Lecture 2:
Verification of Concurrent Programs
Part 2: Under Approximate Analysis

Ahmed Bouajjani

LIAFA, University Paris Diderot — Paris 7

VTSA, MPI-Saarbriicken, September 2012

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs |l

Concurrent Programs with Procedures

o Parallel threads (with/without procedure calls)

@ Shared memory

Interleaving semantics (sequential consistency)

@ Model = Concurrent Pushdown Systems (Multistack systems)

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs Il September 2012 2 /18

Concurrent Programs with Procedures

o Parallel threads (with/without procedure calls)

@ Shared memory

@ Interleaving semantics (sequential consistency)

@ Model = Concurrent Pushdown Systems (Multistack systems)
@ Turing powerful: 2 threads

@ = Restrictions: Consider only some schedules

o Aim: detect bugs

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs Il September 2012 2 /18

Concurrent Programs with Procedures

o Parallel threads (with/without procedure calls)

@ Shared memory

@ Interleaving semantics (sequential consistency)

@ Model = Concurrent Pushdown Systems (Multistack systems)
@ Turing powerful: 2 threads

@ = Restrictions: Consider only some schedules

o Aim: detect bugs

@ What is a good concept for restricting the set of behaviors ?

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs Il September 2012 2 /18

Context-Bounded Analysis
[Qadeer, Rehof, 2005]

The number of context switches in a computation is bounded

W w w w

Thread 1: §p ——on—3 23 3

Thread 2: AL Ny G ... >
Context 1 Context 2 Context 3 Context 4

@ Suitable for finding bugs in concurrent programs.

@ Concurrency bugs show up after a small number of context switches.

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs Il September 2012 3/18

Context-Bounded Analysis
[Qadeer, Rehof, 2005]

The number of context switches in a computation is bounded

W w w w

Thread 1: §p ——on—3 23 3

Thread 2: AL Ny G ... >
Context 1 Context 2 Context 3 Context 4

@ Suitable for finding bugs in concurrent programs.

@ Concurrency bugs show up after a small number of context switches.
@ Infinite-state space: Unbounded sequential computations

@ Decidability ?

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs Il September 2012 3/18

Basic case: Pushdown system

@ Pushdown system = (Q,T,A)

o Configuration: (g, w) where g € Q is a control state, w € [is the stack
content.

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs |l September 2012 4/18

Basic case: Pushdown system

@ Pushdown system = (Q,T,A)

o Configuration: (g, w) where g € Q is a control state, w € [is the stack
content.

@ Symbolic representation: A finite state automaton.
@ Computation of the predecessors/successors:

For every regular set of configurations C, the pre*(C) and
post*(C) are regular and effectively constructible.
[Biichi 62], ..., [B., Esparza, Maler, 97], ...

@ Reachability: Polynomial algorithms.

@ Can be generalized to model checking.

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs |l September 2012 4/18

Context-Bounded Analysis: Decidability
@ Consider a multi-stack systems with n stacks

o Configuration: (g, wi,...,w,), where g is a control state, w; € I'; are stack
contents.

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs |l September 2012 5/18

Context-Bounded Analysis: Decidability

@ Consider a multi-stack systems with n stacks

o Configuration: (g, wi,...,w,), where g is a control state, w; € I'; are stack
contents.

@ Symbolic representation: clusters (g, As,...,A,), g a control state, A; are
FSA over I;

@ Given a cluster C, compute a set of clusters characterizing K-pre*(C) (resp.
K-post*(C))

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs |l September 2012 5/18

Context-Bounded Analysis: Decidability

@ Consider a multi-stack systems with n stacks

o Configuration: (g, wi,...,w,), where g is a control state, w; € I'; are stack
contents.

@ Symbolic representation: clusters (g, As,...,A,), g a control state, A; are
FSA over I;

@ Given a cluster C, compute a set of clusters characterizing K-pre*(C) (resp.
K-post*(C))

@ Generalize the pre* / post* constructions for PDS

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs |l September 2012 5/18

Context-Bounded Analysis: Decidability

@ Consider a multi-stack systems with n stacks

o Configuration: (g, wi,...,w,), where g is a control state, w; € I'; are stack
contents.

@ Symbolic representation: clusters (g, A1, ...,A,), g a control state, A; are
FSA over I;

@ Given a cluster C, compute a set of clusters characterizing K-pre*(C) (resp.
K-post*(C))

@ Generalize the pre* / post* constructions for PDS

@ Enumerate sequences of the form qoioqii1qoh2 - . . ik Gk ik+1, Where g;'s are
states, and jj € {1,..., n} are threads identities.

@ Let Xki1 = C. Compute: for j = K back to 0
> Al = pre; (Xigalipal) N gy

i+1 i
> X = (g AT A A

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs |l September 2012 5/18

Dynamic Creation of Threads 7

[Atig, B., Qadeer, 09]

Problem

@ Bounding the number of context switches =
bounding the number of threads.
@ = Inadequate bounding concept for the dynamic case.
Each created thread must have a chance to be executed

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs Il September 2012

6/18

Dynamic Creation of Threads 7

[Atig, B., Qadeer, 09]
Problem
@ Bounding the number of context switches =
bounding the number of threads.
@ = Inadequate bounding concept for the dynamic case.
Each created thread must have a chance to be executed

New definition

@ Give to each thread a context switch budget
@ = The number of context switches is bounded for each thread
@ = The global number of context switches in a run is unbounded

o NB: Generalization of Asynchronous Programs

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs Il September 2012 6 /18

Case 1: Dynamic Networks of Finite-State Processes

Decidable ?

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs |l

Case 1: Dynamic Networks of Finite-State Processes

Decidable ?

Theorem
The K-bounded state reachability problem is EXPSPACE-complete. J

Reduction to/from the coverability problem for Petri.

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs |l September 2012 7 /18

Reduction to coverability in PN

@ For every global store g € Q, associate a place gq.

e For every stack configuration v € ' U {¢} and budget b € {1,...,K}
of the active thread, associate a place (,b,Act).

@ For every stack configuration v € ' U {¢} and budget b € {0,...,K}
of a pending thread, associate a place (v,b,Pen).

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs |l September 2012 8 /18

Reduction to coverability in PN

@ For every global store g € Q, associate a place gq.

e For every stack configuration v € ' U {¢} and budget b € {1,...,K}
of the active thread, associate a place (,b,Act).

@ For every stack configuration v € ' U {¢} and budget b € {0,...,K}
of a pending thread, associate a place (v,b,Pen).

q (v,b,Act)
Rule of the form: gv — ¢'+' _— e
g (7.bAct)

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs |l September 2012 8 /18

Reduction to coverability in PN

@ For every global store g € Q, associate a place gq.

e For every stack configuration v € ' U {¢} and budget b € {1,...,K}
of the active thread, associate a place (,b,Act).

@ For every stack configuration v € ' U {¢} and budget b € {0,...,K}
of a pending thread, associate a place (v,b,Pen).

q9 (v,bAct)

V.

(v, K,Pen) g (7,b,Act)

Rule of the form: gy — ¢+ > "

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs |l September 2012 8 /18

Reduction to coverability in PN

@ For every global store g € Q, associate a place gq.

e For every stack configuration v € ' U {¢} and budget b € {1,...,K}
of the active thread, associate a place (,b,Act).

@ For every stack configuration v € ' U {¢} and budget b € {0,...,K}
of a pending thread, associate a place (v,b,Pen).
(7v,b,Act) (v',b’,Pen)

Context switch (with b'> 0) —

(v',b’,Act) (7,b-1,Pen)

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs |l September 2012 8 /18

Case 2: Dynamic Networks of Pushdown Systems

@ Decidable ?

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs |l

Case 2: Dynamic Networks of Pushdown Systems

@ Decidable ?
o Difficulty:

» Unbounded number of pending local contexts
» Can not use the same construction as for the case of finite state
threads. (This would need an unbounded number of places.)

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs Il September 2012 9 /18

Case 2: Dynamic Networks of Pushdown Systems

@ Decidable ?
o Difficulty:

» Unbounded number of pending local contexts
» Can not use the same construction as for the case of finite state
threads. (This would need an unbounded number of places.)

Theorem
The K-bounded state reachability problem is in 2EXPSPACE. J

Exponential reduction to the coverability problem in PN

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs Il September 2012 9 /18

Making visible the interactions

v wi wi w2 wa w3
Thread: -—-—y—3-—>- e e——pe—>e —pe——pe—e—e

N

. : - E : : B
Envir. : q Phase 1 Qi—y Cﬁ Phase 2 0 q§ Phase 3 q,

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs Il September 2012 10 / 18

Making visible the interactions

vy wy w1 w2 w2 w3
Thread: -—-—y—3-—>- e e——pe—>e —pe——pe—e—e

Sy Ty e

@ Construct a labeled pushdown automaton which:

» Guesses the effect of the environment on the states

Y wi wy w2 w2 w3
Pushdown: e—pe—pe—3.—>- A e T) —p P
q q a1 92 9% q

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs |l September 2012 10 / 18

Making visible the interactions

vy wy w1 w2 w2 w3
Thread: «—e—e—e—>-.

O

@ Construct a labeled pushdown automaton which:

» Guesses the effect of the environment on the states

v NG AN 2 (g5, qp) 2 s
Pushdown: e e e e e
q q Qi a2 9 q

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs |l September 2012 10 / 18

Making visible the interactions

w1 wi W wa w3

Thread: «—e—e—e—>- ey ey i S S
n : : 72 : :

Envir. q Phase 1 —s g Phase 2 0@ ; Phase 3 f

@ Construct a labeled pushdown automaton which:

» Makes visible (as transition labels) the created threads

v M (g, q1) " "2 (g2, q5) 2 NG
Pushdown: —)—)—)—)-—1)-,—)—)—)—)-—2)-/—)—)—)—)/
q @ il a2 a2 q

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs Il September 2012 10 / 18

Making visible the interactions

w1 wi W wa w3

Thread: «—e—e—e—>- ey ey i S S
n : : 72 : :

Envir. q Phase 1 —s g Phase 2 0@ ; Phase 3 f

@ Construct a labeled pushdown automaton which:

» Makes visible (as transition labels) the created threads

R IS Wi(g, g)WL -2 e W2 (g, gryW2 -ee 3 W3
Pushdown: s—pe—pe—pe—p ey e e 2oy
aq a il a2 a2 q

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs Il September 2012 10 / 18

Constructing a regular interface

Y el Y1 e / cee Y2 e / 73
PUShdOWn: c—pe—pe— oy @) 72 (aman) 5
q q a 92 % q

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs |l

Constructing a regular interface

.")/ RS 4 N (q17<7{) e Y2 e (q2,qé) el Y3
Pushdown: e e A e o St
q q a0 a2 9 q

@ The set of traces L characterizes the interaction between the thread
and its environment (L is a CFL)

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs |l September 2012 11 /18

Constructing a regular interface

.’y RS 4 N (q17CI{) e Y2 e (q27q£) el Y3
Pushdown: e e T A e e S o
q q a0 a2 9 q

@ The set of traces L characterizes the interaction between the thread
and its environment (L is a CFL)

Observations: For the state reachability problem

@ Order of events is important

@ Some created threads may never be scheduled

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs |l September 2012 11 /18

Constructing a regular interface

.")/ RS 4 N (q17CI{) e Y2 e (q2,qé) el Y3
Pushdown: e e A e o St
q q a0 a2 9 q

@ The set of traces L characterizes the interaction between the thread
and its environment (L is a CFL)

Observations: For the state reachability problem

@ Order of events is important

@ Some created threads may never be scheduled

= Replace L by its downward closure w.r.t. the sub-word relation L |

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs |l September 2012 11 /18

Constructing a regular interface (cont.)

@ The interactions of a thread with its environment can be characterized
by the downward closure L | of the context-free language L

e L | is regular and effectively constructible ([Courcelle, 1991])

@ The size of an automaton for L | can be exponential in the PDA
defining L

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs Il September 2012 12 /18

Constructing the Petri Net

@ Use places for representing the control, one per state

e Count pending tasks having some context switch budget (from 0 to
K), and waiting to start at some state

o For each created task, guess a sequence of K states (for context
switches)

@ At context switches, control is given to a pending task waiting for the
current state

e Simulate a full sequential computation (following the FSA automaton
of the interface) until next transition (g, g’)

@ During the simulation, each transition labelled ~ corresponds to a
task creation

o At a transition (g, g’), leave the control at g (to some other thread)
and wait for g’ (with a lower switch budget)

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs Il September 2012 13 /18

Sequentialization under Context Bounding

Question:

Is it possible to reduce CBA of a Concurrent Program to the
Reachability Analysis of a Sequential Program 7

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs Il September 2012 14 / 18

Sequentialization under Context Bounding

Question:

Is it possible to reduce CBA of a Concurrent Program to the
Reachability Analysis of a Sequential Program 7

Yes: Use compositional reasoning !

[Lal, Reps, 2008]

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs Il September 2012

14 / 18

Sequentialization under Context Bounding: Basic Idea

Consider a Program with 2 threads T and T;, and global variables X
Consider the problem: Can the program reach the state (g1, g2)
Assume that the threads are scheduled in a Round Robin manner

Let K be the number of rounds

Guess an interface of each thread:

» "= (Il,...1}), the global states when T; starts/is resumed
» O =(0q,...0y), the global states when T; terminates/is interrupted

@ Check that T; can reach g; by a computation that fulfills its interface

@ Check that T» can reach g» by a computation that fulfills its interface
@ Check that the interfaces are composable
> Ojl = Ij2 for every j € {1,...,K}

> OJ?:Ilerl for every j € {1,...,K -1}

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs Il September 2012 15 / 18

Sequentialization: Code-to-code translation

Given a concurrent program P, construct a sequential program Ps such that
(g1, g2) is reachable under K-CB in P iff gy, in reachable in Ps.

@ Create 2K copies of the global variables X; and X/, for j € {1,..., K}
@ Start the simulation of T;. At each round j € {1,..., K}, thread Ti:

© Starts by putting some values in X (guesses the input Ijl)

@ Copies X; in X/, and runs by using X/ as global variables

© Choses nondeterministically the next context-switch point

@ Moves to round j + 1 (locals are not modified) and go to 1 (using new
copies of globals X1 and X, ;).

@ When T1 reaches g, start simulating T,. At each round j, thread T;:
© Starts from the content of Xj’ that was produced by Tj in its j-th round
© Runs by using Xj’ as global variables
© Choses nondeterministically the next context-switch point
© Checks that X/ = Xj;1 (composability check), and move to round j + 1

@ If g, is reachable at round K, then go to state quin

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs |l September 2012 16 / 18

Context-bounded analysis: Complexity

@ Finite Number of Threads:

Unbounded K-Bounded
Finite-state systems PSPACE-complete NP-complete
Pushdown systems Undecidable NP-complete

@ Dynamic Creation of Threads:

Unbounded K-Bounded

Finite-state systems | EXPSPACE-complete EXPSPACE-complete

Pushdown systems Undecidable In 2EXPSPACE

RR: EXPSPACE-complete
[ABQ + Lal]

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs Il September 2012 17 / 18

Sequentialization for Dynamic Programs

@ VASS are sequential machines, so there is a precise sequentialization

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs Il September 2012 18 / 18

Sequentialization for Dynamic Programs

@ VASS are sequential machines, so there is a precise sequentialization

@ What do we mean by “sequentialization” ?

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs Il September 2012 18 / 18

Sequentialization for Dynamic Programs

@ VASS are sequential machines, so there is a precise sequentialization
@ What do we mean by “sequentialization” ?

@ We want to use pushdown systems

@ We do not want to expose locals: compositional reasoning

@ We want to obtain a program of the same type: we should not add
other data structures, variables, etc.

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs Il September 2012 18 / 18

Sequentialization for Dynamic Programs

@ VASS are sequential machines, so there is a precise sequentialization
@ What do we mean by “sequentialization” ?

@ We want to use pushdown systems

@ We do not want to expose locals: compositional reasoning

@ We want to obtain a program of the same type: we should not add
other data structures, variables, etc.

@ In this context, a precise sequentialization of dynamic programs
cannot exist (we cannot encode VASS with PDS)

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs Il September 2012 18 / 18

Sequentialization for Dynamic Programs

@ VASS are sequential machines, so there is a precise sequentialization
@ What do we mean by “sequentialization” ?

@ We want to use pushdown systems

@ We do not want to expose locals: compositional reasoning

@ We want to obtain a program of the same type: we should not add
other data structures, variables, etc.

@ In this context, a precise sequentialization of dynamic programs
cannot exist (we cannot encode VASS with PDS)

@ Under-approximate sequentialization [B., Emmi, Parlato, 2011]

o Idea:

» Transform thread creation into procedure calls
» Allow some reordering using the idea of bounded interfaces

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs Il September 2012 18 / 18

End of Lecture 2:

@ Finding adequate bounding notions for concurrent programs is an important
issue.

@ Adequate bounding should allow to lower the complexity of the analysis, and
compositional reductions to sequential analysis.

@ Source-to-source reduction are important: allow the use of existing tools.

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs Il September 2012 19 / 18

End of Lecture 2:

@ Finding adequate bounding notions for concurrent programs is an important
issue.

@ Adequate bounding should allow to lower the complexity of the analysis, and
compositional reductions to sequential analysis.

@ Source-to-source reduction are important: allow the use of existing tools.

@ Context-bounding is a interesting concept, but there are others, e.g., delay
bounding [Emmi, Qadeer, Rakamaric, 2011]

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs Il September 2012 19 / 18

End of Lecture 2:

@ Finding adequate bounding notions for concurrent programs is an important
issue.

@ Adequate bounding should allow to lower the complexity of the analysis, and
compositional reductions to sequential analysis.

@ Source-to-source reduction are important: allow the use of existing tools.

@ Context-bounding is a interesting concept, but there are others, e.g., delay
bounding [Emmi, Qadeer, Rakamaric, 2011]

@ Bounding notion for message-passing programs ?

@ Phase-bounding has been proposed recently [B., Emmi, 2012]

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs |l September 2012 19 / 18

