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Time in discrete-time Markov chains
The advance of time in DTMCs

I Time in a DTMC proceeds in discrete steps
I Two possible interpretations:

1. accurate model of (discrete) time units
I e.g., clock ticks in model of an embedded device

2. time-abstract
I no information assumed about the time transitions take

I State residence time is geometrically distributed

Continuous-time Markov chains
I dense model of time
I transitions can occur at any (real-valued) time instant
I state residence time is (negative) exponentially distributed
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Continuous random variables

I X is a random variable (r.v., for short)
I on a sample space with probability measure Pr
I assume the set of possible values that X may take is dense

I X is continuously distributed if there exists a function f (x) such that:

Fx (d) = Pr{X 6 d} =

∫ d

−∞
f (x) dx for each real number d

where f satisfies: f (x) > 0 for all x and
∫ ∞
−∞

f (x) dx = 1

I FX (d) is the (cumulative) probability distribution function
I f (x) is the probability density function
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Negative exponential distribution
Density of exponential distribution
The density of an exponentially distributed r.v. Y with rate λ ∈ R>0 is:

fY (x) = λ·e−λ·x for x > 0 and fY (x) = 0 otherwise

The cumulative distribution of r.v. Y with rate λ ∈ R>0 is:

FY (d) =

∫ d

0
λ·e−λ·x dx = [−e−λ·x ]d0 = 1− e−λ·d .

The rate λ ∈ R>0 uniquely determines an exponential distribution.

Variance and expectation
Let r.v. Y be exponentially distributed with rate λ ∈ R>0. Then:

I Expectation E [Y ] =
∫∞
0 x ·λ·e−λ·x dx = 1

λ

I Variance Var[Y ] =
∫∞
0 (x − E [X ])2λ·e−λ·x dx = 1

λ2
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Exponential pdf and cdf

The higher λ, the faster the cdf approaches 1.
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Why exponential distributions?

I Are adequate for many real-life phenomena
I the time until a radioactive particle decays
I the time between successive car accidents
I inter-arrival times of jobs, telephone calls in a fixed interval

I Are the continuous counterpart of the geometric distribution

I Heavily used in physics, performance, and reliability analysis

I Can approximate general distributions arbitrarily closely

I Yield a maximal entropy if only the mean is known
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Memoryless property
Theorem

1. For any exponentially distributed random variable X :

Pr{X > t + d | X > t} = Pr{X > d} for any t, d ∈ R>0.

2. Any cdf which is memoryless is a negative exponential one.

Proof:
Proof of 1. : Let λ be the rate of X ’s distribution. Then we derive:

Pr{X > t + d | X > t} =
Pr{X > t+d ∩ X > t}

Pr{X > t} =
Pr{X > t+d}

Pr{X > t}

=
e−λ·(t+d)

e−λ·t = e−λ·d = Pr{X > d}.

Proof of 2. : By contraposition, using the total law of probability.
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Closure under minimum

Minimum closure theorem
For independent, exponentially distributed random variables X and Y with
rates λ,µ ∈ R>0, the r.v. min(X ,Y ) is exponentially distributed with rate
λ+µ, i.e.,:

Pr{min(X ,Y ) 6 t} = 1− e−(λ+µ)·t for all t ∈ R>0.
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Proof

Let λ (µ) be the rate of X ’s (Y ’s) distribution. Then we derive:

Pr{min(X ,Y ) 6 t} = PrX ,Y {(x , y) ∈ R2
>0 | min(x , y) 6 t}

=

∫ ∞
0

(∫ ∞
0

Imin(x ,y)6t(x , y) · λe−λx · µe−µy dy
)

dx

=

∫ t

0

∫ ∞
x

λe−λx · µe−µy dy dx +

∫ t

0

∫ ∞
y

λe−λx · µe−µy dx dy

=

∫ t

0
λe−λx · e−µx dx +

∫ t

0
e−λy · µe−µy dy

=

∫ t

0
λe−(λ+µ)x dx +

∫ t

0
µe−(λ+µ)y dy

=

∫ t

0
(λ+µ) · e−(λ+µ)z dz = 1− e−(λ+µ)t
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Closure under minimum

Minimum closure theorem for several exponentially distributed r.v.’s
For independent, exponentially distributed random variables X1,X2, . . . ,Xn
with rates λ1,λ2, . . . ,λn ∈ R>0 the r.v. min(X1,X2, . . . ,Xn) is
exponentially distributed with rate

∑
0<i6n λi , i.e.,:

Pr{min(X1,X2, . . . ,Xn) 6 t} = 1− e−
∑

0<i6n λi ·t for all t ∈ R>0.

Proof:
Generalization of the proof for the case of two exponential distributions.
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Winning the race with two competitors

The minimum of two exponential distributions
For independent, exponentially distributed random variables X and Y with
rates λ,µ ∈ R>0, it holds:

Pr{X 6 Y } =
λ

λ+µ
.
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Proof

Let λ (µ) be the rate of X ’s (Y ’s) distribution. Then we derive:

Pr{X 6 Y } = PrX ,Y {(x , y) ∈ R2
>0 | x 6 y}

=

∫ ∞
0

µe−µy
(∫ y

0
λe−λx dx

)
dy

=

∫ ∞
0

µe−µy (1− e−λy) dy

= 1−
∫ ∞
0

µe−µy ·e−λy dy = 1−
∫ ∞
0

µe−(µ+λ)y dy

= 1− µ

µ+λ
·
∫ ∞
0

(µ+λ)e−(µ+λ)y dy︸ ︷︷ ︸
=1

= 1− µ

µ+λ
=

λ

µ+λ
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Winning the race with many competitors

The minimum of several exponentially distributed r.v.’s
For independent, exponentially distributed random variables X1,X2, . . . ,Xn
with rates λ1,λ2, . . . ,λn ∈ R>0 it holds:

Pr{Xi = min(X1, . . . ,Xn)} =
λi∑n

j=1 λj
.

Proof:
Generalization of the proof for the case of two exponential distributions.
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Continuous-time Markov chain

Continuous-time Markov chain
A CTMC is a tuple (S,P, r , ιinit,AP, L) where

I (S,P, ιinit,AP, L) is a DTMC, and
I r : S → R>0, the exit-rate function

Interpretation

I residence time in state s is exponentially distributed with rate r(s).
I phrased alternatively, the average residence time of state s is 1

r(s) .
I thus, the higher the rate r(s), the shorter the average residence time

in s.
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Example

r(s) = 25, r(t) = 4, r(u) = 2 and r(v) = 100
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Example: a classical perspective

r(s) = 25, r(t) = 4, r(u) = 2 and r(v) = 100
The transition rate R(s, s ′) = P(s, s ′)·r(s)

We use (S,P, r , ιinit,AP, L) and (S,R, ιinit,AP, L) interchangeably.
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CTMC semantics by example
CTMC semantics

I Transition s → s ′ := r.v. Xs,s′ with rate R(s, s ′)
I Probability to go from state s0 to, say, state s2 is:

Pr{Xs0,s2 6 Xs0,s1 ∩ Xs0,s2 6 Xs0,s3}
=

R(s0, s2)

R(s0, s1) + R(s0, s2) + R(s0, s3)
=

R(s0, s2)

r(s0)

I Probability of staying at most t time in s0 is:

Pr{min(Xs0,s1 ,Xs0,s2 ,Xs0,s3) 6 t}
=

1− e−(R(s0,s1)+R(s0,s2)+R(s0,s3))·t = 1− e−r(s0)·t
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CTMC semantics
Enabledness
The probability that transition s → s ′ is enabled in [0, t] is 1− e−R(s,s′)·t .

State-to-state timed transition probability
The probability to move from non-absorbing s to s ′ in [0, t] is:

R(s, s ′)
r(s)

·
(
1− e−r(s)·t

)
.

Residence time distribution
The probability to take some outgoing transition from s in [0, t] is:∫ t

0
r(s)·e−r(s)·x dx = 1− e−r(s)·t

Joost-Pieter Katoen Verifying Continuous-Time Markov Chains 21/119

Verifying Continuous-Time Markov Chains What are continuous-time Markov chains?

CTMC semantics

State-to-state timed transition probability
The probability to move from non-absorbing s to s ′ in [0, t] is:

R(s, s ′)
r(s)

·
(
1− e−r(s)·t

)
.
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CTMC semantics

Residence time distribution
The probability to take some outgoing transition from s in [0, t] is:∫ t

0
r(s)·e−r(s)·x dx = 1− e−r(s)·t
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Enzyme-catalysed substrate conversion

Source: wikipedia (June 2011)

Joost-Pieter Katoen Verifying Continuous-Time Markov Chains 24/119



Verifying Continuous-Time Markov Chains What are continuous-time Markov chains?

Stochastic chemical kinetics

I Types of reaction described by stochiometric equations:
E + S

k1


k2

ES k3−−→E + P

I N different types of molecules that randomly collide
where state X (t) = (x1, . . . , xN) with xi = # molecules of sort i

I Reaction probability within infinitesimal interval [t, t+∆):

αm(~x) ·∆ = Pr{reaction m in [t, t+∆) | X (t) = ~x} where

αm(~x) = km · # possible combinations of reactant molecules in ~x

I This process is a continuous-time Markov chain.
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Enzyme-catalyzed substrate conversion as a CTMC
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CTMCs are omnipresent!

I Markovian queueing networks (Kleinrock 1975)

I Stochastic Petri nets (Molloy 1977)

I Stochastic activity networks (Meyer & Sanders 1985)

I Stochastic process algebra (Herzog et al., Hillston 1993)

I Probabilistic input/output automata (Smolka et al. 1994)

I Calculi for biological systems (Priami et al., Cardelli 2002)

CTMCs are one of the most prominent models in performance analysis
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Summary

Main points

I Exponential distributions are closed under minimum.
I The probability to win a race amongst several exponential

distributions only depends on their rates.
I A CTMC is a DTMC where state residence times are exponentially

distributed.
I CTMC semantics distinguishes between enabledness and taking a

transition.
I CTMCs are frequently used as semantical model for high-level

formalisms.
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Transient distribution of a CTMC

Transient state probability
Let X (t) denote the state of a CTMC at time t ∈ R>0. The probability to
be in state s at time t is defined by:

ps(t) = Pr{X (t) = s }

=
∑
s′∈S

Pr{X (0) = s ′ } · Pr{X (t) = s | X (0) = s ′ }

Theorem: transient distribution as linear differential equation
The transient probability vector p(t) = (ps1(t), . . . , psk (t)) satisfies:

p′(t) = p(t) · (R− r) given p(0)

where r is the diagonal matrix of vector r .
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Transient distribution theorem

Theorem: transient distribution as linear differential equation
The transient probability vector p(t) = (ps1(t), . . . , psk (t)) satisfies:

p′(t) = p(t) · (R− r) given p(0)

where r is the diagonal matrix of vector r .
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Computing transient probabilities

The transient probability vector p(t) = (ps1(t), . . . , psk (t)) satisfies:

p′(t) = p(t) · (R−r) given p(0).

Solution using standard knowledge yields: p(t) = p(0)·e(R−r)·t .

Computing a matrix exponential
First attempt: use Taylor-Maclaurin expansion. This yields

p(t) = p(0)·e(R−r)·t = p(0) ·
∞∑

i=0

((R−r)·t)i

i!

But: numerical instability due to fill-in of (R−r)i in presence of positive
and negative entries in the matrix R−r.
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Uniformization
Let CTMC C = (S,P, r , ιinit,AP, L) with S finite.

Uniform CTMC
CTMC C is uniform if r(s) = r for all s ∈ S for some r ∈ R>0.

Uniformization [Gross and Miller, 1984]

Let r ∈ R>0 such that r > maxs∈S r(s). Then unif(r , C) is the tuple
(S,P, r , ιinit,AP, L) with r(s) = r for all s ∈ S , and:

P(s, s ′) =
r(s)

r ·P(s, s ′) if s ′ 6= s and P(s, s) =
r(s)

r ·P(s, s) + 1− r(s)

r .

It follows that P is a stochastic matrix and unif(r , C) is a CTMC.

Joost-Pieter Katoen Verifying Continuous-Time Markov Chains 33/119

Verifying Continuous-Time Markov Chains Transient distribution

Uniformization: example

Uniformization
Let r ∈ R>0 such that r > maxs∈S r(s). Then unif(r , C) = (S,P, r , ιinit,AP, L)
with r(s) = r for all s ∈ S, and:

P(s, s ′) =
r(s)

r ·P(s, s ′) if s ′ 6= s and P(s, s) =
r(s)

r ·P(s, s) + 1− r(s)

r .

CTMC C and its uniformized counterpart unif(6, C)
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Uniformization: intuition
Uniformization
Let r ∈ R>0 such that r > maxs∈S r(s). Then unif(r , C) = (S,P, r , ιinit,AP, L)
with r(s) = r for all s ∈ S, and:

P(s, s ′) =
r(s)

r ·P(s, s ′) if s ′ 6= s and P(s, s) =
r(s)

r ·P(s, s) + 1− r(s)

r .

Intuition

I Fix all exit rates to (at least) the maximal exit rate r occurring in CTMC C.
I Thus, 1

r is the shortest mean residence time in the CTMC C.
I Then normalize the residence time of all states with respect to r as follows:

1. replace an average residence time 1
r(s) by a shorter (or equal) one, 1

r

2. decrease the transition probabilities by a factor r(s)
r , and

3. increase the self-loop probability by a factor r−r(s)
r

That is, slow down state s whenever r(s) < r .
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Strong bisimulation on DTMCs
Probabilistic bisimulation [Larsen & Skou, 1989]

Let D = (S,P, ιinit,AP, L) be a DTMC and R ⊆ S × S an equivalence.
Then: R is a probabilistic bisimulation on S if for any (s, t) ∈ R:
1. L(s) = L(t), and
2. P(s,C) = P(t,C) for all equivalence classes C ∈ S/R

where P(s,C) =
∑

s′∈C P(s, s ′).

For states in R, the probability of moving by a single transition to some
equivalence class is equal.

Probabilistic bisimilarity
Let D be a DTMC and s, t states in D. Then: s is probabilistically bisimilar to t,
denoted s ∼p t, if there exists a probabilistic bisimulation R with (s, t) ∈ R.
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Strong bisimulation on CTMCs
Probabilistic bisimulation [Buchholz, 1994]

Let C = (S,P, r , ιinit,AP, L) be a CTMC and R ⊆ S × S an equivalence.
Then: R is a probabilistic bisimulation on S if for any (s, t) ∈ R:
1. L(s) = L(t), and
2. r(s) = r(t), and
3. P(s,C) = P(t,C) for all equivalence classes C ∈ S/R

The last two conditions amount to R(s,C) = R(t,C) for all equivalence classes
C ∈ S/R.

Probabilistic bisimilarity
Let C be a CTMC and s, t states in C. Then: s is probabilistically bisimilar to t,
denoted s ∼m t, if there exists a probabilistic bisimulation R with (s, t) ∈ R.
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Weak bisimulation on DTMCs
Weak probabilistic bisimulation [Baier & Hermanns, 1996]

Let D = (S,P, ιinit,AP, L) be a DTMC and R ⊆ S × S an equivalence.
Then: R is a weak probabilistic bisimulation on S if for any (s, t) ∈ R:
1. L(s) = L(t), and
2. if P(s, [s]R) < 1 and P(t, [t]R) < 1, then:

P(s,C)

1− P(s, [s]R)
=

P(t,C)

1− P(t, [t]R)
for allC ∈ S/R,C 6= [s]R = [t]R .

3. s can reach a state outside [s]R iff t can reach a state outside [t]R .

For states in R, the conditional probability of moving by a single transition to
another equivalence class is equal. In addition, either all states in an equivalence
class C almost surely stay there, or have an option to escape from C .
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Weak bisimulation on DTMCs
Weak probabilistic bisimulation [Baier & Hermanns, 1996]

Let D = (S,P, ιinit,AP, L) be a DTMC and R ⊆ S × S an equivalence.
Then: R is a weak probabilistic bisimulation on S if for any (s, t) ∈ R:
1. L(s) = L(t), and
2. if P(s, [s]R) < 1 and P(t, [t]R) < 1, then:

P(s,C)

1− P(s, [s]R)
=

P(t,C)

1− P(t, [t]R)
for allC ∈ S/R,C 6= [s]R = [t]R .

3. s can reach a state outside [s]R iff t can reach a state outside [t]R .

Probabilistic weak bisimilarity
Let D be a DTMC and s, t states in D. Then: s is probabilistically weak bisimilar
to t, denoted s ≈p t, if there exists a probabilistic weak bisimulation R with
(s, t) ∈ R.
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Weak bisimulation on DTMC: example

The equivalence relation R with S/R =
{
{s1, s2, s3, s4}, {u1, u2, u3}

}
is a

weak bisimulation. This can be seen as follows. For C = { u1, u2, u3 } and s1, s2, s4
with P(si , [si ]R) < 1 we have:

P(s1,C)

1− P(s1, [s1])
=

1/8
1−5/8 =

1/4
1−1/4 =

P(s2,C)

1− P(s2, [s2])
=

1/3
1 =

P(s4,C)

1− P(s4, [s4])
.

Note that P(s3, [s3]R) = 1. Since s3 can reach a state outside [s3] as s1, s2 and
s4, it follows that s1 ≈p s2 ≈p s3 ≈p s4.
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Reachability condition

Remark
Consider the following DTMC:

It is not difficult to establish s1 ≈ s2. Note: P(s1, [s1]) = 1, but P(s2, [s2]R) < 1.
Both s1 and s2 can reach a state outside [s1]R = [s2]R . The reachability condition
is essential to establish s1 ≈ s2 and cannot be dropped: otherwise s1 and s2 would
be weakly bisimilar to an equally labelled absorbing state.
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Weak bisimulation on CTMCs

Weak probabilistic bisimulation [Bravetti, 2002]

Let C = (S,P, r , ιinit,AP, L) be a CTMC and R ⊆ S × S an equivalence.
Then: R is a weak probabilistic bisimulation on S if for any (s, t) ∈ R:
1. L(s) = L(t), and
2. R(s,C) = R(t,C) for all C ∈ S/R with C 6= [s]R = [t]R

Weak probabilistic bisimilarity
Let C be a CTMC and s, t states in C. Then: s is weak probabilistically bisimilar
to t, denoted s ≈m t, if there exists a weak probabilistic bisimulation R with
(s, t) ∈ R.
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A useful lemma

Let C be a CTMC and R an equivalence relation on S with (s, t) ∈ R. Then: the
following two statements are equivalent:

1. If P(s, [s]R) < 1 and P(t, [t]R) < 1 then for all C ∈ S/R, C 6= [s]R = [t]R :

P(s,C)

1− P(s, [s]R)
=

P(t,C)

1− P(t, [t]R)
and R(s, S \ [s]R) = R(t, S \ [t]R)

2. R(s,C) = R(t,C) for all C ∈ S/R with C 6= [s]R = [t]R .

Proof:
Left as an exercise.
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Weak bisimulation on CTMCs: example

Equivalence relation R with S/R =
{
{s1, s2, s3, s4, s5, s6}, {u1, u2, u3, u4, u5}

}
is

a weak bisimulation on the CTMC depicted above. This can be seen as follows.
For C = { u1, u2, u3, u4, u5 }, we have that all s-states enter C with rate 2. The
rates between the s-states are not relevant.
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Properties (without proof)
Strong and weak bisimulation in uniform CTMCs
For all uniform CTMCs C and states s, u in C, we have:

s ∼m u iff s ≈m u iff s ∼p u.

For any CTMC C, we have: C ≈m unif(r , C) with r > maxs∈S r(s).

Preservation of transient probabilities
For all CTMCs C with states s, u in C and t ∈ R>0, we have:

s ≈m u implies p(t) = p(t)

where p(0) = 1s and p(0) = 1u where 1s is the characteristic function for
state s, i.e., 1s(s ′) = 1 iff s = s ′.
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Computing transient probabilities

The transient probability vector p(t) = (ps1(t), . . . , psk (t)) satisfies:

p′(t) = p(t) · (R−r) given p(0).

Standard knowledge yields: p(t) = p(0)·e(R−r)·t .

As uniformization preserves transient probabilities, we replace R−r by its
variant for the uniformized CTMC, i.e., R−r. We have:

R(s, s ′) = P(s, s ′)·r(s) = P(s, s ′)·r and r = I·r .

Thus:

p(0)·e(R−r)·t = p(0)·e(P·r−I·r)·t = p(0)·e(P−I)·r ·t = p(0)·e−rt ·er ·t·P.
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Computing transient probabilities

p(t) = p(0)·e(R−r)·t = p(0)·e(P·r−I·r)·t = p(0)·e(P−I)·r ·t = p(0)·e−rt ·er ·t·P.

Computing a matrix exponential
Exploit Taylor-Maclaurin expansion. This yields:

p(0)·e−rt ·er ·t·P = p(0)·e−rt ·
∞∑

i=0

(r ·t)i

i! ·P
i

= p(0) ·
∞∑

i=0
e−r ·t (r ·t)i

i!︸ ︷︷ ︸
Poisson prob.

·Pi

As P is a stochastic matrix, computing the matrix exponential Pi is
numerically stable.

Joost-Pieter Katoen Verifying Continuous-Time Markov Chains 47/119

Verifying Continuous-Time Markov Chains Transient distribution

Intermezzo: Poisson distribution

Poisson distribution
The Poisson distribution is a discrete probability distribution that expresses
the probability of a given number i of events occurring in a fixed interval
of time [0, t] if these events occur with a known average rate r and
independently of the time since the last event. Formally, the pdf is:

f (i ; r ·t) = e−r ·t (r ·t)i

i!

where r is the mean of the Poisson distribution.

Remark
The Poisson distribution can be derived as a limiting case to the binomial
distribution as the number of trials goes to infinity and the expected number of
successes remains fixed.
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Transient probabilities: example

P =

[
0 1
1 0

]
, r =

[
3
2

]
and P3 =

[
0 1
2
3

1
3

]

Let initial distribution p(0) = (1, 0), and time bound t=1. Then:

p(1) = p(0)·
∞∑

i=0
e−3 3

i

i! ·P
i

= (1, 0)·e−3 1
0! ·
[

0 1
1 0

]
+ (1, 0)·e−3 3

1! ·
[

0 1
2
3

1
3

]

+ (1, 0)·e−3 9
2! ·
[

0 1
2
3

1
3

]2
+ . . . . . .

≈ (0.404043, 0.595957)
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Truncating the infinite sum
Computing transient probabilities

p(t) = p(0) ·
∞∑

i=0
e−r ·t (r ·t)i

i! ·P
i

I Summation can be truncated a priori for a given error bound ε > 0.
I The error that is introduced by truncating at summand kε is:∥∥∥∥∥

∞∑
i=0

e−rt (rt)i

i! ·p(i)−
kε∑

i=0
e−rt (rt)i

i! ·p(i)

∥∥∥∥∥ =

∥∥∥∥∥
∞∑

i=kε+1
e−rt (rt)i

i! ·p(i)

∥∥∥∥∥
I Strategy: choose kε minimal such that:

∞∑
i=kε+1

e−rt (rt)i

i! =
∞∑

i=0
e−rt (rt)i

i! −
kε∑

i=0
e−rt (rt)i

i! = 1−
kε∑

i=0
e−rt (rt)i

i! 6 ε
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Summary

Main points

I Bisimilar states are equally labelled and their cumulative rate to any
equivalence class coincides.

I Weak bisimilar states have equal conditional probabilities to move to
some equivalence class, and can either both leave their class or both
can’t.

I Uniformization normalizes the exit rates of all states in a CTMC.
I Uniformization transforms a CTMC into a weak bisimilar one.
I Transient distribution are obtained by solving a system of linear

differential equations.
I These equations can be solved conveniently on the uniformized

CTMC.
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Overview

1 Negative exponential distributions

2 What are continuous-time Markov chains?

3 Transient distribution

4 Timed reachability probabilities

5 Verifying continuous stochastic CTL

6 Verifying linear real-time properties
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Paths in a CTMC
Timed paths
Paths in CTMC C are maximal (i.e., infinite) paths of alternating states
and time instants:

π = s0 t0−−→ s1 t1−−→ s2 · · ·

such that si ∈ S and ti ∈ R>0. Let Paths(C) be the set of paths in C and
Paths∗(C) the set of finite prefixes thereof.

Time instant ti is the amount of time spent in state si .

Notations
I Let π[i ] := si denote the (i+1)-st state along the timed path π.
I Let π〈i〉 := ti the time spent in state si .
I Let π@t be the state occupied in π at time t ∈ R>0, i.e. π@t := π[i ]

where i is the smallest index such that
∑i

j=0 π〈j〉 > t.
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Paths and probabilities

To reason quantitatively about the behavior of a CTMC, we need to define
a probability space over its paths.

Intuition
For a given state s in CTMC C:

I Sample space := set of all interval-timed paths s0 I0 . . . Ik−1 sk with
s = s0

I Events := sets of interval-timed paths starting in s

I Basic events := cylinder sets

I Cylinder set of finite interval-timed paths := set of all infinite timed
paths with a prefix in the finite interval-timed path
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Probability measure on DTMCs
Cylinder set
Let s0, . . ., sk ∈ S with P(si , si+1) > 0 for 0 6 i < k and I0, . . ., Ik−1 non-empty
intervals in R>0. The cylinder set of s0 I0 s1 I1 . . . Ik−1 sk is defined by:

Cyl(s0, I0, . . ., Ik−1, sk) =
{
π ∈ Paths(C) | ∀0 6 i 6 k. π[i ] = si

and i < k ⇒ π〈i〉 ∈ Ii
}

The cylinder set spanned by s0, I0, . . ., Ik−1, sk thus consists of all infinite timed
paths that have a prefix π̂ that lies in s0, I0, . . ., Ik−1, sk . Cylinder sets serve as
basic events of the smallest σ-algebra on Paths(C).

σ-algebra of a CTMC
The σ-algebra associated with CTMC C is the smallest σ-algebra F(Paths(s0))

that contains all cylinder sets Cyl(s0, I0, . . ., Ik−1, sk) where s0 . . . sk is a path in
the state graph of C (starting in s0) and I0, . . ., Ik−1 range over all sequences of
non-empty intervals in R>0.
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Probability measure on CTMCs
Cylinder set
The cylinder set Cyl(s0, I0, . . ., Ik−1, sk) of s0 I0 . . . Ik−1 sk is defined by:{

π ∈ Paths(C) | ∀0 6 i 6 k. π[i ] = si and i < k ⇒ π〈i〉 ∈ Ii
}

Probability measure
Pr is the unique probability measure on the σ-algebra F(Paths(s0)) defined
by induction on k as follows: Pr(Cyl(s0)) = ιinit(s0) and for k > 0:

Pr
(
Cyl(s0, I0, . . ., Ik−1, sk)

)
= Pr

(
Cyl(s0, I0, . . ., Ik−2, sk−1)

)
·∫

Ik−1

R(sk−1, sk)·e−r(sk−1)τ dτ.

Solving the integral
Pr
(
Cyl(s0, I0, . . ., Ik−2, sk−1)

)
· P(sk−1, sk)·

(
e−r(sk )· inf Ik−1 − e−r(sk )· sup Ik−1

)
.
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Zeno theorem
Zeno path
Path s0 t0−−→ s1 t1−−→ s2 t2−−→ s3 . . . . . . is called Zeno 1 if

∑
i ti converges.

Intuition
In case

∑
i ti does not diverge, the timed path represents an“unrealistic”

computation where infinitely many transitions are taken in a finite amount of
time. Example:

s0 1−→ s1
1
2−−→ s2

1
4−−→ s3 . . . si

1
2i−−→ si+1 . . .

In real-time systems, such executions are typically excluded from the analysis.
Thanks to the following theorem, Zeno paths do not harm for CTMCs.

Zeno theorem
For all states s in any CTMC, Pr{π ∈ Paths(s) | π is Zeno } = 0.

1Zeno of Elea (490–430 BC), philosopher, famed for his paradoxes.
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Proof of Zeno theorem

Zeno theorem
For all states s in any CTMC, Pr{π ∈ Paths(s) | π is Zeno } = 0.
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Reachability events
Let CTMC C with (possibly infinite) state space S.

(Simple) reachability

Eventually reach a state in G ⊆ S. Formally:

♦G = {π ∈ Paths(C) | ∃i ∈ N. π[i ] ∈ G }

Invariance, i.e., always stay in state in G :

�G = {π ∈ Paths(C) | ∀i ∈ N. π[i ] ∈ G } = ♦G .

Constrained reachability
Or “reach-avoid” properties where states in F ⊆ S are forbidden:

F UG = {π ∈ Paths(C) | ∃i ∈ N. π[i ] ∈ G ∧ ∀j < i . π[j] 6∈ F }
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Measurability

Measurability theorem
Events ♦G , �G , F UG , �♦G and ♦�G are measurable on any CTMC.

Proof:
Left as an exercise.
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Reachability probabilities in finite CTMCs
Problem statement
Let C be a CTMC with finite state space S, s ∈ S and G ⊆ S.
Aim: determine Pr(s |= ♦G) = Prs(♦G) = Prs{π ∈ Paths(s) | π |= ♦G }
where Prs is the probability measure in C with single initial state s.

Characterisation of reachability probabilities

I Let variable xs = Pr(s |= ♦G) for any state s
I if G is not reachable from s, then xs = 0
I if s ∈ G then xs = 1

I For any state s ∈ Pre∗(G) \ G :

xs =
∑

t∈S\G
P(s, t) · xt

︸ ︷︷ ︸
reach G via t ∈ S \ G

+
∑
u∈G

P(s, u)︸ ︷︷ ︸
reach G in one step
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Verifying CTMCs

Verifying untimed properties
So, computing reachability probabilities is exactly the same as for DTMCs.
The same holds for constrained reachability, persistence and repeated
reachability. In fact, all PCTL and LTL formulas can be checked on the
embedded DTMC (S,P, ιinit,AP, L) using the techniques described before
in these lecture slides.

Justification:
As the above temporal logic formulas or events do not refer to elapsed
time, it is not surprising that they can be checked on the embedded
DTMC.
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Timed reachability events
Let CTMC C with (possibly infinite) state space S.

(Simple) timed reachability

Eventually reach a state in G ⊆ S in the interval I. Formally:

♦I G = {π ∈ Paths(C) | ∃t ∈ I. π@t ∈ G }

Invariance, i.e., always stay in state in G in the interval I:

�I G = {π ∈ Paths(C) | ∀t ∈ I. π@t ∈ G } = ♦I G .

Constrained timed reachability
Or “reach-avoid” properties where states in F ⊆ S are forbidden:

F UI G = {π ∈ Paths(C) | ∃t ∈ I. π@t ∈ G ∧ ∀d < t. π@d 6∈ F }
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Measurability

Measurability theorem
Events ♦I G , �I G , and F UI G are measurable on any CTMC.

Proof:
Left as an exercise.
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Timed reachability probabilities in finite CTMCs
Problem statement
Let C be a CTMC with finite state space S, s ∈ S, t ∈ R>0 and G ⊆ S.
Aim: Pr(s |= ♦6t G) = Prs(♦6t G) = Prs{π ∈ Paths(s) | π |= ♦6t G }

where Prs is the probability measure in C with single initial state s.

Characterisation of timed reachability probabilities

I Let function xs(t) = Pr(s |= ♦6t G) for any state s
I if G is not reachable from s, then xs(t) = 0 for all t
I if s ∈ G then xs(t) = 1 for all t

I For any state s ∈ Pre∗(G) \ G :

xs(t) =

∫ t

0

∑
s′∈S

R(s, s ′) · e−r(s)·x︸ ︷︷ ︸
probability to move to

state s ′ at time x

· xs′(t−x)︸ ︷︷ ︸
prob. to fulfill
♦6t−x G from s ′

dx
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Reachability
Reachability probabilities in finite DTMCs and CTMCs
Can be obtained by solving a system of linear equations for which many
efficient techniques exists.

Timed reachability probabilities in finite CTMCs
Can be obtained by solving a system of Volterra integral equations. This is
in general a non-trivial issue, inefficient, and has several pitfalls such as
numerical stability.

Solution
Reduce the problem of computing Pr(s |= ♦6t G) to an alternative
problem for which well-known efficient techniques exist: computing
transient probabilities (see previous lecture).
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Timed reachability probabilities = transient probabilities

Aim
Compute Pr(s |= ♦6tG) in CTMC C. Observe that once a path π reaches
G within t time, then the remaining behaviour along π is not important.
This suggests to make all states in G absorbing.

Let CTMC C = (S,P, r , ιinit,AP, L) and G ⊆ S. The CTMC
C[G ] = (S,PG , r , ιinit,AP, L) with PG(s, t) = P(s, t) if s /∈ G and
PG(s, s) = 1 if s ∈ G .
All outgoing transitions of s ∈ G are replaced by a single self-loop at s.

Lemma
Pr(s |= ♦6tG)︸ ︷︷ ︸

timed reachability in C

= Pr(s |= ♦=tG)︸ ︷︷ ︸
timed reachability in C[G ]

= p(t) with p(0) = 1s︸ ︷︷ ︸
transient prob. in C[G ]

.
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Constrained timed reachability probabilities
Problem statement
Let C be a CTMC with finite state space S, s ∈ S, t ∈ R>0 and G ,F ⊆ S.

Aim: Pr(s |= F U6t G) = Prs(F U6t G) = Prs{π ∈ Paths(s) | π |= F U6t G }.

Characterisation of timed reachability probabilities

I Let function xs(t) = Pr(s |= F U6t G) for any state s
I if G is not reachable from s via F , then xs(t) = 0 for all t
I if s ∈ G then xs(t) = 1 for all t

I For any state s ∈ Pre∗(G) \ (F ∪ G):

xs(t) =

∫ t

0

∑
s′∈S

R(s, s ′) · e−r(s)·x︸ ︷︷ ︸
probability to move to

state s ′ at time x

· xs′(t−x)︸ ︷︷ ︸
prob. to fulfill

F U6t−x G from s ′

dx

Joost-Pieter Katoen Verifying Continuous-Time Markov Chains 68/119



Verifying Continuous-Time Markov Chains Timed reachability probabilities

Constrained timed reachability = transient probabilities

Aim
Compute Pr(s |= F U6t G) in CTMC C. Observe (as before) that once a
path π reaches G within time t via F , then the remaining behaviour along
π is not important. Now also observe that once s ∈ F \ G is reached
within time t, then the remaining behaviour along π is not important. This
suggests to make all states in G and F \ G absorbing.

Lemma
Pr(s |= F U6t G)︸ ︷︷ ︸

timed reachability in C

= Pr(s |= ♦=tG)︸ ︷︷ ︸
timed reachability

in C[F ∪ G ]

= p(t) with p(0) = 1s︸ ︷︷ ︸
transient prob. in C[F ∪ G ]

.
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Strong and weak bisimulation

Bisimulation preserves timed reachability events
Let C be a CTMC with state space S, s, u ∈ S, t ∈ R>0 and G ,F ⊆ S.
Then:
1. s ∼m u implies Pr(s |= F U6t G) = Pr(u |= F U6t G)

2. s ≈m u implies Pr(s |= F U6t G) = Pr(u |= F U6t G)

provided F and G are closed under ∼m and ≈m, respectively.

Proof:
Left as an exercise.
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Summary

Main points

I Cylinder sets in a CTMC are paths that share interval-timed path
prefixes.

I Reachability, persistence and repeated reachability can be checked as
on DTMCs.

I Timed reachability probabilities can be characterised as Volterra
integral equation system.

I Computing timed reachability probabilities can be reduced to
transient probabilities.

I Weak and strong bisimulation preserves timed reachability
probabilities.
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Overview

1 Negative exponential distributions

2 What are continuous-time Markov chains?

3 Transient distribution

4 Timed reachability probabilities

5 Verifying continuous stochastic CTL

6 Verifying linear real-time properties
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Continuous Stochastic Logic

I CSL is a language for formally specifying properties over CTMCs.
I It is a branching-time temporal logic based on CTL.
I Formula interpretation is Boolean, i.e., a state satisfies a formula or

not.
I Like in PCTL, the main operator is PJ(ϕ)

I where ϕ constrains the set of paths and J is a threshold on the
probability.

I it is the probabilistic counterpart of ∃ and ∀ path-quantifiers in CTL.
I The new features are a timed version of the next and until-operator.

I ©I Φ asserts that a transition to a Φ-state can be made at time t ∈ I.
I ΦUIΨ asserts that a Ψ-state can be reached via Φ-states at time t ∈ I.
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CSL syntax [Baier, Katoen & Hermanns, 1999]

Continuous Stochastic Logic: Syntax
CSL consists of state- and path-formulas.

I CSL state formulas over the set AP obey the grammar:

Φ ::= true
∣∣∣ a

∣∣∣ Φ1 ∧ Φ2
∣∣∣ ¬Φ

∣∣∣ PJ(ϕ)

where a ∈ AP, ϕ is a path formula and J ⊆ [0, 1], J 6= ∅ is a
non-empty interval.

I CSL path formulae are formed according to the following grammar:

ϕ ::= ©I Φ
∣∣∣ Φ1 UI Φ2

where Φ, Φ1, and Φ2 are state formulae and I ⊆ R>0 an interval.
Abbreviate P[0,0.5](ϕ) by P60.5(ϕ) and P]0,1](ϕ) by P>0(ϕ).
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Continuous Stochastic Logic

I CSL state formulas over the set AP obey the grammar:

Φ ::= true
∣∣∣ a

∣∣∣ Φ1 ∧ Φ2
∣∣∣ ¬Φ

∣∣∣ PJ(ϕ)

where a ∈ AP, ϕ is a path formula and J ⊆ [0, 1], J 6= ∅.
I CSL path formulae are formed according to the following grammar:

ϕ ::= ©I Φ
∣∣∣ Φ1 UI Φ2

where Φ, Φ1, and Φ2 are state formulae and I ⊆ R>0 an interval.

Intuitive semantics
I s0t0s1t1 . . . |= ΦUI Ψ if Ψ is reached at t ∈ I and prior to t, Φ holds.
I s |= PJ(ϕ) if probability that paths starting in s fulfill ϕ lies in J .
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Derived operators

♦Φ = trueUΦ

♦IΦ = trueU IΦ

P6p(�Φ) = P>1−p(♦¬Φ)

P(p,q)(�IΦ) = P[1−q,1−p](♦
I¬Φ)
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Paths in a CTMC

Timed paths
Paths in CTMC C are maximal (i.e., infinite) paths of alternating states
and time instants:

π = s0 t0−−→ s1 t1−−→ s2 · · ·

such that si ∈ S and ti ∈ R>0. Let Paths(C) be the set of paths in C and
Paths∗(C) the set of finite prefixes thereof.

Notations
I Let π[i ] := si denote the (i+1)-st state along the timed path π.
I Let π〈i〉 := ti the time spent in state si .
I Let π@t be the state occupied in π at time t ∈ R>0, i.e. π@t := π[i ]

where i is the smallest index such that
∑i

j=0 π〈j〉 > t.
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Example properties

I Transient probabilities to be in goal state at time point 4:

P> 0.92
(
♦=4 goal

)

I With probability > 0.92, a goal state is reached legally:

P> 0.92 (¬ illegal U goal)

I . . . in maximally 137 time units: P> 0.92
(
¬ illegal U6 137 goal

)
I . . . once there, remain there almost surely for the next 31 time units:

P> 0.92
(
¬ illegal U6 137 P=1(�[0,31] goal)

)
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CSL semantics (1)
Notation
C, s |= Φ if and only if state-formula Φ holds in state s of CTMC C.

Satisfaction relation for state formulas
The satisfaction relation |= is defined for CSL state formulas by:

s |= a iff a ∈ L(s)

s |= ¬Φ iff not (s |= Φ)

s |= Φ ∧ Ψ iff (s |= Φ) and (s |= Ψ)

s |= PJ (ϕ) iff Pr(s |= ϕ) ∈ J

where Pr(s |= ϕ) = Prs{π ∈ Paths(s) | π |= ϕ }.

This is as for PCTL, except that Pr is the probability measures on cylinder
sets of timed paths in CTMC C.
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CSL semantics (2)

Satisfaction relation for path formulas
Let π = s0 t0 s1 t1 s2 . . . be an infinite path in CTMC C.
The satisfaction relation |= is defined for state formulas by:

π |=©I Φ iff s1 |= Φ ∧ t0 ∈ I

π |= ΦUI Ψ iff ∃t ∈ I. ((∀t ′ ∈ [0, t). π@t ′ |= Φ) ∧ π@t |= Ψ)

Standard next- and until-operators

I XΦ ≡ ©I Φ with I = R>0.
I ΦUΨ ≡ ΦUI Ψ with I = R>0.
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Measurability

CSL measurability
For any CSL path formula ϕ and state s of CTMC C,
the set {π ∈ Paths(s) | π |= ϕ } is measurable.

Proof:
Rather straightforward; left as an exercise.
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CSL model checking
CSL model checking problem

Input: a finite CTMC C = (S,P, r , ιinit,AP, L), state s ∈ S, and
CSL state formula Φ

Output: yes, if s |= Φ; no, otherwise.

Basic algorithm
In order to check whether s |= Φ do:
1. Compute the satisfaction set Sat(Φ) = { s ∈ S | s |= Φ }.
2. This is done recursively by a bottom-up traversal of Φ’s parse tree.

I The nodes of the parse tree represent the subformulae of Φ.
I For each node, i.e., for each subformula Ψ of Φ, determine Sat(Ψ).
I Determine Sat(Ψ) as function of the satisfaction sets of its children:

e.g., Sat(Ψ1 ∧Ψ2) = Sat(Ψ1) ∩ Sat(Ψ2) and Sat(¬Ψ) = S \ Sat(Ψ).

3. Check whether state s belongs to Sat(Φ).
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Core model checking algorithm

Probabilistic operator P

In order to determine whether s ∈ Sat(PJ(ϕ)), the probability Pr(s |= ϕ)
for the event specified by ϕ needs to be established. Then

Sat(PJ(ϕ)) =
{
s ∈ S | Pr(s |= ϕ) ∈ J

}
.

Let us consider the computation of Pr(s |= ϕ) for all possible ϕ.
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The next-step operator

Recall that: s |= PJ(©IΦ) if and only if Pr(s |=©IΦ) ∈ J .

Lemma
Pr(s |=©IΦ) =

(
e−r(s)· inf I − e−r(s)· sup I

)
︸ ︷︷ ︸

probability to leave s in interval I

·
∑

s′∈Sat(Φ)

P(s, s ′).

Algorithm
Considering the above equation for all states simultaneously yields:(

Pr(s |=©Φ)
)

s∈S = bT
I · P

with bI is defined by bI(s) = e−r(s)· inf I − e−r(s)· sup I if s ∈ Sat(Φ) and 0
otherwise, and bT

I is the transposed variant of bI .
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Time-bounded until (1)

Recall that: s |= PJ(ΦU6t Ψ) if and only if Pr(s |= ΦU6t Ψ) ∈ J .

Lemma
Let S=1 = Sat(Ψ), S=0 = S \ (Sat(Φ) ∪ Sat(Ψ)), and S? = S \ (S=0 ∪ S=1). Then:

Pr(s |= ΦU6t Ψ) =


1 if s ∈ S=1
0 if s ∈ S=0∫ t

0

∑
s′∈S

R(s, s ′) · e−r(s)·x ·Pr(s ′ |= ΦU6t−x Ψ) dx otherwise

This is a slight generalisation of the Volterra integral equation system for
timed reachability.
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Time-bounded until (2)

Let S=1 = Sat(Ψ), S=0 = S \ (Sat(Φ) ∪ Sat(Ψ)), and S? = S \ (S=0 ∪ S=1). Then:

Pr(s |= ΦU6t Ψ) =


1 if s ∈ S=1
0 if s ∈ S=0∫ t

0

∑
s′∈S

R(s, s ′) · e−r(s)·x ·Pr(s ′ |= ΦU6t−x Ψ) dx otherwise

Recall that
Pr(s |= F U6t G)︸ ︷︷ ︸

timed reachability in C

= Pr(s |= ♦=tG)︸ ︷︷ ︸
in C[F ∪ G ]

= p(t) with p(0) = 1s︸ ︷︷ ︸
transient prob. in C[F ∪ G ]

.

Phrased using CSL state formulas
Pr(s |= ΦU6t Ψ)︸ ︷︷ ︸

timed reachability in C

= Pr(s |= ♦=tΨ)︸ ︷︷ ︸
in C[Sat(¬Φ) ∪ Sat(Ψ)]

= p(t) with p(0) = 1s︸ ︷︷ ︸
C[Sat(¬Φ) ∪ Sat(Ψ)]

.
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Time-bounded until (3)

Algorithm for checking Pr(s |= ΦU6t Ψ) ∈ J

1. If t =∞, then use approach for until (as in PCTL): solve a system of linear
equations.

2. Determine recursively Sat(Φ) and Sat(Ψ).

3. Make all states in S \ Sat(Φ) and Sat(Ψ) absorbing.

4. Uniformize the resulting CTMC with respect to its maximal rate.

5. Determine the transient probability at time t using s as initial distribution.

6. Return yes if transient probability of all Ψ-states lies in J , and no otherwise.
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Time-bounded until (4)

Possible optimizations

1. Make all states in S \ Sat(∃(ΦUΨ)) absorbing.

2. Make all states in Sat(∀(ΦUΨ)) absorbing.

3. Replace the labels of all states in S \ Sat(∃(ΦΨ)) by unique label zero.

4. Replace the labels of all states in Sat(∀(ΦUΨ)) by unique label one.

5. Perform bisimulation minimization on all states.

The last step collapses all states in S \ Sat(∃(ΦUΨ)) into a single state, and
does the same with all states in Sat(∀(ΦUΨ)).
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Preservation of CSL-formulas

Bisimulation and CSL-equivalence coincide
Let C be a finitely branching CTMC and s, t states in C. Then:

s ∼m t if and only if s and t are CSL-equivalent.

Remarks
If for CSL-formula Φ we have s |= Φ but t 6|= Φ, then it follows s 6∼m t. A
single CSL-formula suffices!
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Preservation of CSL-formulas

Weak bisimulation and CSL-without-next-equivalence coincide
Let C be a finitely branching CTMC and s, t states in C. Then:

s ≈m t if and only if s and t are CSL-without-next-equivalent.

Here. CSL-without-next is the fragment of CSL where the next-operator
© does not occur.

Remarks
If for CSL-without-next-formula Φ we have s |= Φ but t 6|= Φ, then it
follows s 6≈m t.
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Uniformization and CSL

Uniformization and CSL
For any finite CTMC C with state space S, r > max{ r(s) | s ∈ S } and Φ
a CSL-without-next-formula:

SatC(Φ) = SatC′(Φ) where C′ = unif(r , C).

Uniformization and CSL
For any uniformized CTMC: CSL-equivalence coincides with
CSL-without-next-equivalence.
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Time complexity

Let |Φ| be the size of Φ, i.e., the number of logical and temporal operators in Φ.

Time complexity of CSL model checking
For finite CTMC C and CSL state-formula Φ, the CSL model-checking
problem can be solved in time

O
(

poly(size(C)) · tmax · |Φ|
)

where tmax = max{ t | Ψ1 U6tΨ2 occurs in Φ } with and tmax = 1 if Φ
does not contain a time-bounded until-operator.
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Some practical verification times
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104

Crowds protocol (DTMC)

Randomised mutex (DTMC)

Workstation cluster (CTMC)

Tandem queue (CTMC)

verication time (in ms)

state space size

I command-line tool MRMC ran on a Pentium 4, 2.66 GHz, 1 GB RAM laptop.
I CSL formulas are time-bounded until-formulas.
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Summary

I CSL is a variant of PCTL with timed next and timed until.
I Sets of paths fulfilling CSL path-formula ϕ are measurable.
I CSL model checking is performed by a recursive descent over Φ.
I The timed next operator amounts to a single vector-matrix

multiplication.
I The time-bounded until-operator U6t is solved by uniformization.
I The worst-case time complexity is polynomial in the size of the

CTMC and linear in the size of the formula.
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Overview

1 Negative exponential distributions

2 What are continuous-time Markov chains?

3 Transient distribution

4 Timed reachability probabilities

5 Verifying continuous stochastic CTL

6 Verifying linear real-time properties
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Robot navigation

I The robot randomly moves through the cells, and resides in a cell for
an exponentially distributed amount of time.

I Gray cells are dangerous; the robot should leave them quickly.

Property:
What is the probability to reach B from A within 10 time units while
residing in any dangerous zone for at most 2 time units?
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Robot navigation: property
Property:
What is the probability to reach B from A within 10 time units while
residing in any dangerous zone for at most 2 time units?
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Deterministic timed automata

A Deterministic Timed Automaton (DTA) A is a tuple (Σ,X ,Q, q0,F ,→):

I Σ - alphabet
I X - finite set of clocks
I Q - finite set of locations
I q0 ∈ Q - initial location
I F ⊆ Q - accept locations
I → ∈ Q×Σ×C(X )×2X×Q

- transition relation;

Determinism: q a,g ,X−−−−→ q′ and q a,g ′,X ′−−−−−→ q′′ implies g ∩ g ′ = ∅
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Model checking Markov chains

branching time linear time

PCTL LTL

discrete- linear equations automata-based tableau-based
time [HJ94] (?) [V85,CSS03] (??) [CY95]

(DTMC D) PTIME PSPACE-C
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Model checking Markov chains

branching time linear time

PCTL LTL

discrete- linear equations automata-based tableau-based
time [HJ94] (?) [V85,CSS03] (??) [CY95]

(DTMC D) PTIME PSPACE-C

untimed untimed
continuous- PCTL LTL

time emb(C) emb(C)

(CTMC C) (?) (??)

PTIME PSPACE-C

Joost-Pieter Katoen Verifying Continuous-Time Markov Chains 100/119



Verifying Continuous-Time Markov Chains Verifying linear real-time properties

Model checking Markov chains

branching time linear time

PCTL LTL

discrete- linear equations automata-based tableau-based
time [HJ94] (?) [V85,CSS03] (??) [CY95]

(DTMC D) PTIME PSPACE-C

untimed real-time untimed
continuous- PCTL CSL LTL

time emb(C) integral equations emb(C)

(CTMC C) (?) [BHHK03] (??)

PTIME PTIME PSPACE-C
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Model checking Markov chains

branching time linear time

PCTL LTL

discrete- linear equations automata-based tableau-based
time [HJ94] (?) [V85,CSS03] (??) [CY95]

(DTMC D) PTIME PSPACE-C

untimed real-time untimed real-time
continuous- PCTL CSL LTL DTA

time emb(C) integral equations emb(C) integral equations
(CTMC C) (?) [BHHK03] (??) of second type (PDPs)

PTIME PTIME PSPACE-C PSPACE-C
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What are we interested in?

Problem statement:
Given model CTMC C and specification DTA A, determine the fraction of
runs in C that satisfy A:

Pr(C |= A) := PrC{Paths in C accepted by A
}
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Theoretical facts
Well-definedness
For any CTMC C and DTA A, the set

{
Paths in C accepted by A

}
is

measurable.

Characterizing the probability of C |= A

Pr(C |= A) equals the reachability probability of accepting paths in C ⊗ A.

Characterizing the probability of C |= A under finite acceptance

Pr(C |= A) equals the reachability probability of accepting paths in
C ⊗ RG(A).

Characterizing the probability of C |= A under Muller acceptance

Pr(C |= A) equals the reachability probability of accepting terminal
strongly connected components in C ⊗ RG(A).

Region construction

1. Reachability probabilities in C ⊗ A and RG(C ⊗ A) coincide
2. RG(C ⊗ A) and C ⊗ RG(A) are isomorphic
3. C ⊗ RG(A) is a piecewise-deterministic Markov process [Davis, 1993]
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Product construction
CTMC C DTA A
with state space S with state space Q
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Product construction ⊗
CTMC C DTA A
with state space S with state space Q

product C ⊗ A
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Product construction: example

An example CTMC C (left) and DTA A (right)

An example CTMC C (left up) and DTA A (right up) and C ⊗ RG(A) (below)
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One-clock DTA: partitioning C ⊗ RG(A)

I constants c0 < . . . < cm in A yields m+1 subgraphs.
I subgraph i captures behaviour of C and A in [ci , ci+1).
I any subgraph is a CTMC, resets lead to subgraph 0, delays to i+1.
I a subgraph with its resets yields an “augmented” CTMC.

Joost-Pieter Katoen Verifying Continuous-Time Markov Chains 108/119



Verifying Continuous-Time Markov Chains Verifying linear real-time properties

One-clock DTA: partitioning C ⊗ RG(A)
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One-clock DTA: characterizing Pr(C |= A)

Theorem
For CTMC C with initial distribution α, 1-clock DTA A we have that:

Pr(C |= A) = α · u

where u is the solution of the linear equation system x ·M = f, with

M =

 In0 − Bm−1 Am−1
P̂a

m Inm − Pm


and f is the characterizing vector of the final states in subgraph m, and A
and B are obtained from transient probabilities in all subgraphs.
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One-clock DTA: algorithm
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Reachability in (our) PDPs

I For single-clock DTA, reachability probabilities in (our) PDPs are
characterized by the least solution of a linear equation system, whose
coefficients are solutions of some ordinary differential equations
(ODEs).

I For these coefficients either an analytical solution (for small state
space) can be obtained or an arbitrarily closely approximated solution
can be determined efficiently.

I In multi-clock DTA, reachability probabilities in (our) PDPs are
characterized as the least solution of a Volterra integral equation
system of the second type.

I This solution can be approximated by solving a system of partial
differential equations (PDEs).
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Robot navigation revisited

Black squares are walls. The residence time in consecutive C-cells < T1.
The residence time in consecutive D-cells < T2.
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Verification results

#CTMC No lumping With lumping
N states # ⊗ states time(s) %transient #blocks time(s) %transient %lumping
10 100 148 0.09 59% 78 0.09 43% 32%
20 400 702 6.7 18% 380 7.1 14% 7%
30 900 1248 32 17% 619 26 14% 6%
40 1600 2672 119 13% 1296 93 10% 5%
50 2500 4174 135 17% 2015 138 12% 7%
60 3600 4232 309 16% 1525 261 12% 7%
70 4900 8661 904 12% 4212 1130 7% 3%
80 6400 9529 1753 12% 4339 1429 14% 4%
90 8100 9812 2433 8% 2613 1922 6% 5%

Product construction and solving the linear equation system is most
time-consuming
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Systems biology: immune-receptor signaling

[Goldstein et. al., Nat. Reviews Immunology, 2004]
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Systems biology: immune-receptor signaling

I M ligands can react with a receptor R with rate k+1 yielding a
ligand-receptor LR

I LR undergoes a sequence of N modifications with a constant rate kp
yielding B1, . . . ,BN

I LR BN can link with an inactive messenger with rate k+x yielding a
ligand-receptor-messenger (LRM).

I The LRM decomposes into an active messenger with rate kcat
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Verification results

#CTMC No lumping With lumping
M states # ⊗ states time(s) #blocks time(s) %transient %lumping
1 18 31 0 13 0 0% 0%
2 150 203 0.06 56 0.05 58% 39%
3 774 837 1.36 187 0.84 64% 30%
4 3024 2731 17.29 512 9.19 73% 24%
5 9756 7579 152.54 1213 73.4 76% 21%
6 27312 18643 1547.45 2579 457.35 78% 20%
7 68496 41743 11426.46 5038 3185.6 85% 14%
8 157299 86656 23356.5 9200 11950.8 81% 18%
9 336049 169024 71079.15 15906 38637.28 76% 22%
10 675817 312882 205552.36 26256 116314.41 71% 26%

In the case of no lumping, 99% of time is spent on transient analysis
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Multi-multi-core model checking

4 Cores 20 Cores
N time(s) speedup time(s) speedup
3 0.45 3.03 0.42 3.22
4 5.3 3.26 3.44 5.02
5 44.73 3.41 15.87 9.61
6 620.16 2.50 160.58 9.64
7 4142.19 2.76 949.32 12.04
8 8168.62 2.86 1722.63 13.56
9 23865.17 2.98 5457.01 13.03
10 70623.46 2.91 16699.22 12.31

Parallelization of the transient analysis only; not the lumping.
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Summary

Take-home messages

I Checking CTMCs against deterministic timed automata (DTA).
I Efficient numerical algorithm for one-clock DTA:

I using standard means: region construction, graph analysis,
transient analysis, linear equation systems.

I three orders of magnitude faster than alternative approaches.
I natural support for parallelization and bisimulation minimization.

I Discretization approach for multiple-clock DTA with error bounds.
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