state(r, w)

4. state(s(r), w) = state(r, w)

q0 := 0
q := state(q0, q0) | state(q0, q1) | state(q1, q0) | state(q2, q0)
q1 := s(q0)

System Timbuk [Thomas Genet]. Automated construction, with
guess of accelaration q2 := s(q2) by user assistance.
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Concurrent readers/writers: automata construction

1. state(0, 0) = state(0, s(0))

2. state(r, 0) = state(s(r), 0)

3. state(r, s(w)) = state(r, w)
state(q0, s(q0)) ∈ q ⇒ state(q0, q0) ∈ q

4. state(s(r), w) = state(r, w)

q0 := 0
q := state(q0, q0) | state(q0, q1) | state(q1, q0) | state(q2, q0)
q1 := s(q0)
q2 := s(q1) | s(q2)

System Timbuk [Thomas Genet]. Automated construction, with
guess of accelaration q2 := s(q2) by user assistance.

19 / 200



Concurrent readers/writers: automata construction

1. state(0, 0) = state(0, s(0))

2. state(r, 0) = state(s(r), 0)

3. state(r, s(w)) = state(r, w)

4. state(s(r), w) = state(r, w)
state(s(q0 | q1 | q2), q0) ∈ q ⇒ state(q0 | q1 | q2, q0) ∈ q

q0 := 0
q := state(q0, q0) | state(q0, q1) | state(q1, q0) | state(q2, q0)
q1 := s(q0)
q2 := s(q1) | s(q2)

System Timbuk [Thomas Genet]. Automated construction, with
guess of accelaration q2 := s(q2) by user assistance.
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Concurrent readers/writers: verification

Properties expected:

1. mutual exclusion between readers and writers
forbidden pattern: state(s(x), s(y))

2. mutual exclusion between writers
forbidden pattern: state(x, s(s(y)))

The red set: union of

1. state
(

(q1 | q2), (q1 | q2)
)

2. state
(

(q0 | q1 | q2), (q1 | q2)
)

with q0 := 0, q1 := s(q0), q2 := s(q1) | s(q2)

Verification: The intersection between the set of reachable
configurations and the red set is empty.
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Functional program

Lists built with constructor symbols cons and nil.

app(nil, y) = y
app

(

cons(x, y), z
)

= cons
(

x, app(y, z)
)
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Functional program analysis

set of initial configurations qapp: terms of the form app(ℓ1, ℓ2)
where ℓ1, ℓ2 are lists of 0 and 1, defined by

q := 0 | 1
qℓ := nil | cons(q, qℓ)

qapp := app(qℓ, qℓ)

set of reachable configurations = the closure according to

app(nil, y) = y
app

(

cons(x, y), z
)

= cons
(

x, app(y, z)
)

it is
q := 0 | 1
qℓ := nil | cons(q, qℓ)

qapp := app(qℓ, qℓ) | cons(q, qapp)
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Functional program : rev

[Thomas Genet, Valérie Viet Triem Tong, LPAR 01]. Timbuk.

app(nil, y) = y
app

(

cons(x, y), z
)

= cons
(

x, app(y, z)
)

rev(nil) = nil
rev

(

cons(x, y)
)

= app
(

rev(y), cons(x, nil)
)

set of initial config.:

q0 := 0
q1 := 1
qℓ1 := nil | cons(q1, qℓ1)
qℓ01 := nil | cons(q0, qℓ1) | cons(q0, qℓ01)
qrev := rev(qℓ01)
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Functional program : rev

[Thomas Genet, Valérie Viet Triem Tong, LPAR 01]. Timbuk.

app(nil, y) = y
app

(

cons(x, y), z
)

= cons
(

x, app(y, z)
)

rev(nil) = nil
rev

(

cons(x, y)
)

= app
(

rev(y), cons(x, nil)
)

set of initial config.: rev(ℓ) where ℓ ∈ qℓ01 , list of 0’s followed by 1’s

q0 := 0
q1 := 1
qℓ1 := nil | cons(q1, qℓ1)
qℓ01 := nil | cons(q0, qℓ1) | cons(q0, qℓ01)
qrev := rev(qℓ01)
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Functional program cntd
set of reachable configurations: by completion of equations for
initial configurations

q0 := 0
q1 := 1

qℓ1 := nil | cons(q1, qℓ1) | cons(q1, qnil) | app(qnil, qℓ1)

qℓ01 := nil | cons(q0, qℓ1) | cons(q0, qℓ01)

qrev := rev(qℓ01) | nil | app(qℓ10 , qnil)

qℓ10 := rev(qℓ01) | app(qℓ1 , qℓ0)

qnil := nil | rev(qnil)

qℓ0 := cons(q0, qnil) | app(qnil, qℓ0) | app(qℓ0 , qℓ0)

property expected: rev(ℓ) not reachable when
ℓ |= ∃x, y x < y ∧ 0(x) ∧ 1(y).

verification The intersection of qrev and the above set is empty.
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Imperative programs

p ::= 0 | X | p · p | p ‖ p

◮ 0: null process (termination)

◮ X: program point

◮ p · p: sequential composition

◮ p ‖ p: parallel composition

Transition rules

◮ procedure call: X → Y · Z (Z = return point)

◮ procedure call with global state: Q ·X → Q′ · Y · Z

◮ procedure return: Q · Y → Q′

◮ global state change: Q ·X → Q′ ·X

◮ dynamic thread creation: X → Y ‖Z

◮ handshake : X‖Y → X ′‖Y ′
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Imperative program

[Bouajjani Touili CAV 02]

void X() {

while(true) {

if Y() {

thread_create(&t1,Z)

} else { return }

}

}

X → Y · X (r1)
Y → t (r2)
Y → f (r3)
t · X → X ‖ Z (r4)
f → 0 (r5)

The set of reachable configurations is infinite but regular.
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Related models of imperative programs

◮ Pushdown systems (sequential programs with procedure calls)

X1 · . . . ·Xn → Y1 · . . . · Ym

◮ Petri nets (multi-threaded programs)

X1 ‖ . . . ‖Xn → Y1 ‖ . . . ‖ Ym

◮ PA processes

X1 → Y1 · . . . · Ym, X1 → Y1 ‖ . . . ‖ Ym

◮ Process rewrite systems (PRS) [Bouajjani, Touili RTA 05]

X1 · . . . ·Xn → Y1 · . . . · Ym, X1 ‖ . . . ‖Xn → Y1 ‖ . . . ‖ Ym

◮ Dynamic pushdown networks [Seidl CIAA 09]
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Tree languages modulo

In the above model,

◮ · is associative,

◮ ‖ is associative and commutative.

The terms of the above algebra correspond to unranked trees,

◮ ordered (modulo A) and

◮ unordered (modulo AC).

(models for XML processing)
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Overview

Verification of other infinite-states systems.

◮ configuration = tree (ranked or unranked)
◮ process,
◮ message exchanged in a protocol,
◮ local network with a tree shape,
◮ tree data structure in memory, with pointers

(e.g. binary search trees)...

◮ (infinite) set of configurations = tree language L

◮ transition relation between configurations

◮ safety: transitive closure(Linit) ∩ Lerror = ∅.
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Different kinds of trees

◮ finite ranked trees (terms in first order logic)

◮ finite unranked ordered trees

◮ finite unranked unordered trees

◮ infinite trees...

⇒ several classes of tree automata.
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Overview: properties of automata

◮ determinism,

◮ Boolean closures,

◮ closures under transformations
(homomorphismes, transducers, rewrite systems...)

◮ minimization,

◮ decision problems, complexity,
◮ membership,
◮ emptiness,
◮ universality,
◮ inclusion, equivalence,
◮ emptiness of intersection,
◮ finiteness...

◮ pumping and star lemma,

◮ expressiveness, correspondence with logics.
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Organization of the tutorial

1. finite ranked tree automata
◮ properties
◮ algorithms
◮ closure under transformation,

applications to program verification

2. correspondence with the monadic second order logic of the
tree (Thatcher and Wright’s theorem).

3. finite unranked tree automata
◮ ordered = Hedge Automata
◮ unordered = Presburger automata
◮ closure modulo A and AC
◮ XML typing and analysis of transformations

4. tree automata as Horn clause sets
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Part I

Automata on Finite Ranked Trees

Terms in first order logic
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Plan

Terms

TA: Definitions and Expressiveness

Determinism and Boolean Closures

Decision Problems

Minimization

Closure under Tree Transformations, Program Verification
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Signature

Definition : Signature

A signature Σ is a finite set of function symbols each of them with
an arity greater or equal to 0.

We denote Σi the set of symbols of arity i.

Example :

{+ : 2, s : 1, 0 : 0}, {∧ : 2,∨ : 2,¬ : 1,⊤,⊥ : 0}.

We also consider a countable set X of variable symbols.
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Terms

Definition : Term

The set of terms over the signature Σ and X is the smallest set
T (Σ,X ) such that:

- Σ0 ⊆ T (Σ,X ),

- X ⊆ T (Σ,X ),

- if f ∈ Σn and if t1, . . . , tn ∈ T (Σ,X ), then
f(t1, . . . , tn) ∈ T (Σ,X ).

The set of ground terms (terms without variables, i.e. T (Σ, ∅)) is
denoted T (Σ).

Example :

x, ¬(x), ∧
(

∨(x,¬(y)),¬(x)
)

.
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Terms (2)

A term where each variable appears at most once is called linear.
A term without variable is called ground.

Depth h(t):

◮ h(a) = h(x) = 0 if a ∈ Σ0, x ∈ X ,

◮ h
(

f(t1, . . . , tn)
)

= max{h(t1), . . . , h(tn)}+ 1.
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Positions
A term t ∈ T (Σ,X ) can also be seen as a function from the set of
its positions Pos(t) into Σ ∪ X .
The empty position (root) is denoted ε.

Pos(t) is a subset of N∗ satisfying the following properties:

◮ Pos(t) is closed under prefix,

◮ for all p ∈ Pos(t) such that t(p) ∈ Σn (n ≥ 1),
{

pj ∈ Pos(t)
∣

∣ j ∈ N
}

= {p1, ..., pn},

◮ every p ∈ Pos(t) such that t(p) ∈ Σ0 ∪ X is maximal in
Pos(t) for the prefix ordering.

The size of t is defined by ‖t‖ = |Pos(t)|.

Subterm t|p at position p ∈ Pos(t):

◮ t|ε = t,

◮ f(t1, . . . , tn)|ip = ti|p.

The replacement in t of t|p by s is denoted t[s]p.
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Positions (example)

Example :

t = ∧(∧(x,∨(x,¬(y))),¬(x)),
t|11 = x, t|12 = ∨(x,¬(y)), t|2 = ¬(x),
t[¬(y)]11 = ∧(∧(¬(y),∨(x,¬(y))),¬(x)).
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Contexts

Definition : Contexte

A context is a linear term.

The application of a context C ∈ T (Σ, {x1, . . . , xn}) to n terms
t1, . . . , tn, denoted C[t1, . . . , tn], is obtained by the replacement of
each xi by ti, for 1 ≤ i ≤ n.
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Plan

Terms

TA: Definitions and Expressiveness

Determinism and Boolean Closures

Decision Problems

Minimization

Closure under Tree Transformations, Program Verification
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Bottom-up Finite Tree Automata

(a+ b a∗b)∗

q0 q1

b

b

a a

word. run on aabba: q0 −→
a q0 −→

a q0 −→
b q1 −→

b q0 −→
a q0.

tree. run on a(a(b(b(a(ε))))):
q0 → a(q0)→ a(a(q0))→ a(a(b(q1)))→ a(a(b(b(q0))))→
a(a(b(b(a(q0)))))→ a(a(b(b(a(ε)))))

with q0 := ε, q0 := a(q0), q1 := a(q1), q1 := b(q0), q0 := b(q1).
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Bottom-up Finite Tree Automata

(a+ b a∗b)∗

q0 q1

b

b

a a

word. run on aabba: q0 −→
a q0 −→

a q0 −→
b q1 −→

b q0 −→
a q0.

tree. run on a(a(b(b(a(ε))))):
a(a(b(b(a(ε))))) → a(a(b(b(a(q0)))))→ a(a(b(b(q0))))→
a(a(b(q1)))→ a(a(q0))→ a(q0)→ q0

with ε→ q0, a(q0)→ q0, a(q1)→ q1, b(q0)→ q1, b(q1)→ q0.
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Bottom-up Finite Tree Automata

Definition : Tree Automata

A tree automaton (TA) over a signature Σ is a tuple A =
(Σ, Q,Qf ,∆) where Q is a finite set of states, Qf ⊆ Q is the sub-
set of final states and ∆ is a set of transition rules of the form:
f(q1, . . . , qn)→ q with f ∈ Σn (n ≥ 0) and q1, . . . , qn, q ∈ Q.

The state q is called the head of the rule.
The language of A in state q is recursively defined by

L(A, q) =
{

a ∈ Σ0

∣

∣ a→ q ∈ ∆
}

∪
⋃

f(q1,...,qn)→q∈∆

f
(

L(A, q1), . . . , L(A, qn)
)

with f(L1, . . . , Ln) :=
{

f(t1, . . . , tn)
∣

∣ t1 ∈ L1, . . . , tn ∈ Ln

}

.

We say that t ∈ L(A, q) is accepted, or recognized, by A in state q.

The language of A is L(A) :=
⋃

qf∈Qf

L(A, qf) (regular language).
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Recognized Languages: Operational Definition

Rewrite Relation

The rewrite relation associated to ∆ is the smallest binary relation,
denoted −−→∆ , containing∆ and closed under application of contexts.

The reflexive and transitive closure of −−→∆ is denoted −−→∗∆ .

For A = (Σ, Q,Qf ,∆), it holds that

L(A, q) =
{

t ∈ T (Σ)
∣

∣ t −−→∗
∆

q
}

and hence
L(A) =

{

t ∈ T (Σ)
∣

∣ t −−→∗
∆

q ∈ Qf
}
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Tree Automata: example 1

Example :

Σ = {∧ : 2,∨ : 2,¬ : 1,⊤,⊥ : 0},

A =

















Σ, {q0, q1}, {q1},































⊥ → q0 ⊤ → q1
¬(q0) → q1 ¬(q1) → q0

∨(q0, q0) → q0 ∨(q0, q1) → q1
∨(q1, q0) → q1 ∨(q1, q1) → q1
∧(q0, q0) → q0 ∧(q0, q1) → q0
∧(q1, q0) → q0 ∧(q1, q1) → q1















































∧(∧(⊤,∨(⊤,¬(⊥))),¬(⊤)) −−→
A
∧(∧(⊤,∨(⊤,¬(⊥))),¬(q1))

−−→
A

∧(∧(q1,∨(q1,¬(q0))),¬(q1)) −−→A ∧(∧(q1,∨(q1,¬(q0))), q0)
−−→
A

∧(∧(q1,∨(q1, q1)), q0) −−→A ∧(∧(q1, q1), q0) −−→A ∧(q1, q0) −−→A q0
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Tree Automata: example 2

Example :

Σ = {∧ : 2,∨ : 2,¬ : 1,⊤,⊥ : 0},
TA recognizing the ground instances of ¬(¬(x)):

A =









Σ, {q, q¬, qf}, {qf},















⊥ → q ⊤ → q
¬(q) → q ¬(q) → q¬
¬(q¬) → qf
∨(q, q) → q ∧(q, q) → q























Example :

Ground terms embedding the pattern ¬(¬(x)): A ∪ {¬(qf) →
qf ,∨(qf , q∗)→ qf ,∨(q∗, qf)→ qf , . . .} (propagation of qf).
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Linear Pattern Matching

Proposition :

Given a linear term t ∈ T (Σ,X ), there exists a TA A recognizing
the set of ground instances of t: L(A) =

{

tσ
∣

∣ σ : X → T (Σ)
}

.

e.g. in regular tree model checking, definition of error
configurations by forbidden patterns.
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Runs

Definition : Run

A run of a TA (Σ, Q,Qf ,∆) on a term t ∈ T (Σ) is a function
r : Pos(t)→ Q such that for all p ∈ Pos(t),
if t(p) = f ∈ Σn, r(p) = q and r(pi) = qi for all 1 ≤ i ≤ n,
then f(q1, . . . , qn)→ q ∈ ∆.

The run r is accepting if r(ε) ∈ Qf .
L(A) is the set of ground terms of T (Σ) for which there exists an
accepting run.
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Pumping Lemma

Lemma : Pumping Lemma

Let A = (Σ, Q,Qf ,∆).
L(A) 6= ∅ iff there exists t ∈ L(A) such that h(t) ≤ |Q|.

Lemma : Iteration Lemma

For all TA A, there exists k > 0 such that for all term t ∈ L(A) with
h(t) > k, there exists 2 contexts C,D ∈ T (Σ, {x1}) with D 6= x1
and a term u ∈ T (Σ) such that t = C

[

D[u]
]

and for all n ≥ 0,
C
[

Dn[u]
]

∈ L(A).

usage: to show that a language is not regular.
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Non Regular Languages

We show with the pumping and iteration lemmatas that the
following tree languages are not regular:

◮ {f(t, t)
∣

∣ t ∈ T (Σ)},

◮ {f(gn(a), hn(a))
∣

∣ n ≥ 0},

◮ {t ∈ T (Σ)
∣

∣ |Pos(t)| is prime}.
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Epsilon-transitions

We extend the class TA into TAε with the addition of another type
of transition rules of the form q −→ε q′ (ε-transition).
with the same expressiveness as TA.

Proposition : Suppression of ε-transitions

For all TAε Aε, there exists a TA (without ε-transition) A′ such
that L(A) = L(Aε). The size of A is polynomial in the size of Aε.

pr.: We start with Aε and we add f(q1, . . . , qn)→ q′ if there exists
f(q1, . . . , qn)→ q and q −→ε q′.
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Top-Down Tree Automata

Definition : Top-Down Tree Automata

A top-down tree automaton over a signature Σ is a tuple A =
(Σ, Q,Qinit,∆) where Q is a finite set of states, Qinit ⊆ Q is the
subset of initial states and ∆ is a set of transition rules of the form:
q → f(q1, . . . , qn) with f ∈ Σn (n ≥ 0) and q1, . . . , qn, q ∈ Q.

A ground term t ∈ T (Σ) is accepted by A in the state q iff q −−→∗∆ t.

The language of A starting from the state q is
L(A, q) :=

{

t ∈ T (Σ)
∣

∣ q −−→∗∆ t
}

.

The language of A is L(A) :=
⋃

qi∈Qinit

L(Q, qi).
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Top-Down Tree Automata (expressiveness)

Proposition : Expressiveness

The set of top-down tree automata languages is exactly the set of
regular tree languages.
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Remark: Notations

In the next slides

TA = Bottom-Up Tree Automata
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Determinism

Definition : Determinism

A TA A is deterministic if for all f ∈ Σn, for all states q1, . . . , qn
of A, there is at most one state q of A such that A contains a
transition f(q1, . . . , qn)→ q.

If A is deterministic, then for all t ∈ T (Σ), there exists at most
one state q of A such that t ∈ L(A, q). It is denoted A(t) or ∆(t).
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Completeness

Definition : Completeness

A TA A is complete if for all f ∈ Σn, for all states q1, . . . , qn of A,
there is at least one state q of A such that A contains a transition
f(q1, . . . , qn)→ q.

If A is complete, then for all t ∈ T (Σ), there exists at least one
state q of A such that t ∈ L(A, q).
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Completion

Proposition : Completion

For all TA A, there exists a complete TA Ac such that L(Ac) =
L(A). Moreover, if A is deterministic, then Ac is deterministic.
The size of Ac is polynomial in the size of A, its construction is
PTIME.
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Completion

Proposition : Completion

For all TA A, there exists a complete TA Ac such that L(Ac) =
L(A). Moreover, if A is deterministic, then Ac is deterministic.
The size of Ac is polynomial in the size of A, its construction is
PTIME.

pr.: add a trash state q⊥.
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Determinization

Proposition : Determinization

For all TA A, there exists a deterministic TA Adet such that
L(Adet) = L(A). Moreover, ifA is complete, thenAdet is complete.
The size of Adet is exponential in the size of A, its construction is
EXPTIME.

pr.: subset construction. Transitions:

f(S1, . . . , Sn)→ {q | ∃q1 ∈ S1 . . . ∃qn ∈ Sn f(q1, . . . , qn → q ∈ ∆}

for all S1, . . . , Sn ⊆ Q.
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Determinization (example)

Exercice :

Determinise and complete the previous TA (pattern matching of
¬(¬(x))):

A =













Σ, {q, q¬, qf}, {qf},























⊥ → q ⊤ → q
¬(q) → q ¬(q) → q¬
¬(q¬) → qf ¬(qf) → qf
∨(q, q) → q ∧(q, q) → q
∨(qf , q∗) → qf ∨(q∗, qf) → qf


































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Top-Down Tree Automata and Determinism

Definition : Determinism

A top-down tree automaton (Σ, Q,Qinit,∆) is deterministic if
|Qinit| = 1 and for all state q ∈ Q and f ∈ Σ, ∆ contains at
most one rule with left member q and symbol f .

The top-down tree automata are in general not determinizable .

Proposition :

There exists a regular tree language which is not recognizable by a
deterministic top-down tree automaton.
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Top-Down Tree Automata and Determinism

Definition : Determinism

A top-down tree automaton (Σ, Q,Qinit,∆) is deterministic if
|Qinit| = 1 and for all state q ∈ Q and f ∈ Σ, ∆ contains at
most one rule with left member q and symbol f .

The top-down tree automata are in general not determinizable .

Proposition :

There exists a regular tree language which is not recognizable by a
deterministic top-down tree automaton.

pr.: L =
{

f(a, b), f(b, a)
}

.
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Boolean Closure of Regular tree Languages

Proposition : Closure

The class of regular tree languages is closed under union, intersection
and complementation.

op. technique computation time
and size of automata

∪ disjoint ∪

∩ Cartesian product

¬ determinization, completion,
invert final / non-final states (lower bound)

Remark :

For the deterministic TA, the construction for the complementation
is polynomial.
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Boolean Closure of Regular tree Languages

Proposition : Closure

The class of regular tree languages is closed under union, intersection
and complementation.

op. technique computation time
and size of automata

∪ disjoint ∪ linear

∩ Cartesian product

¬ determinization, completion,
invert final / non-final states (lower bound)

Remark :

For the deterministic TA, the construction for the complementation
is polynomial.
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Boolean Closure of Regular tree Languages

Proposition : Closure

The class of regular tree languages is closed under union, intersection
and complementation.

op. technique computation time
and size of automata

∪ disjoint ∪ linear

∩ Cartesian product quadratic

¬ determinization, completion,
invert final / non-final states (lower bound)

Remark :

For the deterministic TA, the construction for the complementation
is polynomial.
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Boolean Closure of Regular tree Languages

Proposition : Closure

The class of regular tree languages is closed under union, intersection
and complementation.

op. technique computation time
and size of automata

∪ disjoint ∪ linear

∩ Cartesian product quadratic

¬ determinization, completion,
invert final / non-final states

exponential
(lower bound)

Remark :

For the deterministic TA, the construction for the complementation
is polynomial.
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Cleaning

Definition : Clean

A state q of a TA A is called inhabited if there exists at least one
t ∈ L(A, q). A TA is called clean if all its states are inhabited.

Proposition : Cleaning

For all TA A, there exists a clean TA Aclean such that L(Aclean) =
L(A). The size of Aclean is smaller than the size of A, its construc-
tion is PTIME.

pr.: state marking algorithm, running time O
(

|Q| × ‖∆‖
)

.
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State Marking Algorithm

We construct M ⊆ Q containing all the inhabited states.

◮ start with M = ∅

◮ for all f ∈ Σ, of arity n ≥ 0, and
all q1, . . . , qn ∈M st there exists f(q1, . . . , qn)→ q in ∆,
add q to M (if it was not already).

We iterate the last step until a fixpoint M∗ is reached.

Lemma :

q ∈M∗ iff ∃t ∈ L(A, q).
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Membership Problem

Definition : Membership

INPUT: a TA A over Σ, a term t ∈ T (Σ).
QUESTION: t ∈ L(A)?

Proposition : Membership

The membership problem is decidable in polynomial time.

Exact complexity:

◮ non-deterministic bottom-up: LOGCFL-complete

◮ deterministic bottom-up: unknown (LOGDCFL)

◮ deterministic top-down: LOGSPACE-complete.
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Emptiness Problem

Definition : Emptiness

INPUT: a TA A over Σ.
QUESTION: L(A) = ∅?

Proposition : Emptiness

The emptiness problem is decidable in linear time.
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Emptiness Problem

Definition : Emptiness

INPUT: a TA A over Σ.
QUESTION: L(A) = ∅?

Proposition : Emptiness

The emptiness problem is decidable in linear time.

pr.:
quadratic: clean, check if the clean automaton contains a final
state.
linear: reduction to propositional HORN-SAT.
linear bis: optimization of the data structures for the cleaning
(exo).

Remark :

The problem of the emptiness is PTIME-complete.
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Instance-Membership Problem

Definition : Instance-Membership (IM)

INPUT: a TA A over Σ, a term t ∈ T (Σ,X ).
QUESTION: does there exists σ : vars(t)→ T (Σ) s.t. tσ ∈ L(A)?

Proposition : Instance-Membership

1. The problem IM is decidable in polynomial time when t is
linear.

2. The problem IM is NP-complet when A is deterministic.

3. The problem IM is EXPTIME-complete in general.
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Problem of the Emptiness of Intersection

Definition : Emptiness of Intersection

INPUT: n TA A1, . . . ,An over Σ.
QUESTION: L(A1) ∩ . . . ∩ L(An) = ∅?

Proposition : Emptiness of Intersection

The problem of the emptiness of intersection is EXPTIME-complete.
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Problem of the Emptiness of Intersection

Definition : Emptiness of Intersection

INPUT: n TA A1, . . . ,An over Σ.
QUESTION: L(A1) ∩ . . . ∩ L(An) = ∅?

Proposition : Emptiness of Intersection

The problem of the emptiness of intersection is EXPTIME-complete.

pr.: EXPTIME: n applications of the closure under ∩ and
emptiness decision.

EXPTIME-hardness: APSPACE = EXPTIME
reduction of the problem of the existence of a successful run
(starting from an initial configuration) of an alternating Turing
machine (ATM) M = (Γ, S, s0, Sf , δ).
[Seidl 94], [Veanes 97]
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Let M = (Γ, S, s0, Sf , δ) be a Turing Machine (Γ: input alphabet,
S: state set, s0 initial state, Sf final states, δ: transition relation).
First some notations.

◮ a configuration of M is a word of Γ∗ΓSΓ
∗ where

ΓS = {as | a ∈ Γ, s ∈ S}. In this word, the letter of ΓS

indicates both the current state and the current position of
the head of M .

◮ a final configuration of M is a word of Γ∗ΓSf
Γ∗.

◮ an initial configuration of M is a word of Γs0Γ
∗.

◮ a transition of M (following δ) between two configurations v
and v′ is denoted v � v′

The initial configuration v0 is accepting iff there exists a final
configuration vf and a finite sequence of transitions v0 � . . .� vf?
This problem whether v0 is accepting is undecidable in general.
If the tape is polynomially bounded (we are restricted to
configurations of length n = |v0|

c, for some fixed c ∈ N), the
problem is PSPACE complete.
M alternating: S = S∃ ⊎ S∀.
Definition accepting configurations:
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◮ every final configuration (whose state is in Sf) is accepting

◮ a configuration c whose state is in S∃ is accepting if it has at
least one successor accepting

◮ a configuration c whose state is in S∀ is accepting if all its
successors are accepting

Theorem (Chandra, Kozen, Stockmeyer 81)

APSPACE = EXPTIME

In order to show EXPTIME-hardness, we reduce the problem of
deciding whether v0 is accepting for M alternating and
polynomially bounded.
Hypotheses (non restrictive):

◮ s0 ∈ S∃ or s0 ∈ S∀ ∩ Sf

◮ s0 is non reentering (it only occurs in v0)

◮ every configuration with state in S∀ has 0 or 2 successors

◮ final configurations are restricted to ♭Sf
♭∗ where ♭ ∈ Γ is the

blank symbol.
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◮ Sf is a singleton.

2 technical definitions: for k ≤ n,

view(v, k) = v[k]v[k + 1] if k = 1
v[k − 1]v[k] if k = n
v[k − 1]v[k]v[k + 1] otherwise

view(v, v1, v2, k) = 〈view(v, k), view(v1, k), view(v2, k)〉

v �k 〈v1, v2〉 iff

1. if v[k] ∈ ΓS , then ∃w � w1, w2 s.t.
view(v, v1, v2, k) = view(w,w1, w2, k)

2. if v[k] = a ∈ Γ, then v1[k] ∈ {a} ∪ aS and v2 = ε or
v2[k] ∈ {a} ∪ aS .

first item: around position k, we have two correct transitions of
M . This can be tested by the membership of view(v, v1, v2, k) to a
given set which only depends on M .

Lemma

v � v1, v2 iff ∀k ≤ n v �k 〈v1, v2〉.

82 / 200



Term representations of runs:
rem. a run of M is not a sequence of configurations but a tree of
configurations (because of alternation).
Signature Σ: ∅: constant, Γ: unary, S: unaires, p binary.
Notation: if v = a1 . . . an, v(x) denotes an(an−1(. . . a1(x))).
Term representations of runs:

◮ vf(p(∅, ∅)) with vf final configuration,

◮ v(p(t1, t2)) with v ∀-configuration, t1 = v′1(p(t1,1, t1,2)),
t2 = v′2(p(t2,1, t2,2)) are two term representations of runs, and
v1 � v′1, v2 � v′2

◮ v(p(t1, ∅)) with v ∃-configuration, t1 = v′1(p(t1,1, t1,2)) term
representations of run, and v1 � v′1.

notations for t1 = v′1(p(t1,1, t1,2)):

◮ head(t1) = v1
◮ left(t1) = t1,1
◮ right(t1) = t1,2.

This recursive definition suggest the construction of a TA
recognizing term representations of successful runs. The difficulty
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is the conditions v1 � v′1, v2 � v′2, for which we use the above
lemma.
We build 2n deterministic automata :
for all 1 < k < n, Ak recognizes

◮ vf(p(∅, ∅)) (recall there is only 1 final configuration by hyp.)
◮ v(p(t1, t2)) such that t1 6= ∅ and

◮ v �k

〈

head(t1), head(t2)
〉

◮ left(t1) ∈ L(Ak), right(t1) ∈ L(Ak) ∪ {∅},
◮ t2 = ∅ or left(t2) ∈ L(Ak), right(t2) ∈ L(Ak) ∪ {∅}

idea: Ak memorizes view(head(t1), k) and view(head(t2), k) and
compare with view(v, k).
for all 1 < k < n, A′

k recognizes the terms v0(p(t1, t2)) with
t1 = t2 = ∅ (if s0 universal and final) or t2 = ∅ (if s0 existential,
not final) and t1, t2 ∈ T , minimal set of terms without s0
containing

◮ ∅
◮ v(p(t1, t2)) such that t1 6= ∅ and

◮ v �k

〈

head(t1), head(t2)
〉

◮ left(t1) ∈ T , right(t1) ∈ T ,
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◮ t2 = ∅ or left(t2) ∈ T , right(t2) ∈ T

representations of successful runs =
n
⋂

k=1

L(Ak) ∩ L(A
′
k).
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Problem of Universality

Definition : Universality

INPUT: a TA A over Σ.
QUESTION: L(A) = T (Σ)

Proposition : Universality

The problem of universality is EXPTIME-complete.
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Problem of Universality

Definition : Universality

INPUT: a TA A over Σ.
QUESTION: L(A) = T (Σ)

Proposition : Universality

The problem of universality is EXPTIME-complete.

pr.: EXPTIME: Boolean closure and emptiness decision.

EXPTIME-hardness: again APSPACE = EXPTIME.

Remark :

The problem of universality is decidable in polynomial time for the
deterministic (bottom-up) TA.

pr.: completion and cleaning.
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Problems of Inclusion an Equivalence

Definition : Inclusion

INPUT: two TA A1 and A2 over Σ.
QUESTION: L(A1) ⊆ L(A2)

Definition : Equivalence

INPUT: two TA A1 and A2 over Σ.
QUESTION: L(A1) = L(A2)

Proposition : Inclusion, Equivalence

The problems of inclusion and equivalence are EXPTIME-complete.
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Problems of Inclusion an Equivalence

Definition : Inclusion

INPUT: two TA A1 and A2 over Σ.
QUESTION: L(A1) ⊆ L(A2)

Definition : Equivalence

INPUT: two TA A1 and A2 over Σ.
QUESTION: L(A1) = L(A2)

Proposition : Inclusion, Equivalence

The problems of inclusion and equivalence are EXPTIME-complete.

pr.: L(A1) ⊆ L(A2) iff L(A1) ∩ L(A2) = ∅.
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Problems of Inclusion an Equivalence

Definition : Inclusion

INPUT: two TA A1 and A2 over Σ.
QUESTION: L(A1) ⊆ L(A2)

Definition : Equivalence

INPUT: two TA A1 and A2 over Σ.
QUESTION: L(A1) = L(A2)

Proposition : Inclusion, Equivalence

The problems of inclusion and equivalence are EXPTIME-complete.

pr.: L(A1) ⊆ L(A2) iff L(A1) ∩ L(A2) = ∅.
EXPTIME-hardness: universality is T (Σ) = L(A2)?

Remark :

If A1 and A2 are deterministic, it is O
(

‖A1‖ × ‖A2‖
)

.
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Problem of Finiteness

Definition : Finiteness

INPUT: a TA A
QUESTION: is L(A) finite?

Proposition : Finiteness

The problem of finiteness is decidable in polynomial time.
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Theorem of Myhill-Nerode

Definition :

A congruence ≡ on T (Σ) is an equivalence relation such that
for all f ∈ Σn, if s1 ≡ t1,. . . , sn ≡ tn, then f(s1, . . . , sn) ≡
f(t1, . . . , tn).

Given L ⊆ T (Σ), the congruence ≡L is defined by:

s ≡L t if for all context C ∈ T
(

Σ, {x}
)

, C[s] ∈ L iff C[t] ∈ L.

Theorem : Myhill-Nerode

The three following propositions are equivalent:

1. L is regular

2. L is a union of equivalence classes for a congruence ≡ of
finite index

3. ≡L is a congruence of finite index
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Proof Theorem of Myhill-Nerode

1 ⇒ 2. A deterministic, def. s ≡A t iff A(s) = A(t).

2 ⇒ 3. we show that if s ≡ t then s ≡L t, hence the
index of ≡L ≤ index of ≡ (since we have ≡⊆≡L).
If s ≡ t then C[s] ≡ C[t] for all C[ ] (induction on
C), hence C[s] ∈ L iff C[t] ∈ L, i.e. s ≡L t.

3 ⇒ 1. we construct Amin = (Qmin, Q
f
min,∆min),

◮ Qmin = equivalence classes of ≡L,
◮ Qf

min = {[s]
∣

∣ s ∈ L},
◮ ∆min = {f

(

[s1], . . . , [sn]
)

→
[

f(s1, . . . , sn)
]

}

Clearly, Amin is deterministic, and for all s ∈ T (Σ),
Amin(s) = [s]L, i.e. s ∈ L(Amin) iff s ∈ L.
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Minimization

Corollary :

For all DTA A = (Σ, Q,Qf ,∆), there exists a unique DTA Amin

whose number of states is the index of ≡L(A) and such that
L(Amin) = L(A).
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Minimization
Let A = (Σ, Q,Qf ,∆) be a DTA, we build a deterministic minimal
automaton Amin as in the proof of 3⇒ 1 of the previous theorem
for L(A) (i.e. Qmin is the set of equivalence classes for ≡L(A)).

We build first an equivalence ≈ on the states of Q:

◮ q ≈0 q
′ iff q, q′ ∈ Qf ou q, q′ ∈ Q \Qf .

◮ q ≈k+1 q
′ iff q ≈k q

′ et ∀f ∈ Σn,
∀q1, . . . , qi−1, qi+1, . . . , qn ∈ Q (1 ≤ i ≤ n),

∆
(

f(q1, . . . , qi−1, q, qi+1, . . . , qn)
)

≈k ∆
(

f(q1, . . . , qi−1, q
′, qi+1, . . . ,

Let ≈ be the fixpoint of this construction, ≈ is ≡L(A), hence

Amin = (Σ, Qmin, Q
f
min,∆min) with :

◮ Qmin = {[q]≈
∣

∣ q ∈ Q},

◮ Qf
min = {[qf ]≈

∣

∣ qf ∈ Qf},

◮ ∆min =
{

f
(

[q1]≈, . . . , [qn]≈
)

→
[

f(q1, . . . , qn)
]

≈

}

.

recognizes L(A). and it is smaller than A.
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Algebraic Characterization of Regular Languages

Corollary :

A set L ⊆ T (Σ) is regular iff there exists

◮ a Σ-algebra Q of finite domain Q,

◮ an homomorphism h : T (Σ)→ A,

◮ a subset Qf ⊆ Q such that L = h−1(Qf).

operations of Q:
for each f ∈ Σn, there is a function fQ : Qn → Q.
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Tree Transformations, Verification

◮ formalisms for the transformation of terms (languages):
rewrite systems, tree homomorphisms, transducers...

= transitions in an infinite states system,
= evaluation of programs,
= transformation of XML documents, updates...

◮ problem of the type checking:

given:
◮ Lin ⊆ T (Σ), (regular) input language
◮ h transformation T (Σ)→ T (Σ′)
◮ Lout ⊆ T (Σ′) (regular) output language

question: do we have h(Lin) ⊆ Lout?
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Tree Homomorphisms
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Tree Homomorphisms

Definition :

h : T (Σ)→ T (Σ′)

h
(

f(t1, . . . , tn)
)

:= tf
{

x1 ← h(t1), . . . , xn ← h(tn)
}

for f ∈ Σn, with tf ∈ T
(

Σ′, {x1, . . . , xn}
)

.

h is called

◮ linear if for all f ∈ Σ, tf is linear,

◮ complete if for all f ∈ Σn, vars(tf ) = {x1, . . . , xn},

◮ symbol-to-symbol if for all f ∈ Σn, height(tf ) = 1.
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Homomorphisms: examples

Example : ternary trees → binary trees

Let Σ = {a : 0, b : 0, g : 3}, Σ′ = {a : 0, b : 0, f : 2} and
h : T (Σ)→ T (Σ′) defined by

◮ ta = a,

◮ tb = b,

◮ tg = f(x1, f(x2, x3)).

h
(

g(a, g(b, b, b), a)
)

= f(a, f(f(f(b, f(b, b))), a))

Example : Elimination of the ∧

Let Σ = {0 : 0, 1 : 0,¬ : 1,∨ : 2,∧ : 2}, Σ′ = {0 : 0, 1 : 0,¬ : 1,∨ :
2} and h : T (Σ)→ T (Σ′) with t∧ = ¬(∨(¬(x1),¬(x2))).
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Closure of Regular Languages under Linear

Homomorphisms

Theorem :

If L is regular and h is a linear homomorphism, then h(L) is regular.
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Closure of Regular Languages under Linear

Homomorphisms

Theorem :

If L is regular and h is a linear homomorphism, then h(L) is regular.

let A = (Q,Qf ,∆) be clean, we build A′ = (Q′, Q′
f ,∆

′).
For each r = f(q1, . . . , qn)→ q ∈ ∆, with tf ∈ T (Σ

′,Xn) (linear),
let Qr = {qrp | p ∈ Pos(tf )}, and ∆r defined as follows:
for all p ∈ Pos(tf ):

◮ if tf (p) = g ∈ Σ′
m, then g(qrp1 , . . . , q

r
pm)→ qrp ∈ ∆r,

◮ if tf (p) = xi, then qi −→
ε qrp ∈ ∆r,

◮ qrε −→
ε q ∈ ∆r.

Q′ = Q ∪
⋃

r∈∆Q
r,

Q′
f = Qf ,

∆′ =
⋃

r∈∆∆r.

It holds that h
(

L(A)
)

= L(A′).
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Closure of Regular Languages under Linear

Homomorphisms

This is not true in general for the non-linear homomorphisms.
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Closure of Regular Languages under Linear

Homomorphisms

This is not true in general for the non-linear homomorphisms.

Example : Non-linear homomorphisms

Σ = {a : 0, g : 1, f : 1}, Σ′ = {a : 0, g : 1, f ′ : 2},
h : T (Σ)→ T (Σ′) with ta = a, tg = g(x1), tf = f ′(x1, x1).
Let L =

{

f
(

gn(a)
) ∣

∣ n ≥ 0
}

,
h(L) =

{

f ′
(

gn(a), gn(a)
) ∣

∣ n ≥ 0
}

is not regular.
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Closure of Regular Languages under Inverse

Homomorphisms

Theorem :

For all regular languages L and all homomorphisms h,
h−1(L) is regular.

A′ = (Q′, Q′
f ,∆

′) complete deterministic such that L(A′) = L.
We construct A = (Q,Qf ,∆) with Q = Q′ ⊎ {q∀} Qf = Q′

f and ∆
is defined by:

◮ for a ∈ Σ0, if ta −−→
∗

A′ q then a→ q ∈ ∆;

◮ for all f ∈ Σn with n > 0, for p1, . . . , pn ∈ Q,
if tf{x1 7→ p1, . . . , xn 7→ pn} −−→

∗
A′ q then

f(q1, . . . , qn)→ q ∈ ∆ where qi = pi if xi occurs in tf and
qi = q∀ otherwise;

◮ for a ∈ Σ0, a→ q∀ ∈ ∆;

◮ for f ∈ Σn where n > 0, f(q∀, . . . , q∀)→ q∀ ∈ ∆.

It holds that t −−→∗
A

q iff h(t) −−→∗
A′ q for all q ∈ Q′.
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Closure under Homomorphisms

Theorem :

The class of regular tree languages is the smallest non trivial class
of sets of trees closed under linear homomorphisms and inverse ho-
momorphisms.

A problem whose decidability has been open for 35 years:

INPUT: a TA A, an homomorphism h
QUESTION: is h(L(A)) regular?
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Tree Transducers
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Tree Transducers

Definition : Bottom-up Tree Transducers

A bottom-up tree transducer (TT) is a tuple U = (Σ,Σ′, Q,Qf ,∆)
where

◮ Σ, Σ′ are the input, resp. output, signatures,

◮ Q is a finite set of states,

◮ Qf ⊆ Q is the subset of final states

◮ ∆ is a set of transduction (rewrite) rules of the form:
◮ f(p1(x1), . . . , pn(xn))→ p(u) with f ∈ Σn (n ≥ 0),
p1, . . . , pn, p ∈ Q, x1, . . . , xn pairwise distinct and
u ∈ T (Σ′, {x1, . . . , xn}), or

◮ p(x1)→ p′(u) with q, q′ ∈ Q, u ∈ T (Σ′, {x1}).

A TT is linear if all the u in transduction rules are linear.

The transduction relation of U is the binary relation:

L(U) =
{

〈t, t′〉
∣

∣ t −→∗
U

q(t′), t ∈ T (Σ), t′ ∈ T (Σ′), q ∈ Qf
}
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Example 1

U1 =
(

{f : 1, a : 0}, {g : 2, f, f ′ : 1, a : 0}, {q, q′}, {q′},∆1

)

,

∆1 =

{

a → q(a)
f(q(x1)) → q(f(x1))

∣

∣ q(f ′(x1))
∣

∣ q′(g(x1, x1))

}
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Example 2

Σin = {f : 2, g : 1, a : 0},
U2 =

(

Σin,Σin ∪ {f
′ : 1}, {q, q′, qf}, {qf},∆2

)

,

∆2 =























a → q(a)
∣

∣ q′(a)
g(q(x1)) → q(g(x1))
g(q′(x1)) → q′(g(x1))

f(q′(x1), q
′(x2)) → q′(f(x1, x2))

f(q′(x1), q
′(x2)) → qf(f

′(x1))























L(U2) =
{

〈f(t1, t2), f
′(t1)

∣

∣ t2 = gm(a),m ≥ 0
}
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Tree Transducers, example

Token tree protocol [Abdulla et al CAV02]

n → q0(n
′)

t → q1(n
′)

n
(

q0(x1), q0(x2)
)

→ q0
(

n(x1, x2)
)

t
(

q0(x1), q0(x2)
)

→ q1
(

n(x1, x2)
)

n
(

q1(x1), q0(x2)
)

→ q2
(

t(x1, x2)
)

n
(

q0(x1), q1(x2)
)

→ q2
(

t(x1, x2)
)

n
(

q2(x1), q0(x2)
)

→ q2
(

n(x1, x2)
)

n
(

q0(x1), q2(x2)
)

→ q2
(

n(x1, x2)
)

property: mutual exclusion (for every network)
initial: terms of T

(

{t, n, t, n}
)

, containing exactly one token.
verification: the intersection of his closure with the set
{q2(t) | t ∈ T

(

{t, n, t, n}
)

, t contains at least 2 tokens} (regular) is
empty.
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Languages

◮ Linear bottom-up TT are closed under composition.

◮ Deterministic bottom-up TT are closed under composition.

Theorem :
◮ The domain of a TT is a regular tree language.

◮ The image of a regular tree language by a linear TT is a
regular tree language.
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Transducers and Homomorphisms

An homomorphism is called delabeling if it is linear, complete,
symbol-to-symbol.

Definition : Bimorphisms

A bimorphism is a triple B = (h, h′, L) where h, h′ are homomor-
phisms and L is a regular tree language.

L(B) =
{

〈h(t), h′(t)〉
∣

∣ t ∈ L
}

Theorem :

TT ≡ bimorphisms (h, h′, L) where h delabeling.
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Term Rewriting Systems
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Term Rewriting

Definition : Substitution

A substitution is a function of finite domain from X into T (Σ,X ).
We extend the definition to T (Σ,X )→ T (Σ,X ) by:

f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ) (n ≥ 0)

The application C[t1, . . . , tn] of a context C ∈ T (Σ, {x1, . . . , xn})
to n terms t1, . . . , tn, is Cσ with σ = {x1 7→ t1, . . . , xn 7→ tn}.
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Term Rewriting

A rewrite system R is a finite set of rewrite rules of the form
ℓ→ r with ℓ, r ∈ T (Σ,X ).

The relation −−→
R

is the smallest binary relation containing R, and
closed under application of contexts and substitutions.
i.e. s −−→

R
t iff ∃p ∈ Pos(s), ℓ→ r ∈ R, σ, s|p = ℓσ and

t = s[rσ]p.

We note −−→∗
R

the reflexive and transitive closure of −−→
R

.

Example :

R = {+(0, x)→ x,+(s(x), y)→ s(+(x, y))}.

+
(

s(s(0)),+(0, s(0))
)

−−→
R

+
(

s(s(0)), s(0)
)

−−→
R

s
(

+(s(0), s(0))
)

−−→
R

s
(

s
(

+(0, s(0))
))

−−→
R

s(s(s(0)))
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TRS Preserving Regularity

For a TRS R over Σ and L ⊆ T (Σ),

R∗(L) = {t ∈ T (Σ) | ∃s ∈ L, s −−→∗
R

t}

Regularity Preservation

Identify a class C of TRS such that
for all R ∈ C, R∗(L) is regular if L is regular.

Theorem : [Gilleron STACS 91]

It is undecidable in general whether a given TRS is
preserving regularity.
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Ground TRS

Theorem : [Brainerd 69]

Ground TRS are preserving regularity.

Given: TA Ain and ground TRS R. We start with

Ain ∪ (Σ, QR, ∅, {f(qr1 , . . . , qrn)→ qr | r = f(r1, . . . rn) ∈ QR})

where QR = strict subterms(rhs(R)),
and add transitions according to the schema:

lhs(R) ∋ ℓ

f(r1, . . . , rn)

q

f(qr1 , . . . , qrn)

A
R

A

A

no states are added → termination.
The TA obtained recognizes R∗

(

L(Ain)
)

.
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Ground TRS (examples)

lhs(R) ∋ ℓ

f(r1, . . . , rn)

q

f(qr1 , . . . , qrn)

A
R

A

A

s(s(0))→ 0 ⊥+ 1→ s(⊥)

s(s(0)) q

0

A

∗

R
A

⊥+ 1 q

s(⊥) s(q⊥)

A
R

A

A
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Linear and right-shallow TRS
right-shallow: variables at depth at most 1 in rhs of rules.

Theorem : [Salomaa 88]

Linear and right-shallow TRS preserve regularity.

Given: TA Ain and linear and right-shallow TRS R.
The construction is similar to the ground TRS case: We start with

Ain ∪ (Σ, QR, ∅, {f(qr1 , . . . , qrn)→ qr | r = f(r1, . . . rn) ∈ QR})

where QR = strict subterms(rhs(R)) \ X ,
and add transitions according to the schema:

ℓσ

f(r1, . . . , rn)σ

q

f(q1, . . . , qn)

A
R

A

A

where ℓ ∈ lhs(R), substitution σ : vars(ℓ)→ Q, for all i ≤ n, if
ri /∈ X then qi = qri and qi = riσ otherwise.
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Linear and right-shallow TRS (examples)

ℓσ

f(r1, . . . , rn)σ

q

f(q1, . . . , qn)

A
R

A

A

where ℓ ∈ lhs(R), substitution σ : vars(ℓ)→ Q, for all i ≤ n, if
ri /∈ X then qi = qri and qi = riσ otherwise.

s(x)− s(y)→ x− y s(x)→ s(0) + x

s(q1)− s(q2) q′1 − q
′
2

q

q1 − q2

A

R A

s(q1) q

s(0) + q1 qs(0) + q1

A
R

A

A
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Linear and right-shallow TRS: extensions

Other classes of TRS preserving regularity

◮ [Coquide et al 94] semi-monadic or inverse-growing TRS:
for all ℓ→ r ∈ R, vars(r) ∩ vars(ℓ) at depth at most 1 in r.

◮ [Nagaya Toyama RTA 02] right-linear and right-shallow TRS.
NOT left-linear.

◮ [Gyenizse Vagvolgyi GSMTRS 98]
linear and generalized semi-monadic TRS

◮ [Takai Kaji Seki RTA 00]
right-linear finite path overlapping TRS
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Right-Linearity and Right-Shallowness Conditions

Relaxing these conditions generaly breaks regularity preservation.

Example : Right-Linearity

letR = {f(x)→ g(x, x)} (flat and left-linear), Lin = {f(. . . f(c))}.
R∗(Lin)∩T

(

{g, c}
)

is the set of balanced binary trees of T
(

{g, c}
)

,
which is not regular.

Example : Right-Shallowness

With rewrite rules whose left and right hand-side have height at most
two, it is possible simulate Turing machine computations, even in
the case of words (symbols of arity 0 or 1).

Exceptions (for the right-shallowness)

◮ [Rety LPAR 99] constructor based (with restrictions on Lin).
ex: app(nil, y)→ y, app

(

cons(x, y), z
)

→ cons
(

x, app(y, z)
)

.

◮ [Seki et al RTA 02] Layered Transducing TRS
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Linear I/O Separated Layered Transducing TRS

[Seki et al RTA 02]
This class corresponds to linear tree transducers.

over Σ = Σi ⊎ Σo ⊎Q, rewrite rules of the form

fi(p1(x1), ..., pn(xn)) → p(t)
p′1(x1) → p′(t′)

where fi ∈ Σi, p1, . . . , pn, p, p
′
1, p

′ ∈ Q x1, . . . , xn are disjoint
variables, t, t′ ∈ T (Σo,X ) such that vars(t) ⊆ {x1, . . . , xn} and
vars(t′) ⊆ {x1}.
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To know more

Further results closure of tree automata languages:

◮ closure of extended tree automata languages, modulo
[Gallagher Rosendahl 08], [JRV JLAP 08], [JKV LATA 09],
[JKV IC 11]

◮ rewrite strategies (bottom-up, context-sensitive, innermost,
outermost...) [Durand et al RTA 07,10,11],
[Kojima Sakai RTA 08], [Rety Vuotto JSC 05], [GGJ WRS 08]

◮ constrained/controlled rewriting
[Sénizergues French Spring School of TCS 93],
[JKS FroCoS 11]

◮ unranked tree rewriting (XML updates)
[JR RTA 08], [JR PPDP 10]
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Tree Automata Based Program Verification
Some Techniques and Tools
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Program Analysis with Tree Automata / Grammars

(very partial list) focus on 3 approaches

◮ [Reynolds IP 68] LISP programs → lfp solutions of equations

◮ [Jones Muchnick POPL 79] LISP programs → tree grammars

◮ [Jones 87] lazy higher-order functional programs

◮ [Heintze Jaffar 90] logic programs → set constraints

◮ [Lugiez Schnoebelen CONCUR 98], [Bouajjani Touili 03+]
imperative programs w. prefix rewriting: PA-processes, PAD
systems, PRS...

◮ [Genet et al 98+]
functional programs, security protocols, Java Bytecode

◮ [Jones Andersen TCS 07] functional programs
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Timbuk

[Genet et al] (IRISA)
http://www.irisa.fr/celtique/genet/timbuk

Computation of rewrite closure by tree automata completion, with
over-approximations. User defined or infered accelerations.

◮ analysis of security protocols
SmartRight, Copy Protection Technology for DVB, Thomson

◮ analysis of Java Bytecode with Copster

Timbuk library, used in other tools like

◮ TA4SP, one of the proof back-ends of the AVISPA tool for
security protocol verification

◮ SPADE
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SPADE ♠

[Tayssir Touili et al CAV 07] (LIAFA).
http://www.liafa.jussieu.fr/~touili/spade.html

Reachability analysis for multithreaded dynamic and recursive
programs.

◮ (PAD) Systems [Touili VISSAS 05]

X1 · . . . ·Xn → Y1 · . . . · Ym, X1 → Y1 ‖ . . . ‖ Ym

Case studies

◮ Windows Bluetooth driver

◮ multithreaded program based on the class java.util.Vector
from the Java Standard Collection Framework

◮ concurrent insertions on a binary search tree
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Approximations of Collecting Semantics
[Jones Andersen TCS 07]

functional program P

right-linear TRS R
regular tree grammar G0
set of initial configurations

+

regular tree grammar G
over-approximation of

the collecting semantics of P

collecting semantics [Cousot2] (roughly): mapping associating to
each program point p the set of configurations reachable at p.

[Kochems Ong RTA 11] finer approximation using indexed linear
tree grammars (instead of regular grammars).
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Regular Tree Grammars

Definition : Regular Tree Grammars

A is a tuple G = 〈N , S,Σ, P 〉 where N is a finite set of nullary non-
terminal symbols, S ∈ N (axiom of G), Σ is a signature disjoint
from N and P is a set of production rules of the form X := r with
r ∈ T (Σ ∪ N ).

Example :

Σ = {∧ : 2,∨ : 2,¬ : 1,⊤,⊥ : 0}, G = ({X0,X1},X1,Σ, P ).

P =































X0 := ⊥ X1 := ⊤
X1 := ¬(X0) X0 := ¬(X1)
X0 := ∨(X0,X0) X1 := ∨(X0,X1)
X1 := ∨(X1,X0) X1 := ∨(X1,X1)
X0 := ∧(X0,X0) X0 := ∧(X0,X1)
X0 := ∧(X1,X0) X1 := ∧(X1,X1)






























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Approximations of Collecting Semantics: Example
Concurrent readers/writers: reachable configurations

R = R1 : state(0, 0) → state(0, s(0))
R2 : state(X2, 0) → state(s(X2), 0)
R3 : state(X3, s(Y3)) → state(X3, Y3)
R4 : state(s(X4), Y4) → state(X4, Y4)

state(0, 0) state
(

0, s(0)
)

state
(

s(0), 0
)

state
(

s(s(0)), 0
)

...

1

32 4

2 4

134 / 200



Approximations of Collecting Semantics: Example
R = R1 : state(0, 0) → state(0, s(0))

R2 : state(X2, 0) → state(s(X2), 0)
R3 : state(X3, s(Y3)) → state(X3, Y3)
R4 : state(s(X4), Y4) → state(X4, Y4)

R0 := state(0, 0)

R0 := R1 state(0, 0) = lhs(R1)
R1 := state(0, s(0))

R0 := R2 state(0, 0) = state(X2, 0){X2 7→ 0}
R2 := state(s(X2), 0)
X2 := 0

X2 := s(X2) state(s(X2), 0) =
state(X2, 0){X2 7→ s(X2)}

R1 := R3 state(0, s(0)) =
R3 := state(X3, Y3) state(X3, s(Y3)){X3 7→ 0, Y3 7→ 0}
X3 := 0, Y3 := 0

R2 := R4 state(s(X2), 0)) =
R4 := state(s(X4), Y4) state(s(X4), Y4){X4 7→ X2, Y4 7→ 0}
X4 := X2, Y4 := 0 135 / 200



Approximations of Collecting Semantics: Example

R = R1 : state(0, 0) → state(0, s(0))
R2 : state(X2, 0) → state(s(X2), 0)
R3 : state(X3, s(Y3)) → state(X3, Y3)
R4 : state(s(X4), Y4) → state(X4, Y4)

R0 := state(0, 0)

R0 := R1

R1 := state(0, s(0))

R0 := R2

R2 := state(s(X2), 0)
X2 := 0

X2 := s(X2)

R1 := R3

R3 := state(X3, Y3)
X3 := 0, Y3 := 0

R2 := R4

R4 := state(s(X4), Y4)
X4 := X2, Y4 := 0

state(0, 0) state
(

0, s(0)
)

state
(

s(0), 0
)

state
(

s(s(0)), 0
)

...

1

32 4

2 4
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Approximations of Collecting Semantics: Example 2
[Jones Andersen TCS 07]

let rec first l1 l2 =
match l1, l2 with
[], → []
l::m, x::xs → x::(first m xs);

R2 : first(nil,Xs) → nil
R3 : first(cons(1,M), cons(X,Xs)) → cons(X, first(M,Xs))

let rec sequence y =
y::(sequence (1::y));

R4 : sequence(Y ) → cons(Y, sequence(cons(1, Y )))

let g n =
first n (sequence []);

R1 : g(N) → first(N, sequence(nil))
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Part II

Weak Second Order Monadic Logic with k successors
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Logic and Automata

◮ logic for expressing properties of labeled binary trees

= specification of tree languages,
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Logic and Automata

◮ logic for expressing properties of labeled binary trees

= specification of tree languages, example:

t |= ∀x a(x)⇒ ∃y y > x ∧ b(y)

◮ compilation of formulae into automata

= decision algorithms.

◮ equivalence between both formalisms

[Thatcher & Wright’s theorem].
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Plan

WSkS: Definition

Automata → Logic

Logic → Automata

Fragments and Extensions of WSkS
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Interpretation Structures

L := set of predicate symbols P1, . . . Pn with arity.

A structureM over L is a tuple

M :=
〈

D, PM
1 , . . . , PM

n

〉

where

◮ D is the domain ofM,

◮ every PM
i (interpretation of Pi) is a subset of Darity(Pi)

(relation).
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Term as structure

Σ signature, k = maximal arity.

LΣ := {=, <, S1, . . . , Sk, La

∣

∣ a ∈ Σ}.

to t ∈ T (Σ), we associate a structure t over LΣ

t :=
〈

Pos(t),=, <, S1, . . . , Sk, L
t
a, L

t
b, · · ·

〉

where

◮ domain = positions of t (Pos(t) ⊂ {1, . . . , k}∗)

◮ = equality over Pos(t),

◮ < prefix ordering over Pos(t),

◮ Si =
{

〈p, p · i〉 | p, p · i ∈ Pos(t)
}

(ith successor position),

◮ L
t
a = {p ∈ Pos(t) | t(p) = a}.
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FOL with k successors

◮ first order variables x, y. . .

◮ form ::= x = y
∣

∣ x < y
∣

∣ S1(x, y)
∣

∣ . . .
∣

∣ Sk(x, y)
∣

∣ La(x) a ∈ Σ
∣

∣ form ∧ form
∣

∣ form ∨ form
∣

∣ ¬form
∣

∣ ∃x form
∣

∣ ∀x form

Notation: φ(x1, . . . , xm),
where x1, . . . , xm are the free variables of φ.
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WSkS: syntax

◮ first order variables x, y. . .

◮ second order variables X,Y . . .

◮ form ::= x = y
∣

∣ x < y
∣

∣ x ∈ X
∣

∣ S1(x, y)
∣

∣ . . .
∣

∣ Sk(x, y)
∣

∣ La(x) a ∈ Σ
∣

∣ form ∧ form
∣

∣ form ∨ form
∣

∣ ¬form
∣

∣ ∃x form
∣

∣ ∃X form
∣

∣ ∀x form
∣

∣ ∀X form

Notation: φ(x1, . . . , xm,X1, . . . ,Xn),
where x1, . . . , xm, X1, . . . ,Xn are the free variables of φ.
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WSkS: semantics

◮ t ∈ T (Σ),

◮ valuation σ of first order variables into Pos(t),

◮ valuation δ of second order variables into subsets of Pos(t),

◮ t, σ, δ |= x = y iff σ(x) = σ(y),

◮ t, σ, δ |= x < y iff σ(x) <prefix σ(y),

◮ t, σ, δ |= x ∈ X iff σ(x) ∈ δ(X),

◮ t, σ, δ |= Si(x, y) iff σ(y) = σ(x) · i,

◮ t, σ, δ |= La(x) iff t(σ(x)) = a i.e. σ(x) ∈ Lt
a,

◮ t, σ, δ |= φ1 ∧ φ2 iff t, σ, δ |= φ1 and t, σ, δ |= φ2,

◮ t, σ, δ |= φ1 ∨ φ2 iff t, σ, δ |= φ1 or t, σ, δ |= φ2,

◮ t, σ, δ |= ¬φ iff t, σ, δ 6|= φ,
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WSkS: semantics (quantifiers)

◮ t, σ, δ |= ∃x φ iff x /∈ dom(σ), x free in φ
and exists p ∈ Pos(t) s.t. t, σ ∪ {x 7→ p}, δ |= φ,

◮ t, σ, δ |= ∀x φ iff x /∈ dom(σ), x free in φ
and for all p ∈ Pos(t), t, σ ∪ {x 7→ p}, δ |= φ,

◮ t, σ, δ |= ∃X φ iff X /∈ dom(δ), X free in φ
and exists P ⊆ Pos(t) s.t. t, σ, δ ∪ {X 7→ P} |= φ,

◮ t, σ, δ |= ∀X φ iff X /∈ dom(δ), X free in φ
and for all P ⊆ Pos(t), t, σ, δ ∪ {X 7→ P} |= φ.
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WSkS: languages

Definition : WSkS-definability

For φ ∈WSkS closed (without free variables) over LΣ,

L(φ) :=
{

t ∈ T (Σ)
∣

∣ t |= φ
}

.

Example :

Σ = {a : 2, b : 2, c : 0}. Language of terms in T (Σ)

◮ containing the pattern a(b(x1, x2), x3):
∃x∃y S1(x, y) ∧ La(x) ∧ Lb(y)

◮ such that every a-labelled node has a b-labelled child.
∀x∃y La(x)⇒

∨2
i=1 Si(x, y) ∧ Lb(y)

◮ such that every a-labelled node has a b-labelled descendant.
∀x∃y La(x)⇒ x < y ∧ Lb(y)
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WSkS: examples

◮ root position:
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WSkS: examples

◮ root position: root(x) ≡ ¬∃y y < x

◮ inclusion:
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WSkS: examples

◮ root position: root(x) ≡ ¬∃y y < x

◮ inclusion: X ⊆ Y ≡ ∀x(x ∈ X ⇒ x ∈ Y )

◮ intersection:
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WSkS: examples

◮ root position: root(x) ≡ ¬∃y y < x

◮ inclusion: X ⊆ Y ≡ ∀x(x ∈ X ⇒ x ∈ Y )

◮ intersection: Z = X ∩ Y ≡ ∀x (x ∈ Z ⇔ (x ∈ X ∧ x ∈ Y ))

◮ emptiness:
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WSkS: examples

◮ root position: root(x) ≡ ¬∃y y < x

◮ inclusion: X ⊆ Y ≡ ∀x(x ∈ X ⇒ x ∈ Y )

◮ intersection: Z = X ∩ Y ≡ ∀x (x ∈ Z ⇔ (x ∈ X ∧ x ∈ Y ))

◮ emptiness: X = ∅ ≡ ∀x x /∈ X

◮ finite union:
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WSkS: examples

◮ root position: root(x) ≡ ¬∃y y < x

◮ inclusion: X ⊆ Y ≡ ∀x(x ∈ X ⇒ x ∈ Y )

◮ intersection: Z = X ∩ Y ≡ ∀x (x ∈ Z ⇔ (x ∈ X ∧ x ∈ Y ))

◮ emptiness: X = ∅ ≡ ∀x x /∈ X

◮ finite union:

X =

n
⋃

i=1

Xi ≡
(

n
∧

i=1

Xi ⊆ X
)

∧ ∀x
(

x ∈ X ⇒
n
∨

i=1

x ∈ Xi

)

◮ partition:

154 / 200



WSkS: examples

◮ root position: root(x) ≡ ¬∃y y < x

◮ inclusion: X ⊆ Y ≡ ∀x(x ∈ X ⇒ x ∈ Y )

◮ intersection: Z = X ∩ Y ≡ ∀x (x ∈ Z ⇔ (x ∈ X ∧ x ∈ Y ))

◮ emptiness: X = ∅ ≡ ∀x x /∈ X

◮ finite union:

X =

n
⋃

i=1

Xi ≡
(

n
∧

i=1

Xi ⊆ X
)

∧ ∀x
(

x ∈ X ⇒
n
∨

i=1

x ∈ Xi

)

◮ partition:

X1, . . . ,Xn partitionX ≡ X =

n
⋃

i=1

Xi ∧
n−1
∧

i=1

n
∧

j=i+1

Xi ∩Xj = ∅
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WSkS: examples (2)

◮ singleton:
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WSkS: examples (2)

◮ singleton:
sing(X) ≡ X 6= ∅ ∧ ∀Y

(

Y ⊆ X ⇒ (Y = X ∨ Y = ∅)
)

◮ ≤ (without <)
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WSkS: examples (2)

◮ singleton:
sing(X) ≡ X 6= ∅ ∧ ∀Y

(

Y ⊆ X ⇒ (Y = X ∨ Y = ∅)
)

◮ ≤ (without <)

x ≤ y ≡ ∀X





y ∈ X

∧ ∀z ∀z′ (z′ ∈ X ∧
∨

i≤k

Si(z, z
′))⇒ z ∈ X





⇒ x ∈ X

or

x ≤ y ≡ ∃X
(

∀z z ∈ X ⇒ (∃z′
∨

i≤k

Si(z
′, z) ∧ z′ ∈ X) ∨ z = x

)

∧ y ∈ X
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Thatcher & Wright’s Theorem

Theorem : Thatcher and Wright

Languages of WSkS formulae = regular tree languages.

pr.: 2 directions (2 constructions):

◮ TA → WSkS,

◮ WSkS → TA.
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Plan

WSkS: Definition

Automata → Logic

Logic → Automata

Fragments and Extensions of WSkS
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Regular languages → WSkS languages

Let Σ = {a1, . . . , an}.

Theorem :

For all tree automaton A over Σ, there exists φA ∈WSkS such that
L(φA) = L(A).

A = (Σ, Q,Qf ,∆) with Q = {q0, . . . , qm}.
φA: existence of an accepting run of A on t ∈ T (Σ).

φA := ∃Y0 . . . ∃Ym φlab(Y ) ∧ φacc(Y ) ∧ φtr0(Y ) ∧ φtr(Y )
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regular languages → WSkS languages

φlab(Y ): every position is labeled with one state exactely.
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regular languages → WSkS languages

φlab(Y ): every position is labeled with one state exactely.

φlab(Y ) ≡ ∀x
∨

0≤i≤m

x ∈ Yi ∧
∧

0≤i,j≤m

i 6=j

(

x ∈ Yi ⇒ ¬x ∈ Yj
)
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regular languages → WSkS languages

φlab(Y ): every position is labeled with one state exactely.

φlab(Y ) ≡ ∀x
∨

0≤i≤m

x ∈ Yi ∧
∧

0≤i,j≤m

i 6=j

(

x ∈ Yi ⇒ ¬x ∈ Yj
)

φacc(Y ): the root is labeled with a final state
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regular languages → WSkS languages

φlab(Y ): every position is labeled with one state exactely.

φlab(Y ) ≡ ∀x
∨

0≤i≤m

x ∈ Yi ∧
∧

0≤i,j≤m

i 6=j

(

x ∈ Yi ⇒ ¬x ∈ Yj
)

φacc(Y ): the root is labeled with a final state

φacc(Y ) ≡ ∀x0 root(x0)⇒
∨

qi∈Qf

x0 ∈ Yi
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regular languages → WSkS languages

φtr0(Y ): transitions for constants symbols
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regular languages → WSkS languages

φtr0(Y ): transitions for constants symbols

φtr0(Y ) ≡
∧

a∈Σ0

(

∀x La(x)⇒
∨

a→qi∈∆

x ∈ Yi
)
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regular languages → WSkS languages

φtr0(Y ): transitions for constants symbols

φtr0(Y ) ≡
∧

a∈Σ0

(

∀x La(x)⇒
∨

a→qi∈∆

x ∈ Yi
)

φtr(Y ): transitions for non-constant symbols
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regular languages → WSkS languages

φtr0(Y ): transitions for constants symbols

φtr0(Y ) ≡
∧

a∈Σ0

(

∀x La(x)⇒
∨

a→qi∈∆

x ∈ Yi
)

φtr(Y ): transitions for non-constant symbols

φtr(Y ) ≡
∧

f∈Σj ,0<j≤k

∀x∀y1 . . . ∀yj

(

Lf (x) ∧ S1(x, y1) ∧ . . . ∧ Sj(x, yj)
)

⇓
∨

f(qi1 ,...,qij )→qi∈∆

x ∈ Yi ∧ y1 ∈ Yi1 ∧ . . . ∧ yj ∈ Yij
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Plan

WSkS: Definition

Automata → Logic

Logic → Automata

Fragments and Extensions of WSkS
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Theorem Thatcher & Wright

Theorem :

Every WSkS language is regular.

For all formula φ ∈WSkS over Σ (without free variables) there
exists a tree automaton Aφ over Σ, such that L(Aφ) = L(φ).

Corollary :

WSkS is decidable.

pr.: reduction to emptiness decision for Aφ.
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Theorem Thatcher & Wright

Aφ is effectively constructed from φ, by induction.

◮ automata for atoms

⇒ need of automata for formula with free variables.

it will characterize

◮ Boolean closures for Boolean connectors.

◮ ∃ quantifier: projection.
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Theorem Thatcher & Wright

When φ contains free variables, Aφ will characterize both terms
AND valuations satisfying φ: L(Aφ) ≡ {〈t, σ, δ〉 | t, σ, δ |= φ}.
Below we define the product 〈t, σ, δ〉.

X for free second order variables:

t ∈ T (Σ)

δ : {X1, . . . ,Xn} → 2Pos(t) 7→ t× δ ∈ T (Σ × {0, 1}n)

arity of 〈a, b〉 in Σ× {0, 1}n = arity of a in Σ.

for all p ∈ Pos(t), (t× δ)(p) = 〈t(p), b1, . . . , bn〉 where for all
i ≤ n,

◮ bi = 1 if p ∈ δ(Xi),

◮ bi = 0 otherwise.

X free first order variables are interpreted as singletons.
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WSkS0

We consider a simplified language (wlog).

◮ no first order variables,

◮ only second order variables X,Y . . .,

◮ form ::= X ⊆ Y
∣

∣ Y = X · 1
∣

∣ . . .
∣

∣ Y = X · k
∣

∣ X ⊆ La a ∈ Σ
∣

∣ form ∧ form
∣

∣ form ∨ form
∣

∣ ¬form
∣

∣ ∃X form
∣

∣ ∀X form

interpretation Y = X · i: X = {x}, Y = {y} and y = x · i.

ex: singleton
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WSkS0

We consider a simplified language (wlog).

◮ no first order variables,

◮ only second order variables X,Y . . .,

◮ form ::= X ⊆ Y
∣

∣ Y = X · 1
∣

∣ . . .
∣

∣ Y = X · k
∣

∣ X ⊆ La a ∈ Σ
∣

∣ form ∧ form
∣

∣ form ∨ form
∣

∣ ¬form
∣

∣ ∃X form
∣

∣ ∀X form

interpretation Y = X · i: X = {x}, Y = {y} and y = x · i.

ex: singleton
singleton(X) ≡ ∃Y

(

Y ⊆ X ∧ Y 6= X∧
¬∃Z (Z ⊆ X ∧ Z 6= X ∧ Z 6= Y )

)
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WSkS→ WSkS0

Lemma :

For all formula φ(x1, . . . , xm,X1, . . . ,Xn) ∈WSkS,
there exists a formula φ′(X ′

1, . . . ,X
′
m,X1, . . . ,Xn) ∈WSkS0

s.t. t, σ, δ |= φ(x1, . . . , xm,X1, . . . ,Xn)
iff t, σ′∪δ |= φ′(X ′

1, . . . ,X
′
m,X1, . . . ,Xn), with σ

′ : X ′
i 7→ {σ(xi)}.

pr.: several steps of formula rewriting:

1. elimination of <,

2. elimination of Si(x, y) (i ≤ k), La(x) (a ∈ Σ),

elimination of first order variables (use singleton(X)).
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compilation of WSkS0 into automata

notation: Σ[m] := Σ× {0, 1}m.

For all φ(X1, . . . ,Xn) ∈WSkS0 and m ≥ n,
we construct a tree automaton JφKm over Σ[m] recognizing

{

t× δ | δ : {X1, . . . ,Xm} → 2Pos(t), t, δ |= φ(X1, . . . ,Xn)
}
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projection, cylindrification

projection
proj n :

⋃

m≥n T (Σ[m])→ T (Σ[n])

delete components n+ 1, . . . ,m.

Lemma : projection

For all n ≤ m, if L ⊆ T (Σ[m]) is regular then proj n(L) is regular.

cylindrification (m ≥ n)
cyln,m : L ⊆ T (Σ[n]) 7→ {t ∈ T (Σ[m]) | proj n(t) ∈ L}

Lemma : cylindrification

For all n ≤ m, if L ⊆ T (Σ[n]) is regular, then cyln,m(L) is regular.
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compilation: X1 ⊆ X2

Automaton JX1 ⊆ X2K2:

◮ signature Σ[2] = Σ× {0, 1}2.
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compilation: X1 ⊆ X2

Automaton JX1 ⊆ X2K2:

◮ signature Σ[2] = Σ× {0, 1}2.

◮ states: q0

◮ final states: q0

◮ transitions:
〈a, 0, 0〉(q0, . . . , q0) → q0
〈a, 0, 1〉(q0, . . . , q0) → q0
〈a, 1, 1〉(q0, . . . , q0) → q0

For m ≥ 2,

JX1 ⊆ X2Km := cyl2,m
(

JX1 ⊆ X2K2
)
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compilation: X1 = X2 · 1

Automaton JX1 = X2 · 1K2:

◮ signature Σ[2] = Σ× {0, 1}2.
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compilation: X1 = X2 · 1

Automaton JX1 = X2 · 1K2:

◮ signature Σ[2] = Σ× {0, 1}2.

◮ states: q0, q1, q2

◮ final states: q2
◮ transitions:

〈a, 0, 0〉(q0, . . . , q0) → q0
〈a, 1, 0〉(q0, . . . , q0) → q1
〈a, 0, 1〉(q1, q0, . . . , q0) → q2
〈a, 0, 0〉(q0, . . . , q0, q2, q0, . . . , q0) → q2

For m ≥ 2,

JX2 = X1 · 1Km := cyl2,m
(

JX2 = X1 · 1K2
)
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compilation: X1 ⊆ La

Automate JX1 ⊆ LaK1:

◮ signature Σ[2] = Σ× {0, 1}2.
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compilation: X1 ⊆ La

Automate JX1 ⊆ LaK1:

◮ signature Σ[2] = Σ× {0, 1}2.

◮ states: q0

◮ final states: q0

◮ transitions:
〈a, 0〉(q0, . . . , q0) → q0
〈b, 0〉(q0, . . . , q0) → q0 (b 6= a)
〈a, 1〉(q0, . . . , q0) → q0

For m ≥ 1,

JX1 ⊆ LaKm := cyl1,m
(

JX1 ⊆ LaK1
)
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compilation: Boolean connectors

◮ Jφ(X1, . . . ,Xn) ∨ φ(X1, . . . ,Xn′)Km :=
Jφ(X1, . . . ,Xn)Km ∪ Jφ(X1, . . . ,Xn′)Km
with m ≥ max(n, n′)

◮ Jφ(X1, . . . ,Xn) ∧ φ(X1, . . . ,Xn′)Km :=
Jφ(X1, . . . ,Xn)Km ∩ Jφ(X1, . . . ,Xn′)Km
with m ≥ max(n, n′)

◮ J¬φ(X1, . . . ,Xn)Km := T (Σ[m]) \ Jφ(X1, . . . ,Xn)Km
for m ≥ n.
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compilation: quantifiers

◮ J∃Xn+1 φ(X1, . . . ,Xn+1)Kn := proj n
(

Jφ(X1, . . . ,Xn+1)Kn+1

)

◮ NB: this construction does not preserve determinism.

◮ J∃Xn+1 φ(X1, . . . ,Xn+1)Km :=
cyln,m

(

J∃Xn+1 φ(X1, . . . ,Xn+1)Kn
)

for m ≥ n.

◮ ∀ = ¬∃¬
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Theorem Thatcher & Wright

Theorem :

For all formula φ ∈ WSkS0 over Σ without free variables, there
exists a tree automaton Aφ over Σ, such that L(Aφ) = L(φ).

Aφ = JφK0 can be computed explicitely!

Corollary :

For all formula φ ∈WSkS over Σ without free variables there exists
a tree automaton Aφ over Σ, such that L(Aφ) = L(φ).

using translation of WSkS into WSkS0 first.
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Size of Aφ

Theorem : Stockmeyer and Meyer 1973

For all n there exists ∃x1¬∃y1∃x2¬∃y2 . . . ∃xn¬∃yn φ ∈ FOL such
that for every automaton A recognizing the same language

size(A) ≥ 22
...2

size(φ)
}

n
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Plan

WSkS: Definition

Automata → Logic

Logic → Automata

Fragments and Extensions of WSkS
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WSkS and FO

Using the 2 directions of the Thatcher & Wright theorem:

WSkS ∋ φ 7→ A 7→ ∃Y1 . . . ∃Yn ψ

with ψ ∈ FOL.

Corollary :

Every WSkS formula is equivalent to a formula
∃Y1 . . . ∃Yn ψ with ψ first order.
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FO ( WSkS

Proposition :

The language L of terms with an even number of nodes labeled by
a is regular (hence WSkS-definable) but not FO-definable.

pr.: with Ehrenfeucht-Fräıssé games.
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Ehrenfeucht-Fräıssé games

goal: prove FO equivalence of finite structures
(wrt finite set of predicates L).

Definition

for two finite L-structures A and B A ≡m B iff for all φ closed, of
quantifier depth m, A |= φ iff B |= φ
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Ehrenfeucht-Fräıssé games

Gm(A,B)

1 Spoiler chooses a1 ∈ dom(A) or b1 ∈ dom(B)

1′ Duplicator chooses b1 ∈ dom(B) or a1 ∈ dom(A)
...

m′ Duplicator chooses bm ∈ dom(B) or am ∈ dom(A)

Duplicator wins if {a1 7→ b1, . . . , am 7→ bm} is an injective partial
function compatible with the relations of A and B (∀P ∈ P,
PA(ai1 , . . . , ain) iff P

B(bi1 , . . . , bin))
= partial isomorphism.
Otherwise Spoiler wins.

Theorem : Ehrenfeucht-Fräıssé

A ≡m B iff Duplicator has a winning strategy for Gm(A,B).
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Ehrenfeucht-Fräıssé Theorem

more generally: equivalence of finite structures + valuation of n
free variables.

for two finite L-structures A and B and
α1, . . . , αn ∈ dom(A), β1, . . . , βn ∈ dom(B), m ≥ 0,

A, α1, . . . , αn ≡m B, β1, . . . , βn

iff for all φ(x1, . . . , xn) of quantifier depth m,

A, σa |= φ(x) iff B, σb |= φ(x)

where σa = {x1 7→ α1, . . . , xn 7→ αn},
σb = {x1 7→ β1, . . . , xn 7→ βn}.

Games: the partial isomorphisms must extend
{α1 7→ β1, . . . , αn 7→ βn}.
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FO ( WSkS
let Σ = {a : 1,⊥ : 0}.

Lemma :

For all m ≥ 3 and all i, j ≥ 2m − 1,
Duplicator has a winning strategy for Gm(ai(⊥), aj(⊥)).

Corollary :

The language L ⊆ T (Σ) of terms with an even number of nodes
labeled by a is not FO-definable.

◮ Star-free languages = FO definable holds for words
[McNaughton Papert] but not for trees.

◮ It is an active field of research to characterize regular tree
languages definable in FO.
e.g. [Benedikt Segoufin 05] ≈ locally threshold testable.
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Restriction to antichains

Definition :

An antichain is a subset P ⊆ Pos(t) s.t. ∀p, p′ ∈ P ,
p 6< p′ and p 6> p′.

antichain-WSkS: second-order quantifications are restricted to
antichains.

Theorem :

If Σ1 = ∅, the classes of antichain-WSkS languages and regular
languages over Σ conincide.

Theorem :

chain-WSkS is strictly weaker than WSkS.
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MSO on Graphs

Weak second-order monadic theory of the grid
Σ finite alphabet,

Lgrid := {=, S→, S↑, La

∣

∣ a ∈ Σ}

Grid G : N× N→ Σ; Interpretation structure:

G := 〈N× N,=, x+ 1, y + 1, LG
a , L

G
b , . . .〉.

Proposition :

The weak monadic second-order theory of the grid is undecidable.

csq: weak MSO of graphs is undecidable.
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MSO on Graphs (remarks)

◮ algebraic framework [Courcelle]:
MSO decidable on graphs generated by a hedge replacement
graph grammar = least solutions of equational systems based
on graph operations: ‖ : 2, exchi,j : 1, forget i : 1, edge : 0,
ver : 0.

◮ related notion: graphs with bounded tree width.

◮ FO-definable sets of graphs of bounded degree = locally
threshold testable graphs (some local neighborhood appears n
times with n < threshold - fixed).
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Undecidable Extensions

Left concatenation: new predicate

S′
1 =

{

〈p, 1 · p〉 | p, 1 · p ∈ Pos(t)
}

Proposition :

WS2S + left concatenation predicate is undecidable.

Predicate of equal length.

Proposition :

WS2S + |x| = |y| is undecidable.
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MONA

[Klarlund et al 01]
http://www.brics.dk/mona/

◮ decision procedures for WS1S and WS2S

◮ by translation of formulas into automata
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