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Time in discrete-time Markov chains

The advance of time in DTMCs

@ Negative exponential distributions » Time in a DTMC proceeds in discrete steps
» Two possible interpretations:
1. accurate model of (discrete) time units
> e.g., clock ticks in model of an embedded device
2. time-abstract
> no information assumed about the time transitions take

Overview

> State residence time is geometrically distributed

Continuous-time Markov chains

> dense model of time
> transitions can occur at any (real-valued) time instant

> state residence time is (negative) exponentially distributed
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Negative exponential distributions

Continuous random variables

» X is a random variable (r.v., for short)

» on a sample space with probability measure Pr
» assume the set of possible values that X may take is dense

» X is continuously distributed if there exists a function f(x) such that:

d
F(d) = PH{X <d} = / f(x) dx for each real number d

—00

where f satisfies: f(x) >0 forall x and / f(x)dx=1

» Fx(d) is the (cumulative) probability distribution function
» f(x) is the probability density function
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Negative exponential distribution

Density of exponential distribution

The density of an exponentially distributed r.v. Y with rate A € R+ is:
fy(x) = A-e ™ forx >0 and fy(x) = 0 otherwise

The cumulative distribution of r.v. Y with rate A € Ry is:
d
Fr(d) = [ de? dx = e M8 = 1- e
0

The rate A € R<g uniquely determines an exponential distribution.

Variance and expectation

Let r.v. Y be exponentially distributed with rate A € R-g. Then:
> Expectation E[Y] = [(°x-Ae M dx = 1

> Variance VarlY] = [;°(x — E[X])Q)\-e_/\'x dx = %
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Negative exponential distributions

Exponential pdf and cdf
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The higher A, the faster the cdf approaches 1.

Why exponential distributions?

» Are adequate for many real-life phenomena

> the time until a radioactive particle decays
> the time between successive car accidents
» inter-arrival times of jobs, telephone calls in a fixed interval

» Are the continuous counterpart of the geometric distribution
» Heavily used in physics, performance, and reliability analysis
» Can approximate general distributions arbitrarily closely

» Yield a maximal entropy if only the mean is known
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Memoryless property Closure under minimum

1. For any exponentially distributed random variable X:

HPCo e = RS e s s

For independent, exponentially distributed random variables X and Y with

rates \, u € R, the r.v. min(X, Y) is exponentially distributed with rate
A, e

Prmin(X,Y) <t} = 1—e Ot forall t € Rso.

Proof of 1. : Let X\ be the rate of X's distribution. Then we derive:

2. Any cdf which is memoryless is a negative exponential one.

PriX >t+d N X >t}  Pr{X > t+d}
Pr{X > t}  PrX >t}

Pr{X>t+d|X>t} =

o=\ (t+d)

= — = e = Pr{X>d}.

Proof of 2. : By contraposition, using the total law of probability.
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Proof Closure under minimum

Let A\ (u) be the rate of X's (Y's) distribution. Then we derive:

Minimum closure theorem for several exponentially distributed r.v.'s

Pr{min(X,Y) <t} =P , R? in(x,y) <t . . . .
Amin(X, Y) <t} = Prvi(xy) € R3o [ min(x.y) < t} For independent, exponentially distributed random variables Xi, X5, ..., X,
_ / (/ lingeyy<e(%. ¥) - Ne= N . pehY dy) dx with rates A1, A2, ..., Ay € Ryg the r.v. min(Xy, Xa, ..., X,) is
0 o exponentially distributed with rate > o_;<, A, i.e.:

t [e ] t [e 9]
= )\€7AX . /‘Leiﬂy dy dX +/ / )\eka . 'uleip‘y dX dy _ N
/o /x 0 Jy Pr{min(X1, X2,..., Xp) <t} = 1—e LocienN forall t € R>o.

t t
= / e M. e X dx +/ eV . ue W dy
0 0

t t
= [ e O Fmx gy +/ e~y ¢ . e
/0 0 K Y Generalization of the proof for the case of two exponential distributions.

t
= / (M) - e~z gy = 1 — e~ ()t
0
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Winning the race with two competitors Proof

Let A\ () be the rate of X's (Y's) distribution. Then we derive:

PrX < Y} = Prxy{(xy) € B2y | x <y}

The minimum of two exponential distributions /°° oy (/y)\ g > d
= ue e X y
For independent, exponentially distributed random variables X and Y with 0 0
) o]
rates \, u € Ry, it holds: - / pe ™ (1—e) dy
)\ 0
P{X < Y} = e -1 _/O pe.eNdy = 1 _/0 e~ (VY gy
—1- P /OO(IH_A)e(w/\)y dy
ptA - Jo
=1
weoo A
ST N pEA
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Winning the race with many competitors Overview

The minimum of several exponentially distributed r.v.'s

For independent, exponentially distributed random variables Xi, Xo, ..., X, @ \What are continuous-time Markov chains?
with rates A1, Ao, ..., Ay € Ryg it holds:
: Ai
Pr{X; = min(X1,..., Xp)} = —=——.
j=1 )\j

Generalization of the proof for the case of two exponential distributions.
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Continuous-time Markov chain Example

Continuous-time Markov chain
A CTMC is a tuple (S, P, r, i, AP, L) where
» (S,P, Ly, AP, L) is a DTMC, and

» r: S — Ry, the exit-rate function

Interpretation

> residence time in state s is exponentially distributed with rate r(s).

» phrased alternatively, the average residence time of state s is %

» thus, the higher the rate r(s), the shorter the average residence time r(s) =25, r(t) =4, r(u) =2 and r(v) = 100
in s.
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Example: a classical perspective CTMC semantics by example

CTMC semantics

> Transition s — s’ := r.v. X; o with rate R(s, ")

> Probability to go from state s to, say, state s, is:

Pr{Xss, < Xspso N Xspoo < Xsps

S —
R(soﬂ/l@ =
/

R(so, 52) R(s0, %)

(50) \R (s R(so.51) + R(s0,52) + R(s0,53) ~ r(s0)

T
R
r(s) = 25, r(t) = 4, r(u) = 2 and r(v) = 100 R(s0,53) \@ > Probability of staying at most t time in sp is:

The transition rate R(s, s’) = P(s, s’)-r(s) Pr{min(Xs s, X5, Xs0,55) < t}

1— e—(R(Su,Sl)+R(So,52)+R(So,S3))~t - 1 e—r(so)~t

We use (S, P, r, tinie, AP, L) and (S, R, tini, AP, L) interchangeably.
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CTMC semantics CTMC semantics

Enabledness

The probability that transition s — s’ is enabled in [0, t] is 1 — e R(s:s)t,

State-to-state timed transition probability

State-to-state timed transition probability

The probability to move from non-absorbing s to s’ in [0, t] is: The probability to move from non-absorbing s to s in [0, ] is:

R(S,Sl) . _ e—r(s)~t R(s, s’ —r(s)-t
o) ). <r(s)>.(1_e ().

Residence time distribution

The probability to take some outgoing transition from s in [0, t] is:
Cr(s)e D% dx = 1— e rlo)
0
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CTMC semantics Enzyme-catalysed substrate conversion

Kinetics [edit]

Main article: Enzyme kinetics

B Enzyme kinetics is the ir igation of how y bind and turn them into
Cataytic step products. The rate data used in kinetic analyses are commonly obtained from enzyme assays,
-1
where since the 90s, the dynamics of many enzymes are studied on the level of individual

E+S <——ES —> E +P molecules.
ReSIdence tlme |but|0n In 1902 Victor Henril57] proposed a quantitative theory of enzyme kinetics, but his experimental
data were not useful because the significance of the hydrogen ion concentration was not yet

Substrete binding

il H H 1 c- iated. After Peter Lauritz S had defined the ithmic pH-scale and i
The probability to take some outgoing transition from s in [0, t] is: Macharien o sl s rzyme cayzea 3 | SPPrecisled. Attr Peter Lauiz Sarensen had defined mic pH-scale and intrd
reaction. The enzyme (E) binds a substrate (S) and the concept of buffering in 1909"°°/ the German chemist Leonor Michaelis and his Canadian
produces a product (P). postdoc Maud Leonora Menten repeated Henri's experiments and confirmed his equation which
t is referred to as Henri-Michaelis-Menten kinetics (termed also Michaelis-Menten klnetlcs),[ssl
_ r(s) 5% _ r(s) OF Their work was further developed by G. E. Briggs and J. B. S. Haldane, who derived kinetic
r(S) °@ dX = ]. = @ equations that are still widely considered today a starting point in solving enzymatic activity.[so]
0 The major contribution of Henri was to think of enzyme reactions in two stages. In the first, the substrate binds reversibly to the enzyme, forming the
j y g y y ng

enzyme-substrate complex. This is sometimes called the Michaelis complex. The enzyme then catalyzes the chemical step in the reaction and
releases the product. Note that the simple Michaelis Menten mechanism for the enzymatic activity is considered today a basic idea, where many
examples show that the enzymatic activity involves structural dynamics. This is incorporated in the enzymatic mechanism while introducing several
Michaelis Menten pathways that are connected with ing rates FHERIERL there is a ical relation ing the behavior
obtained from the basic Michaelis Menten mechanism (that was indeed proved correct in many i ) with the i i is Menten
mechanisms involving dynamics and activity; [61] this means that the measured activity of enzymes on the level of many enzymes may be explained
with the simple Michaelis-Menten equation, yet, the actual activity of enzymes is richer and involves structural dynamics.

Source: wikipedia (June 2011)
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Stochastic chemical kinetics

» Types of reaction described by stochiometric equations:

k
E+5%ESA>E+P

» N different types of molecules that randomly collide

where state X(t) = (xi, ..., xy) with x; = # molecules of sort i

» Reaction probability within infinitesimal interval [t, t+A):
Pr{reaction m in [t, t+A) | X(t) = X} where

am(X) = km - # possible combinations of reactant molecules in X

Enzyme-catalyzed substrate conversion as a CTMC

States: init  goal
enzymes 2 2
substrates 4 0
complex 0 0
products 0 4

» This process is a continuous-time Markov chain.

. 1 C
Transitions: £ + STC 0001 g + P

0.001-zo
eg. (zp, ¢35, 20, 2p) ——C~ (2p + L, zg,2c — L,zp + 1) for zc > 0

Joost-Pieter Katoen Verifying Continuous-Time Markov Chains

Joost-Pieter Katoen Verifying Continuous-Time Markov Chains

Verifying Continuous-Time Markov Chains What are continuous-time Markov chains?

What are continuous-time Markov chains?

Verifying Continuous-Time Markov Chains

CTMCs are omnipresent!

» Markovian queueing networks (Kleinrock 1975)

» Stochastic Petri nets (Molloy 1977)

» Stochastic activity networks (Meyer & Sanders 1985)

» Stochastic process algebra (Herzog et al., Hillston 1993)

» Probabilistic input/output automata (Smolka et al. 1994)

» Calculi for biological systems (Priami et al., Cardelli 2002)

CTM(Cs are one of the most prominent models in performance analysis

Summary

» Exponential distributions are closed under minimum.

» The probability to win a race amongst several exponential
distributions only depends on their rates.

» A CTMC is a DTMC where state residence times are exponentially
distributed.

» CTMC semantics distinguishes between enabledness and taking a
transition.

» CTMCs are frequently used as semantical model for high-level
formalisms.
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Transient distribution

Overview Transient distribution of a CTMC

Transient state probability

Let X(t) denote the state of a CTMC at time t € R>g. The probability to
be in state s at time t is defined by:

ps(t) = Pr{X(t)=s}
e Transient distribution = Z Pr{X(0) =s"}- Pr{X(t) =s| X(0) =5s"}
s'eS

The transient probability vector p(t) = (ps,(t),

.., ps,(t)) satisfies:
p'(t) = p(t)-(R—r) given p(0)

where r is the diagonal matrix of vector r.

Joost-Pieter Katoen
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Transient distribution theorem

Verifying Continuous-Time Markov Chains

Transient distribution

Computing transient probabilities

The transient probability vector p(t) = (ps, (). .., ps,(t)) satisfies:

p'(t) = p(t)- (R—r) given p(0).
Theorem: transient distribution as linear differential equation

The transient probability vector p(t) = (ps,(t),

., Ps (t)) satisfies:

Solution using standard knowledge yields: p(t) = p(0)-e(R=1t.
p'(t) p(t)-(R—r) given p(0)
Computing a matrix exponential
where r is the diagonal matrix of vector r.

First attempt: use Taylor-Maclaurin expansion. This yields

p(t) = p(0)-e® Dt = p(0). 3 (R=DE)

But: numerical instability due to fill-in of (R—r)’ in presence of positive
and negative entries in the matrix R—r.
Joost-Pieter Katoen
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Uniformization
Let CTMC C = (S, P, r, tinit, AP, L) with S finite.

Uniform CTMC

CTMC C is uniform if r(s) = r for all s € S for some r € Ryg.

Uniformization [Gross and Miller, 1984]

Let r € Ry such that r > maxses r(s). Then unif(r,C) is the tuple
(S, P, 7, tini, AP, L) with 7(s) = r forall s € S, and:
r

P(s,s') = Lrs)-P(s, s)ifs'#s and P(s,s)= TS)-P(S, s)+1— @

|
It follows that P is a stochastic matrix and unif(r,C) is a CTMC.
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Uniformization: example

Let r € Rog such that r > maxses r(s). Then unifir,C) = (S, P, 7, tini, AP, L)
with 7(s) = r for all s € S, and:

‘P(s,s)+1— @

r

Fe )= E'P(Sr s')ifs'#s and P(s,s) = rrs)

r

3 1
3 6 6 6
3 ! 6 4 4 L 1
e 1 e ’
1 2
1 4 3
1 1

CTMC C and its uniformized counterpart unif(6,C)
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Uniformization: intuition

Let r € Ryg such that r > maxses r(s). Then unif(r,C) = (S, P, 7, tinit, AP, L)
with 7(s) = r for all s € S, and:

ﬁ(S,S/): @-P(S,S/) ifs/#s and 3(5,5): LI/S)’P(S,S)+17L:),

> Fix all exit rates to (at least) the maximal exit rate r occurring in CTMC C.
> Thus, 1 is the shortest mean residence time in the CTMC C.

» Then normalize the residence time of all states with respect to r as follows:

1. replace an average residence time 5 by a shorter (or equal) one, +

2. decrease the transition probabilities by a factor @ and
r—r(s)
r

3. increase the self-loop probability by a factor

That is, slow down state s whenever r(s) < r.

Verifying Continuous-Time Markov Chains Transient distribution

Strong bisimulation on DTMCs

Probabilistic bisimulation

[Larsen & Skou, 1989]
Let D = (S, P, tinit, AP, L) be a DTMC and R C S X S an equivalence.
Then: R is a probabilistic bisimulation on S if for any (s, t) € R:

1. L(s) = L(t), and

2. P(s, C) = P(t, C) for all equivalence classes C € S/R
where P(s, C) =Y cc P(s, ¢).

|
For states in R, the probability of moving by a single transition to some
equivalence class is equal.

Probabilistic bisimilarity

Let D be a DTMC and s, t states in D. Then: s is probabilistically bisimilar to t,
denoted s ~,, t, if there exists a probabilistic bisimulation R with (s,t) e R.
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Strong bisimulation on CTMCs Weak bisimulation on DTMCs
Probabilistic bisimulation [Buchholz, 1994] Weak probabilistic bisimulation [Baier & Hermanns, 1996]

Let D = (S, P, tinir, AP, L) be a DTMC and R C S x S an equivalence.
Then: R is a weak probabilistic bisimulation on S if for any (s, t) € R:

Let C = (S, P, r, tinit, AP, L) be a CTMC and R C S X S an equivalence.
Then: R is a probabilistic bisimulation on S if for any (s, t) € R:

1. L(s) = L(t), and 1. L(s) = L(t), and

2. r(s) = r(t), and 2. if P(s,[s]r) < 1 and P(t,[t]rg) < 1, then:

3. P(s, C) = P(t, C) for all equivalence classes C € S/R P(s, C) P(t, C)

TP [sln) — 1-P(e[de) 2SR CF IR =R

The last two conditions amount to R(s, C) = R(t, C) for all equivalence classes

CeS/R 3. s can reach a state outside [s]g iff t can reach a state outside [t]g.

For states in R, the conditional probability of moving by a single transition to

Probabilistic bisimilarity

Let € be a CTMC and s, t states in C. Then: s is probabilistically bisimilar to t, another equivalence class is equal. In addition, either all states in an equivalence
denoted s ~, t, if there exists a probabilistic bisimulation R with (s, t) € R. class C almost surely stay there, or have an option to escape from C.
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Weak bisimulation on DTMCs Weak bisimulation on DTMC: example

Weak probabilistic bisimulation [Baier & Hermanns, 1996]

Let D = (S, P, tinit, AP, L) be a DTMC and R C S x S an equivalence. . .
Then: R is a weak probabilistic bisimulation on S if for any (s, t) € R: . . E

1ie) = A8, emd Gy (=) (o)
if P(s, [s]g) < 1 and P(t, [t]r) < 1, then:
Ps.C) PO o ices/R C£[slr = [tr.

1 —=P(s, [s]r) 1 —P(z [t]r) The equivalence relation R with S/R = { {s1, s, 53,5}, {u1, up,us} } is a
weak bisimulation. This can be seen as follows. For C = { u1, up, u3 } and s1, 55, 4
with P(s;, [si]r) < 1 we have:

P(s1, C) 1/8 1/4 P(s,C)  1/3 P(ss, C)

s can reach a state outside [s]g iff t can reach a state outside [t]g.

Probabilistic weak bisimilarity

1—-P(s,[s1]) 1-5/8 1-1/4 1—P(s,[s]) 1 1—P(ss,[s4])

Let D be a DTMC and s, t states in D. Then: s is probabilistically weak bisimilar
to t, denoted s =, t, if there exists a probabilistic weak bisimulation R with Note that P(s3, [s3]g) = 1. Since s3 can reach a state outside [s3] as s, s, and
(s,t) €R. ss, it follows that s; ~, s, ~p $3 ~p Ss.

Verifying Continuous-Time Markov Chains
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Reachability condition

Consider the following DTMC:
OO O}

It is not difficult to establish s; & s,. Note: P(sy, [s1]) = 1, but P(sy, [s2]r) < 1.
Both s; and s; can reach a state outside [s1]g = [s2]g. The reachability condition
is essential to establish s; &~ s, and cannot be dropped: otherwise s; and s, would
be weakly bisimilar to an equally labelled absorbing state.
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Weak bisimulation on CTMCs

Weak probabilistic bisimulation [Bravetti, 2002]
Let C = (S, P, r, tinit, AP, L) be a CTMC and R C S X S an equivalence.
Then: R is a weak probabilistic bisimulation on S if for any (s, t) € R:

1. L(s) = L(t), and

2. R(s,C) =R(t, C) for all C € S/R with C # [s]g = [t]r

Weak probabilistic bisimilarity

Let C be a CTMC and s, t states in C. Then: s is weak probabilistically bisimilar

to t, denoted s ~, t, if there exists a weak probabilistic bisimulation R with
(s,t) €R.
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A useful lemma

|
Let C be a CTMC and R an equivalence relation on S with (s, t) € R. Then: the
following two statements are equivalent:

1. If P(s,[s]r) < 1 and P(t, [t]r) < 1 then for all C € S/R, C # [s]r = [t]:

P(sv C) _ P(t, C)
1-P(s,[s]r) 1—P(t [t]r)

and R(s, S\ [s]gr) = R(t, S\ [t]r)
2. R(s, C) =R(t, C) for all C € S/R with C # [s]r = [t]r-

Left as an exercise.

Verifying Continuous-Time Markov Chains Transient distribution

Weak bisimulation on CTMCs: example

ro

Equivalence relation R with S/R = { {s1, 5, 53,54, 55, 56}, {u1, U2, u3, us, us} } is
a weak bisimulation on the CTMC depicted above. This can be seen as follows.
For C = { w1, up, u3, ug, us }, we have that all s-states enter C with rate 2. The
rates between the s-states are not relevant.
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Properties (without proof)

Strong and weak bisimulation in uniform CTMCs

For all uniform CTMCs C and states s, u in C, we have:
s~mu iff sxpu iff s~pu.

|
For any CTMC C, we have: C ~p, unifir,C) with r > maxses r(s).

Preservation of transient probabilities

For all CTMCs C with states s, u in C and t € Rxq, we have:
s ~mu implies p(t) = p(t)

where p(0) = 15 and p(0) = 1, where 15 is the characteristic function for
state s, i.e., 15(s') =1iff s=¢.
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Computing transient probabilities

|
The transient probability vector p(t) = (ps,(t). ..., ps,(t)) satisfies:

p'(t) = p(t)- (R—r) given p(0).
Standard knowledge yields: p(t) = B(O).e(R*f)f_
|

As uniformization preserves transient probabilities, we replace R—r by its
variant for the uniformized CTMC, i.e., R—F. We have:

R(s,s') = P(s,s')7(s) = P(s,s')-r and ¥=1Ir.

Thus:

B(O)‘e(ﬁfF)-t _ E(O).e(ﬁ-rfl-r)-t _ B(O)'e(ﬁfl)-r-t _ B(O)‘efrt‘er-t-P.
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Computing transient probabilities

|
E(t) _ p(o)_e(ﬁ—F)»t _ B(O)_e(ﬁr—lwyt _ B(O).e(ﬁ—l)«-t _ B(O),e—rt,ert-ﬁ.

Computing a matrix exponential

Exploit Taylor-Maclaurin expansion. This yields:

p(o).e—rt,er.t.ﬁ _ P(O)'e_rt-i(r't)i.ﬁi _ p(o)'i e—r~t(r‘t)i ,ﬁi

Poisson prob.

As P is a stochastic matrix, computing the matrix exponential P’ is
numerically stable.

Verifying Continuous-Time Markov Chains Transient distribution

Intermezzo: Poisson distribution

Poisson distribution

The Poisson distribution is a discrete probability distribution that expresses
the probability of a given number i of events occurring in a fixed interval
of time [0, t] if these events occur with a known average rate r and
independently of the time since the last event. Formally, the pdf is:

f(i;rt) = e"t%

where r is the mean of the Poisson distribution.

The Poisson distribution can be derived as a limiting case to the binomial
distribution as the number of trials goes to infinity and the expected number of
successes remains fixed.
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Transient probabilities: example
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Summary

» Bisimilar states are equally labelled and their cumulative rate to any
equivalence class coincides.

» Weak bisimilar states have equal conditional probabilities to move to
some equivalence class, and can either both leave their class or both
can't.

» Uniformization normalizes the exit rates of all states in a CTMC.
» Uniformization transforms a CTMC into a weak bisimilar one.

» Transient distribution are obtained by solving a system of linear
differential equations.

» These equations can be solved conveniently on the uniformized
CTMC.
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Transient distribution

Truncating the infinite sum

Computing transient probabilities

(e.¢]

plt) = p0)- el P

|
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» Summation can be truncated a priori for a given error bound £ > 0.
» The error that is introduced by truncating at summand k. is:
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» Strategy: choose k. minimal such that:
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@ Timed reachability probabilities
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Paths in a CTMC Paths and probabilities

Timed paths |
To reason quantitatively about the behavior of a CTMC, we need to define
a probability space over its paths.

Paths in CTMC C are maximal (i.e., infinite) paths of alternating states
and time instants:

— t t DEEIEY
T = 5p—2>5 —— 5 Intuition
such that s; € S and t; € Rq. Let Paths(C) be the set of paths in C and For a given state s in CTMC C:

Paths*(C) the set of finite prefixes thereof. » Sample space := set of all interval-timed paths s ly . . . /x_1 Sk with

| ==

Time instant t; is the amount of time spent in state s;.
» Events := sets of interval-timed paths starting in s

Notations
> Let 7[i] := s; denote the (i+1)-st state along the timed path 7. » Basic events := cylinder sets
> Let 7(i) := t; the time spent in state s;.
> Let 70t be the state occupied in 7 at time t € R, i.e. w0t := r{i] » Cylinder set of finite interval-timed paths := set of all infinite timed
P H I H . - - - - . -
where / is the smallest index such that ;_, m(j) > t. paths with a prefix in the finite interval-timed path
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Probability measure on DTMCs Probability measure on CTMCs

Cylinder set Cylinder set

Let sp, ..., sk € S with P(s;, s;11) > 0 for 0 <i < k and Iy, ..., [_1 non-empty The cylinder set Cyl(sp, lo, . - ., Ix—1,5k) of so lo ... lk—1 sk is defined by:

intervals in R>o. The cylinder set of sy lgsi h ... lk—1 sk is defined by:
{7 e Paths(C) | VO i< k.wli]=siand i < k = w(i) € I;}
Cy/(SO, Iy, ..., Ik—lysk) = {T( € Paths(C) | VOLi< k7T[I] =S

and i< k = w(i)el;}

The cylinder set spanned by sy, lo, - . ., Ik—1, Sk thus consists of all infinite timed Probability measure

paths that have a prefix # that lies in sp, lo, . . ., lk—1, Sx. Cylinder sets serve as Pr !S the ynique probability measure on the o-algebra F(Paths(sp)) defined
basic events of the smallest o-algebra on Paths(C). by induction on k as follows: Pr(Cyl(sp)) = tini(s0) and for k > 0:

PI’(Cy/(So, /o, cea /k—ly Sk)) = Pr(Cy/(so, Io, ceey /k_g, 5k—1))'
o-algebra of a CTMC

/ R(sk-1, sk)-e_’(sk—l)T dr.

The o-algebra associated with CTMC C is the smallest o-algebra F(Paths(sy)) hes
that contains all cylinder sets Cyl(so, lo, - . -, Ix—1, Sk) Where sp. .. s is a path in Solvine the int |
the state graph of C (starting in sp) and /o, ..., [k—1 range over all sequences of

non-empty intervals in Rx. Pr(Cyl(so, lo, - - - k=2, Sk—1)) - P(Sk—1, S)- (e*’(sk)'i“f l-1 — g=r(s)-suph—r)
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Timed reachability probabilities

Verifying Continuous-Time Markov Chains

Zeno theorem Proof of Zeno theorem

Zeno path

Path sy 2557 2550 2555, ... .. is called Zeno ! if 3°; t; converges.

Intuition

In case ) . t; does not diverge, the timed path represents an‘“unrealistic”
2 B, he AmeC parh 1ep preast

computation where infinitely many transitions are taken in a finite amount of
time. Example: For all states s in any CTMC, Pr{ mw € Paths(s) | w is Zeno } = 0.

1 1 E
50%51 %52—4>$3...5;—2'—>5;+1
In real-time systems, such executions are typically excluded from the analysis.
Thanks to the following theorem, Zeno paths do not harm for CTMCs.

Zeno theorem
For all states s in any CTMC, Pr{ 7 € Paths(s) | m is Zeno } = 0.

1Zeno of Elea (490-430 BC), philosopher, famed for his paradoxes.
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Reachability events Measurability
Let CTMC C with (possibly infinite) state space S.

(Simple) reachability

Eventually reach a state in G C S. Formally:

O0G = {m e Paths(C) | Ji e N.x[i] € G} Measurability theorem

Events G, OG, FU G, JOG and OLIG are measurable on any CTMC.
Invariance, i.e., always stay in state in G:
A Proof:

OG = {n € Paths(C) |Vie N.w[i] e G} = OG.
Left as an exercise.

Constrained reachability

Or “reach-avoid” properties where states in £ C S are forbidden:
FUG = {m € Paths(C) | Jie N.xw[ile G AVj<in[j]¢F}
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Reachability probabilities in finite CTMCs Verifying CTMCs

Let C be a CTMC with finite state space S, s€ S and G C S. Verifying untimed properties

Alm=determinel £i(s{= OGS Brs(OG)I= By & Rathels)|Ai= 0 G So, computing reachability probabilities is exactly the same as for DTMCs.

where Prg is the probability measure in C with single initial state s. The same holds for constrained reachability, persistence and repeated

reachability. In fact, all PCTL and LTL formulas can be checked on the
Characterisation of reachability probabilities embedded DTMC (S, P, t;,;, AP, L) using the techniques described before
in these lecture slides.

» Let variable xs = Pr(s = O G) for any state s
» if G is not reachable from s, then x; =0

» if s€ Gthen x;, =1 Justification:
» For any state s € Pre*(G) \ G: As the above temporal logic formulas or events do not refer to elapsed
time, it is not surprising that they can be checked on the embedded
S = Z P(s,t) - xx + Z P(s, u) DTMC.
teS\G ueG
——

reach Gviate S\ G reach G in one step
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Timed reachability events Measurability
Let CTMC C with (possibly infinite) state space S.

(Simple) timed reachability

Eventually reach a state in G C S in the interval /. Formally:

0'G = {mePaths(C) |3t € .70t € G} Measurability theorem

Events ¢/ G, O/ G, and F U’ G are measurable on any CTMC.
Invariance, i.e., always stay in state in G in the interval /:

0'G = {m e Paths(C) |Vt € .70t € G} = O!G. Proof:
Left as an exercise.

Constrained timed reachability

Or “reach-avoid” properties where states in £ C S are forbidden:

FU'G = {m€Paths(C) |3t € l.7Ot € G AVd < t.70@d & F }
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Timed reachability probabilities in finite CTMCs

Problem statement

Let C be a CTMC with finite state space S, s € S, t € Ryp and G C S.
Aim: Pr(s = OSEG) = Pry(0SG) = Pr{nm € Paths(s) | m = 0St G }

where Pr; is the probability measure in C with single initial state s.

Characterisation of timed reachability probabilities

» Let function xs(t) = Pr(s = OSt G) for any state s
» if G is not reachable from s, then xs(t) = 0 for all ¢
» if s € G then xs(t) =1 for all ¢

» For any state s € Pre*(G) \ G:

xs(t) = /Ot > R(s,s)- e~riskx . X5 (t—x) dx

———
s’'eS
probability to move to prob. to fulfill
state s’ at time x OSt=% G from s’

Reachability

Reachability probabilities in finite DTMCs and CTMCs

Can be obtained by solving a system of linear equations for which many
efficient techniques exists.

Timed reachability probabilities in finite CTMCs

Can be obtained by solving a system of Volterra integral equations. This is
in general a non-trivial issue, inefficient, and has several pitfalls such as
numerical stability.

Solution

Reduce the problem of computing Pr(s = Ot G) to an alternative
problem for which well-known efficient techniques exist: computing
transient probabilities (see previous lecture).
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Timed reachability probabilities
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Timed reachability probabilities = transient probabilities

Compute Pr(s = OStG) in CTMC C. Observe that once a path 7 reaches
G within t time, then the remaining behaviour along 7 is not important.
This suggests to make all states in G absorbing.

|
Let CTMC C = (S,P, r, i, AP, L) and G C S. The CTMC
C[G] = (5, PG, I, Liwie, AP, L) with Pg(s, t) = P(s, t) if s ¢ G and
Ps(s,s)=1if s € G.

All outgoing transitions of s € G are replaced by a single self-loop at s.

Prs = 0S'G) = Pr(s = 0~'G) = p(t) with p(0) = 15.
N———— N———— - P
timed reachability in C timed reachability in C[G] transient prob. in C[G]

Constrained timed reachability probabilities

Problem statement

Let C be a CTMC with finite state space S, s € S, t € Ryg and G, F C S.
Aim: Pr(s | FUS' G) = Pry(FUS'G) = Pry{m € Paths(s) | m E FUS' G }.

Characterisation of timed reachability probabilities

» Let function xs(t) = Pr(s = FUSt G) for any state s
» if G is not reachable from s via F, then x(t) = 0 for all ¢
» if s € G then xs(t) =1 for all ¢

» For any state s € Pre"(G) \ (F U G):

xs(t) = /otZ R(s,s')- e "&)x . xg/(t—x) dx

s’'eS N v )
probability to move to prob. to fulfill
state s’ at time x FUSt™ G from s’
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Constrained timed reachability = transient probabilities Strong and weak bisimulation

Compute Pr(s = FUS! G) in CTMC C. Observe (as before) that once a

Bisimulation preserves timed reachability events

path 7 reaches G within time t via F, then the remaining behaviour along Let C be a CTMC with state space S, s,u€ S, t € Rypand G, F C S.
7 is not important. Now also observe that once s € F \ G is reached Then:
within time t, then the remaining behaviour along 7 is not important. This 1. s ~p, uimplies P(s = FUS!G) = Pr{u = FUS!G)

suggests to make all states in G and F \ G absorbing. 2. s~ uimplies Pr(s = FUSEG) = Pru = FUSE G)

provided F and G are closed under ~,, and ~,,, respectively.
PEFUSG) = Peh0=Q) = pOwith =1
P P :

timed reachability in C timed reachability transient prob. in C[F U G] Left as an exercise.
in C[F U G]
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Summary Overview

» Cylinder sets in a CTMC are paths that share interval-timed path
prefixes.

» Reachability, persistence and repeated reachability can be checked as
on DTMCs.

» Timed reachability probabilities can be characterised as Volterra
integral equation system.

» Computing timed reachability probabilities can be reduced to

transient probabilities. © Verifying continuous stochastic CTL

» Weak and strong bisimulation preserves timed reachability
probabilities.

Verifying Continuous-Time Markov Chains
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Continuous Stochastic Logic

v

CSL is a language for formally specifying properties over CTMCs.

v

It is a branching-time temporal logic based on CTL.

v

Formula interpretation is Boolean, i.e., a state satisfies a formula or
not.
Like in PCTL, the main operator is P;(¢)

» where ¢ constrains the set of paths and J is a threshold on the
probability.
» it is the probabilistic counterpart of 3 and V path-quantifiers in CTL.

v

» The new features are a timed version of the next and until-operator.

» O/ ® asserts that a transition to a ®-state can be made at time t € /.
» & U/W asserts that a W-state can be reached via ®-states at time t € /.
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CSL syntax [Baier, Katoen & Hermanns, 1999]

Continuous Stochastic Logic: Syntax

CSL consists of state- and path-formulas.

» CSL state formulas over the set AP obey the grammar:
® = true ) a ‘ O A Dy ‘ —® ‘ P,(e)

where a € AP, ¢ is a path formula and J C [0,1], J# @ is a
non-empty interval.

» CSL path formulae are formed according to the following grammar:
¢ o= O o ) o, U’ o,

where ®, ®1, and ®, are state formulae and / C R>g an interval.

Abbreviate Pjg .51(¢) by P<o.5(¢) and Pjg 11(0) by P=o(e).
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Continuous Stochastic Logic
-

CSL state formulas over the set AP obey the grammar:
® = true ‘ a ‘ o1 N Dy ‘ - ’ Py(p)

where a € AP, ¢ is a path formula and J C [0,1], J # &.

CSL path formulae are formed according to the following grammar:
o = 0Olo \ o1 U’ &,
where ®, ®1, and ®; are state formulae and / C R>¢ an interval.

Intuitive semantics

> sotosity... = & UV if U is reached at t € | and prior to t, ® holds.
» s = Py(¢) if probability that paths starting in s fulfill ¢ lies in J.

Verifying Continuous-Time Markov Chains

Verifying continuous stochastic CTL

Derived operators

OP = trueU ®

<>’CD = trueU/®

P<p(D¢) = IP’>1,p(<>—|<D)

Joost-Pieter Katoen Verifying Continuous-Time Markov Chains
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Paths in a CTMC Example properties

|
Timed paths

: » Transient probabilities to be in goal state at time point 4:
Paths in CTMC C are maximal (i.e., infinite) paths of alternating states

. ) —4
and time instants: t t P>0.92 <<> goal)
o= spts gy

such that s; € S and t; € R~g. Let Paths(C) be the set of paths in C and . - ‘
Paths*(C) the set of finite prefixes thereof. » With probability > 0.92, a goal state is reached legally:

P> .92 (—illegal U goal)

> Let 7[i] := s; denote the (i+1)-st state along the timed path 7.

: _ _ » ... in maximally 137 time units: P> 0.02 (—illegal us7 goal)
» Let 7(i) := t; the time spent in state s;. ] ) ]
o i ) ] > ... once there, remain there almost surely for the next 31 time units:
> Let 7@t be the state occupied in 7 at time t € Rxg, i.e. 7Qt := 7[i]
where i is the smallest index such that ZJ":O w{j) > t. P> .02 (_| illegal U <137 ]P’zl(D[o'3” goal))
Joost-Picter Katoen Verifying Continuous-Time Markov Chains
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CSL semantics (1) CSL semantics (2)

C,s E ¢ if and only if state-formula ¢ holds in state s of CTMC C. Satisfaction relation for path formulas

Let m = sptps1 t1 5> ... be an infinite path in CTMC C.
Satisfaction relation for state formulas

: The satisfaction relation |= is defined for state formulas by:
The satisfaction relation |= is defined for CSL state formulas by:

l .
ska iff acL(s) TEQ'® iff sEPAe

Sl @i HeEE = ) rEoU W iff 3tel (V¢ €[0,t). 70t | &) A 0t = V)
sEO AV iff (skEP)and (s V)
sEP(e) iff Pisi=¢)e)

where Pr(s |= ¢) = Pr.{m € Paths(s) | 7 |= ¢ }. Standard next- and until-operators

> Xb = OICD with IZR}Q.

-
» UV = oUW with | = Rxy.

This is as for PCTL, except that Pris the probability measures on cylinder
sets of timed paths in CTMC C.
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Measurability

CSL measurability

For any CSL path formula ¢ and state s of CTMC C,
the set { m € Paths(s) | m = ¢ } is measurable.

Rather straightforward; left as an exercise.
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CSL model checking

CSL model checking problem

Input: a finite CTMC C = (S, P, r, L, AP, L), state s € S, and
CSL state formula ¢

Output: vyes, if s = ®; no, otherwise.

Basic algorithm

In order to check whether s = ¢ do:

1. Compute the satisfaction set Sat(®) = {se€ S|s = }.
2. This is done recursively by a bottom-up traversal of ®'s parse tree.

» The nodes of the parse tree represent the subformulae of ®.
» For each node, i.e., for each subformula W of ®, determine Sat(V).
» Determine Sat(V) as function of the satisfaction sets of its children:

e.g., Sat(V1 A W) = Sat(W1) N Sat(V,) and Sat(—V) = S\ Sat(V).
3. Check whether state s belongs to Sat(®).
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Core model checking algorithm

Probabilistic operator P

In order to determine whether s € Sat(IP,(¢)), the probability Pr(s |= ¢)
for the event specified by ¢ needs to be established. Then

Sat(P)(¢)) = {seS|Prsl¢) e/}

Let us consider the computation of Pr(s = ) for all possible .

The next-step operator

|
Recall that: s =P, (Q'®) if and only if Pr(s = O'®) € J.

Pis = O/0) = (er@ i/ rlmel) S p(s, )

s’'eSat(o)

probability to leave s in interval /

Algorithm

Considering the above equation for all states simultaneously yields:
(Prs = O®)),cs = b P

with by is defined by by(s) = e "(9)infl _ g=r(s)sup/ if 5 ¢ Sar(d) and 0
otherwise, and b/ is the transposed variant of b;.

Joost-Pieter Katoen Verifying Continuous-Time Markov Chains

Joost-Pieter Katoen Verifying Continuous-Time Markov Chains



Verifying Continuous-Time Markov Chains

Verifying continuous stochastic CTL

Time-bounded until (1)

Verifying Continuous-Time Markov Chains Verifying continuous stochastic CTL

Time-bounded until (2)

Recall that: s = P,(® USt W) if and only if Pr(s | ®UStW) € J.

Lemma

Let S—1 = Sat(V), S—o = S\ (Sat(P) U Sat(V)), and S; = S\ (5=0 U S—1). Then:

Prs EdUS V) =

|
This is a slight generalisation of the Volterra integral equation system for
timed reachability.

Joost-Pieter Katoen
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s’es
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0
t
/ D R(s.s) - e Pr(s = o USTI W) dx
0

Verifying Continuous-Time Markov Chains

Verifying continuous stochastic CTL

Let S—; = Sat(V), S—o = S\ (Sat(P) U Sat(V)), and S; = S\ (5=0 U S=1). Then:

1 if s €S
0 if s € S
Pr(s = dUS' V) = ‘
/ Z R(s,s')- e "O*.Ps' = dUS"™ W) dx otherwise
0 ses
if se€ S
if s e S
s € om0 Recall that
otherwise Pis = FUS'G) = PsE{0~'G) = p(t) with p(0) = 1
timed reachability in C in C[FU G] transient prob. in C[F U G]

Phrased using CSL state formulas

Pr(s = ®UST W) = Prs = 0~"W) = p(t) with p(0) = 1.
N———— N————

timed reachability in C in C[Sat(—®) U Sat(V)] C[Sat(—d) U Sat(W)]
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Time-bounded until (3)

Algorithm for checking Pr(s = U

1. If t = oo, then use approach for until (as in PCTL): solve a system of linear

equations.

© o kB WD

Joost-Pieter Katoen

) e J

Determine recursively Sat(®) and Sat(V).
Make all states in S\ Sat(®) and Sat(V) absorbing.

Uniformize the resulting CTMC with respect to its maximal rate.

Return yes if transient probability of all W-states lies in J, and no otherwise.

Verifying Continuous-Time Markov Chains Verifying continuous stochastic CTL

Time-bounded until (4)

Possible optimizations

5.
Determine the transient probability at time t using s as initial distribution.

2 e

Make all states in S\ Sat(3($ U V)) absorbing.

Make all states in Sat(V(® U W)) absorbing.

Replace the labels of all states in S\ Sat(3(PWV)) by unique label zero.
Replace the labels of all states in Sat(V($P U W)) by unique label one.

Perform bisimulation minimization on all states.

The last step collapses all states in S\ Sat(3(® U W)) into a single state, and

does the same with all states in Sat(V(® U V)).

Verifying Continuous-Time Markov Chains
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Preservation of CSL-formulas

Bisimulation and CSL-equivalence coincide

Let C be a finitely branching CTMC and s, t states in C. Then:

s~mt ifandonlyif s and t are CSL-equivalent.

If for CSL-formula ® we have s |= ® but t [~ ®, then it follows s ¢, t. A
single CSL-formula suffices!
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Preservation of CSL-formulas

Weak bisimulation and CSL-without-next-equivalence coincide

Let C be a finitely branching CTMC and s, t states in C. Then:
s~m,t ifand only if s and t are CSL-without-next-equivalent.

Here. CSL-without-next is the fragment of CSL where the next-operator
(O does not occur.

Remarks

If for CSL-without-next-formula ® we have s |= ® but t [~ ®, then it
follows s %, t.

Joost-Pieter Katoen Verifying Continuous-Time Markov Chains 90/119

Verifying Continuous-Time Markov Chains Verifying continuous stochastic CTL

Uniformization and CSL

Uniformization and CSL

For any finite CTMC C with state space S, r > max{r(s) |s€ S} and ®
a CSL-without-next-formula:

Sat’(®) = Sat’(®) where C' = unif(r,C).

Uniformization and CSL

For any uniformized CTMC: CSL-equivalence coincides with
CSL-without-next-equivalence.

Time complexity

Let |®| be the size of @, i.e., the number of logical and temporal operators in .

Time complexity of CSL model checking

For finite CTMC C and CSL state-formula ®, the CSL model-checking
problem can be solved in time

O(poly(size(C)) * tmax ° |¢|)

where tmax = max{t|V; U Sty, occurs in ® } with and tmax = 1 if ®
does not contain a time-bounded until-operator.
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Some practical verification times Summary
verification time (in ms)
Workstation cluster (CTMC) /’07
. L o
" -
& e R . CSL is a variant of PCTL with timed next and timed until.

Sets of paths fulfilling CSL path-formula ¢ are measurable.

CSL model checking is performed by a recursive descent over ®.

vV Vv v Y

SR —To]
Q

The timed next operator amounts to a single vector-matrix
multiplication.

tate space|siz

» The time-bounded until-operator US?t is solved by uniformization.

510°
o
15108
2108
25108

» The worst-case time complexity is polynomial in the size of the
CTMC and linear in the size of the formula.

» command-line tool MRMC ran on a Pentium 4, 2.66 GHz, 1 GB RAM Iaptop.

» CSL formulas are time-bounded until-formulas.
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Overview Robot navigation

@ Verifying linear real-time properties
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Robot navigation: property Deterministic timed automata

A Deterministic Timed Automaton (DTA) A is a tuple (¥, X, Q, qo, F, —):

What is the probability to reach B from A within 10 time units while
residing in any dangerous zone for at most 2 time units? I

—g, true, &

> > - alphabet

—g,true, &

by < 10,@ » X - finite set of clocks

» Q@ - finite set of locations
g,z < 2,{x}

> qo € Q - initial location

by <10, .
Y > F C Q - accept locations

> — € QXIXC(X)x2XxQ
- transition relation;

g,z < 2, {x}

.. a,g. X ag’ X' . .
Determinism: q-2£2- q' and q 22— ¢" implies gNg' = &
g,r <2,
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Model checking Markov chains Model checking Markov chains

branching time linear time
PCTL LTL
branching time linear time
discrete- linear equations | automata-based | tableau-based
PCTL LTL time [HI94] (%) [V85,CSS03] (*x) [CY95]
discrete- linear equations | automata-based | tableau-based (DTMC D) PTIME PSPACE-C
time [HJ94] (%) [V85,CSS03] (%) [CY95] untimed untimed
(DTMC D) PTIME PSPACE-C continuous- PCTL LTL
time emb(C) emb(C)
(CTMC C) (%) (%)
PTIME PSPACE-C
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Model checking Markov chains

branching time linear time
PCTL LTL
discrete- linear equations automata-based | tableau-based
time [HJ94] (%) [V85,CSS03] (*x*) [CY95]
(DTMC D) PTIME PSPACE-C
untimed real-time untimed
continuous- PCTL CSL LTL
time emb(C) | integral equations emb(C)
(CTMC C) (%) [BHHKO3] (%%)
PTIME PTIME PSPACE-C
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Model checking Markov chains

branching time linear time
PCTL LTL
discrete- linear equations automata-based tableau-based
time [HJ94] (%) [V85,CSS03] () [CY95]
(DTMC D) PTIME PSPACE-C
untimed real-time untimed real-time
continuous- PCTL CSL LTL DTA
time emb(C) | integral equations emb(C) integral equations
(CT™MC Q) (*) [BHHKO3] (%) of second type (PDPs)
PTIME PTIME PSPACE-C PSPACE-C

Joost-Pieter Katoen
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What are we interested in?

Problem statement:

Given model CTMC C and specification DTA A, determine the fraction of
runs in C that satisfy A:

Joost-Pieter Katoen

PAC EA) =

Pr“{Paths in C accepted by A}

Verifying Continuous-Time Markov Chains

Theoretical facts

Well-definedness

For any CTMC C and DTA A, the set {Paths in C accepted by A} is

measurable.

Characterizing the probability of

Pr(C |= A) equals the reachability probability of accepting paths in C ® A.

Characterizing the probability of

= under finite acceptance

Pr(C |= A) equals the reachability probability of accepting paths in

C ® RG(A).

Characterizing the probability of

= under Muller acceptance

Pr(C |= A) equals the reachability probability of accepting terminal
strongly connected components in C ® RG(A).

Verifying Continuous-Time Markov Chains
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Product construction

CTMC C
with state space S

S0 L(s0)=Ao

L
|
|
|

L(Sl )=A1
9 L(s2)=As

Sn l—(sn):An

nath

Joost-Pieter Katoen
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DTA A

with state space @

1A,

dni1
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Product construction ®
CTMC C

with state space S

Joost-Pieter Katoen
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DTA A
with state space @

product C® A
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Product construction: example

T2

T3

{b}

tet

a,xr <1,@

a,1<x<2 {z}

An example CTMC C (left) and DTA A (right)

{5}

a,r<1,0

() 1 {02 1 '
bz>10
41!'[::%f;::!!'E%;;:::::EEi1 'l. ‘l'

rs {c}

a,1 <z <2 {z}

An example CTMC C (left up) and DTA A (right up) and C @ RG(A) (below)

Vo, To

TR

Joost-Pieter Katoen
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» constants ¢p < ... < Cpy in A yields m+1 subgraphs.

» subgraph i captures behaviour of C and A in [c¢;, ¢it1)-

» any subgraph is a CTMC, resets lead to subgraph 0, delays to i+1.

> a subgraph with its resets yields an “augmented” CTMC.

Joost-Pieter Katoen
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One-clock DTA: partitioning C ® RG(A)

"
() v @n
10.5 @ ra
() !
"1 1
0.2
”
(ur) () 7 T OL
. T2 1 1
1
(a) Co (b) C1 (c) CT
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One-clock DTA: algorithm

Algorithm 1 Verifying a CTMC against a 1-clock DTA

Require: a CTMC C with initial distr. v, a 1-clock DTA A with constants co, ..., Cm
Ensure: Pr(C = A)
: G(A) :=buildRegionGraph(A);
. Product := buildProduct(C,G(A)); {c®G(A)}
: subGraphs {G: }ogi<m = partitionProduct(Product);
: for each subGraph G; do
; '= buildAugmentedCTMC(G;); {build augmented CTMC cf. Definition 6}
end for
{Ci}ogigm = lumpGroupCTMCs({C; togigm ); {lump a group of CTMCs, see Alg. 2}
: for each CTMC C! do TransProb; :— computeTransientProb(Cé.Aci); end for
: linearEqSystem := buildLinearSystem({TransProb; }o<i<m); {cf. Theorem 2}
: probVector := solveLinearsystem(linearEqSystem);
. return « - probVector,

e
= I R O
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One-clock DTA: characterizing Pr(C = A)

For CTMC C with initial distribution «, 1-clock DTA A we have that:
P(CEA) = a-u
where u is the solution of the linear equation system x - M = f, with

Ino - Bm—l ‘ Am—l
M= P2 [1,,—Pn

and f is the characterizing vector of the final states in subgraph m, and A
and B are obtained from transient probabilities in all subgraphs.
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Reachability in (our) PDPs

Verifying linear real-time properties

» For single-clock DTA, reachability probabilities in (our) PDPs are
characterized by the least solution of a linear equation system, whose
coefficients are solutions of some ordinary differential equations

(ODEs).
» For these coefficients either an analytical solution (for small state

space) can be obtained or an arbitrarily closely approximated solution
can be determined efficiently.

» In multi-clock DTA, reachability probabilities in (our) PDPs are
characterized as the least solution of a Volterra integral equation
system of the second type.

» This solution can be approximated by solving a system of partial
differential equations (PDEs).
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Robot navigation revisited Verification results
Cox<Ti,o
#CTMC No lumping With lumping
N | states | # ® states | time(s) | %transient | #blocks | time(s) | %transient | %lumping
10 100 148 0.09 59% 78 0.09 43% 32%
20 400 702 6.7 18% 380 7.1 14% 7%
Cyz < T, {a) 30 | 900 1248 2| 17% 619 26| 14% 6%
Bix<Tho 40 1600 2672 119 13% 1296 93 10% 5%
D,z < Ti,{z} 50 2500 4174 135 17% 2015 138 12% %
60 3600 4232 309 16% 1525 261 12% 7%
70 4900 8661 904 12% 4212 1130 7% 3%
80 6400 9529 1753 12% 4339 1429 14% 4%
D,z <Ty,@ 90 8100 9812 2433 8% 2613 1922 6% 5%

. . ) ) Product construction and solving the linear equation system is most
Black squares are walls. The residence time in consecutive C-cells < Tj.

. . . . time-consuming
The residence time in consecutive D-cells < T5.
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Systems biology: immune-receptor signaling Systems biology: immune-receptor signaling
& Inactive
P Mot ger
| Inactive \ Ky Ky ‘ ey : e
lgarat - messerger, | oo 9. L0
‘ = y
Io k_yq K_1| K_4 K_4 K [ | st
\ K R B 8 By [ Bn
Q. \\\ +1 - K o k % 0 I.\\k+)< ) Free recaptor Ligand-bound forms of the receptor / N
\ ‘,_\ p N P N 3 P % : e e Aclivaed
| Signal  messenger
{ N | _ | .
» M ligands can react with a receptor R with rate k; yielding a
R By B, By / Bn .
PR ligand-receptor LR
Free receptor Ligand-bound forms of the receptor v R . i .
: > LR undergoes a sequence of N modifications with a constant rate k,

Activated yielding By, ..., By
Signal  messenger . . . . . . .
» LR By can link with an inactive messenger with rate k, yielding a

[Goldstein et. al., Nat. Reviews Immunology, 2004] ligand-receptor-messenger (LRM).

» The LRM decomposes into an active messenger with rate kc,¢
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Verification results

Verifying linear real-time properties

#CTMC No lumping With lumping
M | states | # ® states time(s) | #blocks time(s) | %transient | %lumping
1 18 31 0 13 0 0% 0%
2 150 203 0.06 56 0.05 58% 39%
3 774 837 1.36 187 0.84 64% 30%
4 3024 2731 17.29 512 9.19 73% 24%
5 9756 7579 152.54 1213 73.4 76% 21%
6 27312 18643 1547.45 2579 457.35 78% 20%
7 68496 41743 11426.46 5038 3185.6 85% 14%
8 157299 86656 23356.5 9200 11950.8 81% 18%
9 | 336049 169024 71079.15 | 15906 38637.28 76% 22%
10 | 675817 312882 205552.36 | 26256 | 116314.41 71% 26%

In the case of no lumping, 99% of time is spent on transient analysis
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Take-home messages

» Checking CTMCs against deterministic timed automata (DTA).

» Efficient numerical algorithm for one-clock DTA:
> using standard means: region construction, graph analysis,

transient analysis, linear equation systems.
> three orders of magnitude faster than alternative approaches.
» natural support for parallelization and bisimulation minimization.

» Discretization approach for multiple-clock DTA with error bounds.

Joost-Pieter Katoen
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Multi-multi-core model checking

Parallelization of the transient analysis only; not the lumping.

Joost-Pieter Katoen

4 Cores 20 Cores
N | time(s) | speedup | time(s) | speedup
3 0.45 3.03 0.42 3.22
4 53 3.26 3.44 5.02
5 44.73 341 15.87 9.61
6 620.16 2.50 160.58 9.64
7 4142.19 2.76 949.32 12.04
8 | 8168.62 | 2.86 1722.63 | 13.56
9 | 23865.17 2.98 5457.01 13.03
10 | 70623.46 291 16699.22 12.31
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