
Lecture 2:

Verification of Concurrent Programs
Part 2: Under Approximate Analysis

Ahmed Bouajjani

LIAFA, University Paris Diderot – Paris 7

VTSA, MPI-Saarbrücken, September 2012

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs II September 2012 1 / 18

Concurrent Programs with Procedures

Parallel threads (with/without procedure calls)

Shared memory

Interleaving semantics (sequential consistency)

Model = Concurrent Pushdown Systems (Multistack systems)

Turing powerful: 2 threads

⇒ Restrictions: Consider only some schedules

Aim: detect bugs

What is a good concept for restricting the set of behaviors ?

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs II September 2012 2 / 18

Concurrent Programs with Procedures

Parallel threads (with/without procedure calls)

Shared memory

Interleaving semantics (sequential consistency)

Model = Concurrent Pushdown Systems (Multistack systems)

Turing powerful: 2 threads

⇒ Restrictions: Consider only some schedules

Aim: detect bugs

What is a good concept for restricting the set of behaviors ?

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs II September 2012 2 / 18

Concurrent Programs with Procedures

Parallel threads (with/without procedure calls)

Shared memory

Interleaving semantics (sequential consistency)

Model = Concurrent Pushdown Systems (Multistack systems)

Turing powerful: 2 threads

⇒ Restrictions: Consider only some schedules

Aim: detect bugs

What is a good concept for restricting the set of behaviors ?

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs II September 2012 2 / 18

Context-Bounded Analysis

[Qadeer, Rehof, 2005]

The number of context switches in a computation is bounded

w0 w1 w1 w2

u0 u1 u1

q0 q1

q1 q2

q2 q3

q3

Thread 1:

Thread 2:

Context 1 Context 2 Context 3 Context 4

Suitable for finding bugs in concurrent programs.

Concurrency bugs show up after a small number of context switches.

Infinite-state space: Unbounded sequential computations

Decidability ?

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs II September 2012 3 / 18

Context-Bounded Analysis

[Qadeer, Rehof, 2005]

The number of context switches in a computation is bounded

w0 w1 w1 w2

u0 u1 u1

q0 q1

q1 q2

q2 q3

q3

Thread 1:

Thread 2:

Context 1 Context 2 Context 3 Context 4

Suitable for finding bugs in concurrent programs.

Concurrency bugs show up after a small number of context switches.

Infinite-state space: Unbounded sequential computations

Decidability ?

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs II September 2012 3 / 18

Basic case: Pushdown system

Pushdown system = (Q, Γ,∆)

Configuration: (q,w) where q ∈ Q is a control state, w ∈ Γ is the stack
content.

Symbolic representation: A finite state automaton.

Computation of the predecessors/successors:

For every regular set of configurations C, the pre∗(C) and
post∗(C) are regular and effectively constructible.
[Büchi 62], ..., [B., Esparza, Maler, 97], ...

Reachability: Polynomial algorithms.

Can be generalized to model checking.

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs II September 2012 4 / 18

Basic case: Pushdown system

Pushdown system = (Q, Γ,∆)

Configuration: (q,w) where q ∈ Q is a control state, w ∈ Γ is the stack
content.

Symbolic representation: A finite state automaton.

Computation of the predecessors/successors:

For every regular set of configurations C, the pre∗(C) and
post∗(C) are regular and effectively constructible.
[Büchi 62], ..., [B., Esparza, Maler, 97], ...

Reachability: Polynomial algorithms.

Can be generalized to model checking.

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs II September 2012 4 / 18

Context-Bounded Analysis: Decidability

Consider a multi-stack systems with n stacks

Configuration: (q,w1, . . . ,wn), where q is a control state, wi ∈ Γi are stack
contents.

Symbolic representation: clusters (q,A1, . . . ,An), q a control state, Ai are
FSA over Γi

Given a cluster C , compute a set of clusters characterizing K -pre∗(C) (resp.
K -post∗(C))

Generalize the pre∗ / post∗ constructions for PDS

Enumerate sequences of the form q0i0q1i1q2i2 . . . iKqK iK+1, where qj ’s are
states, and ij ∈ {1, . . . , n} are threads identities.

Let XK+1 = C . Compute: for j = K back to 0

I A′j+1 = pre∗ij+1
(Xj+1[ij+1]) ∩ qjΓ

∗
i

I Xj = (qj ,A
j+1
1 , . . . ,A′j+1, . . . ,A

j+1
n)

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs II September 2012 5 / 18

Context-Bounded Analysis: Decidability

Consider a multi-stack systems with n stacks

Configuration: (q,w1, . . . ,wn), where q is a control state, wi ∈ Γi are stack
contents.

Symbolic representation: clusters (q,A1, . . . ,An), q a control state, Ai are
FSA over Γi

Given a cluster C , compute a set of clusters characterizing K -pre∗(C) (resp.
K -post∗(C))

Generalize the pre∗ / post∗ constructions for PDS

Enumerate sequences of the form q0i0q1i1q2i2 . . . iKqK iK+1, where qj ’s are
states, and ij ∈ {1, . . . , n} are threads identities.

Let XK+1 = C . Compute: for j = K back to 0

I A′j+1 = pre∗ij+1
(Xj+1[ij+1]) ∩ qjΓ

∗
i

I Xj = (qj ,A
j+1
1 , . . . ,A′j+1, . . . ,A

j+1
n)

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs II September 2012 5 / 18

Context-Bounded Analysis: Decidability

Consider a multi-stack systems with n stacks

Configuration: (q,w1, . . . ,wn), where q is a control state, wi ∈ Γi are stack
contents.

Symbolic representation: clusters (q,A1, . . . ,An), q a control state, Ai are
FSA over Γi

Given a cluster C , compute a set of clusters characterizing K -pre∗(C) (resp.
K -post∗(C))

Generalize the pre∗ / post∗ constructions for PDS

Enumerate sequences of the form q0i0q1i1q2i2 . . . iKqK iK+1, where qj ’s are
states, and ij ∈ {1, . . . , n} are threads identities.

Let XK+1 = C . Compute: for j = K back to 0

I A′j+1 = pre∗ij+1
(Xj+1[ij+1]) ∩ qjΓ

∗
i

I Xj = (qj ,A
j+1
1 , . . . ,A′j+1, . . . ,A

j+1
n)

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs II September 2012 5 / 18

Context-Bounded Analysis: Decidability

Consider a multi-stack systems with n stacks

Configuration: (q,w1, . . . ,wn), where q is a control state, wi ∈ Γi are stack
contents.

Symbolic representation: clusters (q,A1, . . . ,An), q a control state, Ai are
FSA over Γi

Given a cluster C , compute a set of clusters characterizing K -pre∗(C) (resp.
K -post∗(C))

Generalize the pre∗ / post∗ constructions for PDS

Enumerate sequences of the form q0i0q1i1q2i2 . . . iKqK iK+1, where qj ’s are
states, and ij ∈ {1, . . . , n} are threads identities.

Let XK+1 = C . Compute: for j = K back to 0

I A′j+1 = pre∗ij+1
(Xj+1[ij+1]) ∩ qjΓ

∗
i

I Xj = (qj ,A
j+1
1 , . . . ,A′j+1, . . . ,A

j+1
n)

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs II September 2012 5 / 18

Dynamic Creation of Threads ?

[Atig, B., Qadeer, 09]

Problem

Bounding the number of context switches ⇒
bounding the number of threads.

⇒ Inadequate bounding concept for the dynamic case.

Each created thread must have a chance to be executed

New definition

Give to each thread a context switch budget

⇒ The number of context switches is bounded for each thread

⇒ The global number of context switches in a run is unbounded

NB: Generalization of Asynchronous Programs

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs II September 2012 6 / 18

Dynamic Creation of Threads ?

[Atig, B., Qadeer, 09]

Problem

Bounding the number of context switches ⇒
bounding the number of threads.

⇒ Inadequate bounding concept for the dynamic case.

Each created thread must have a chance to be executed

New definition

Give to each thread a context switch budget

⇒ The number of context switches is bounded for each thread

⇒ The global number of context switches in a run is unbounded

NB: Generalization of Asynchronous Programs

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs II September 2012 6 / 18

Case 1: Dynamic Networks of Finite-State Processes

Decidable ?

Theorem

The K-bounded state reachability problem is EXPSPACE-complete.

Reduction to/from the coverability problem for Petri.

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs II September 2012 7 / 18

Case 1: Dynamic Networks of Finite-State Processes

Decidable ?

Theorem

The K-bounded state reachability problem is EXPSPACE-complete.

Reduction to/from the coverability problem for Petri.

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs II September 2012 7 / 18

Reduction to coverability in PN

For every global store q ∈ Q, associate a place q.

For every stack configuration γ ∈ Γ ∪ {ε} and budget b ∈ {1, . . . ,K}
of the active thread, associate a place (γ,b,Act).

For every stack configuration γ ∈ Γ ∪ {ε} and budget b ∈ {0, . . . ,K}
of a pending thread, associate a place (γ,b,Pen).

Rule of the form: qγ −→ q′γ′

q

=⇒

(γ,b,Act)

q′ (γ′,b,Act)

Rule of the form: qγ −→ q′γ′ B γ′′

q

=⇒

(γ,b,Act)

(γ′′,K,Pen) q′ (γ′,b,Act)

Context switch (with b’> 0)

(γ,b,Act)

=⇒

(γ′,b’,Pen)

(γ′,b’,Act) (γ,b-1,Pen)

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs II September 2012 8 / 18

Reduction to coverability in PN

For every global store q ∈ Q, associate a place q.

For every stack configuration γ ∈ Γ ∪ {ε} and budget b ∈ {1, . . . ,K}
of the active thread, associate a place (γ,b,Act).

For every stack configuration γ ∈ Γ ∪ {ε} and budget b ∈ {0, . . . ,K}
of a pending thread, associate a place (γ,b,Pen).

Rule of the form: qγ −→ q′γ′

q

=⇒

(γ,b,Act)

q′ (γ′,b,Act)

Rule of the form: qγ −→ q′γ′ B γ′′

q

=⇒

(γ,b,Act)

(γ′′,K,Pen) q′ (γ′,b,Act)

Context switch (with b’> 0)

(γ,b,Act)

=⇒

(γ′,b’,Pen)

(γ′,b’,Act) (γ,b-1,Pen)

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs II September 2012 8 / 18

Reduction to coverability in PN

For every global store q ∈ Q, associate a place q.

For every stack configuration γ ∈ Γ ∪ {ε} and budget b ∈ {1, . . . ,K}
of the active thread, associate a place (γ,b,Act).

For every stack configuration γ ∈ Γ ∪ {ε} and budget b ∈ {0, . . . ,K}
of a pending thread, associate a place (γ,b,Pen).

Rule of the form: qγ −→ q′γ′

q

=⇒

(γ,b,Act)

q′ (γ′,b,Act)

Rule of the form: qγ −→ q′γ′ B γ′′

q

=⇒

(γ,b,Act)

(γ′′,K,Pen) q′ (γ′,b,Act)

Context switch (with b’> 0)

(γ,b,Act)

=⇒

(γ′,b’,Pen)

(γ′,b’,Act) (γ,b-1,Pen)

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs II September 2012 8 / 18

Reduction to coverability in PN

For every global store q ∈ Q, associate a place q.

For every stack configuration γ ∈ Γ ∪ {ε} and budget b ∈ {1, . . . ,K}
of the active thread, associate a place (γ,b,Act).

For every stack configuration γ ∈ Γ ∪ {ε} and budget b ∈ {0, . . . ,K}
of a pending thread, associate a place (γ,b,Pen).

Rule of the form: qγ −→ q′γ′

q

=⇒

(γ,b,Act)

q′ (γ′,b,Act)

Rule of the form: qγ −→ q′γ′ B γ′′

q

=⇒

(γ,b,Act)

(γ′′,K,Pen) q′ (γ′,b,Act)

Context switch (with b’> 0)

(γ,b,Act)

=⇒

(γ′,b’,Pen)

(γ′,b’,Act) (γ,b-1,Pen)

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs II September 2012 8 / 18

Case 2: Dynamic Networks of Pushdown Systems

Decidable ?

Difficulty:

I Unbounded number of pending local contexts
I Can not use the same construction as for the case of finite state

threads. (This would need an unbounded number of places.)

Theorem

The K-bounded state reachability problem is in 2EXPSPACE.

Exponential reduction to the coverability problem in PN

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs II September 2012 9 / 18

Case 2: Dynamic Networks of Pushdown Systems

Decidable ?

Difficulty:

I Unbounded number of pending local contexts
I Can not use the same construction as for the case of finite state

threads. (This would need an unbounded number of places.)

Theorem

The K-bounded state reachability problem is in 2EXPSPACE.

Exponential reduction to the coverability problem in PN

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs II September 2012 9 / 18

Case 2: Dynamic Networks of Pushdown Systems

Decidable ?

Difficulty:

I Unbounded number of pending local contexts
I Can not use the same construction as for the case of finite state

threads. (This would need an unbounded number of places.)

Theorem

The K-bounded state reachability problem is in 2EXPSPACE.

Exponential reduction to the coverability problem in PN

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs II September 2012 9 / 18

Making visible the interactions

Thread:

Envir. :

γ w1 w1 w2 w2 w3

q q1
Phase 1

γ1

q′
1

q2
Phase 2

γ2

q′
2 q′Phase 3

γ3

Construct a labeled pushdown automaton which:

I

Pushdown:
q′
1

q2

γ w1 w1 w2 w2 w3

q q1 q′
2 q′

(q1, q′1) (q2, q′2)
. . . γ1 γ2 γ3 . . .

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs II September 2012 10 / 18

Making visible the interactions

Thread:

Envir. :

γ w1 w1 w2 w2 w3

q q1
Phase 1

γ1

q′
1

q2
Phase 2

γ2

q′
2 q′Phase 3

γ3

Construct a labeled pushdown automaton which:

I Guesses the effect of the environment on the states

Pushdown:
q′
1

q2

γ w1 w1 w2 w2 w3

q q1 q′
2 q′

(q1, q′1) (q2, q′2)
. . . γ1 γ2 γ3 . . .

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs II September 2012 10 / 18

Making visible the interactions

Thread:

Envir. :

γ w1 w1 w2 w2 w3

q q1
Phase 1

γ1

q′
1

q2
Phase 2

γ2

q′
2 q′Phase 3

γ3

Construct a labeled pushdown automaton which:

I Guesses the effect of the environment on the states

Pushdown:
q′
1

q2

γ w1 w1 w2 w2 w3

q q1 q′
2 q′

(q1, q′1) (q2, q′2)

. . . γ1 γ2 γ3 . . .

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs II September 2012 10 / 18

Making visible the interactions

Thread:

Envir. :

γ w1 w1 w2 w2 w3

q q1
Phase 1

γ1

q′
1

q2
Phase 2

γ2

q′
2 q′Phase 3

γ3

Construct a labeled pushdown automaton which:

I Makes visible (as transition labels) the created threads

Pushdown:
q′
1

q2

γ w1 w1 w2 w2 w3

q q1 q′
2 q′

(q1, q′1) (q2, q′2)

. . . γ1 γ2 γ3 . . .

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs II September 2012 10 / 18

Making visible the interactions

Thread:

Envir. :

γ w1 w1 w2 w2 w3

q q1
Phase 1

γ1

q′
1

q2
Phase 2

γ2

q′
2 q′Phase 3

γ3

Construct a labeled pushdown automaton which:

I Makes visible (as transition labels) the created threads

Pushdown:
q′
1

q2

γ w1 w1 w2 w2 w3

q q1 q′
2 q′

(q1, q′1) (q2, q′2)
. . . γ1 γ2 γ3 . . .

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs II September 2012 10 / 18

Constructing a regular interface

Pushdown:
q′
1

q2

γ

q q1 q′
2 q′

(q1, q′1) (q2, q′2)
. . . γ1 γ2 γ3 . . .

The set of traces L characterizes the interaction between the thread
and its environment (L is a CFL)

Observations: For the state reachability problem

Order of events is important

Some created threads may never be scheduled

⇒ Replace L by its downward closure w.r.t. the sub-word relation L ↓

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs II September 2012 11 / 18

Constructing a regular interface

Pushdown:
q′
1

q2

γ

q q1 q′
2 q′

(q1, q′1) (q2, q′2)
. . . γ1 γ2 γ3 . . .

The set of traces L characterizes the interaction between the thread
and its environment (L is a CFL)

Observations: For the state reachability problem

Order of events is important

Some created threads may never be scheduled

⇒ Replace L by its downward closure w.r.t. the sub-word relation L ↓

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs II September 2012 11 / 18

Constructing a regular interface

Pushdown:
q′
1

q2

γ

q q1 q′
2 q′

(q1, q′1) (q2, q′2)
. . . γ1 γ2 γ3 . . .

The set of traces L characterizes the interaction between the thread
and its environment (L is a CFL)

Observations: For the state reachability problem

Order of events is important

Some created threads may never be scheduled

⇒ Replace L by its downward closure w.r.t. the sub-word relation L ↓

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs II September 2012 11 / 18

Constructing a regular interface

Pushdown:
q′
1

q2

γ

q q1 q′
2 q′

(q1, q′1) (q2, q′2)
. . . γ1 γ2 γ3 . . .

The set of traces L characterizes the interaction between the thread
and its environment (L is a CFL)

Observations: For the state reachability problem

Order of events is important

Some created threads may never be scheduled

⇒ Replace L by its downward closure w.r.t. the sub-word relation L ↓

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs II September 2012 11 / 18

Constructing a regular interface (cont.)

The interactions of a thread with its environment can be characterized
by the downward closure L ↓ of the context-free language L

L ↓ is regular and effectively constructible ([Courcelle, 1991])

The size of an automaton for L ↓ can be exponential in the PDA
defining L

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs II September 2012 12 / 18

Constructing the Petri Net

Use places for representing the control, one per state

Count pending tasks having some context switch budget (from 0 to
K), and waiting to start at some state

For each created task, guess a sequence of K states (for context
switches)

At context switches, control is given to a pending task waiting for the
current state

Simulate a full sequential computation (following the FSA automaton
of the interface) until next transition (g , g ′)

During the simulation, each transition labelled γ corresponds to a
task creation

At a transition (g , g ′), leave the control at g (to some other thread)
and wait for g ′ (with a lower switch budget)

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs II September 2012 13 / 18

Sequentialization under Context Bounding

Question:

Is it possible to reduce CBA of a Concurrent Program to the
Reachability Analysis of a Sequential Program ?

Yes: Use compositional reasoning !

[Lal, Reps, 2008]

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs II September 2012 14 / 18

Sequentialization under Context Bounding

Question:

Is it possible to reduce CBA of a Concurrent Program to the
Reachability Analysis of a Sequential Program ?

Yes: Use compositional reasoning !

[Lal, Reps, 2008]

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs II September 2012 14 / 18

Sequentialization under Context Bounding: Basic Idea

Consider a Program with 2 threads T1 and T2, and global variables X

Consider the problem: Can the program reach the state (q1, q2)

Assume that the threads are scheduled in a Round Robin manner

Let K be the number of rounds

Guess an interface of each thread:

I I i = (I i1, . . . I
i
K), the global states when Ti starts/is resumed

I O i = (O i
1, . . .O

i
K), the global states when Ti terminates/is interrupted

Check that T1 can reach q1 by a computation that fulfills its interface

Check that T2 can reach q2 by a computation that fulfills its interface

Check that the interfaces are composable
I O1

j = I 2j for every j ∈ {1, . . . ,K}
I O2

j = I 1j+1 for every j ∈ {1, . . . ,K − 1}

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs II September 2012 15 / 18

Sequentialization: Code-to-code translation
Given a concurrent program P, construct a sequential program Ps such that
(q1, q2) is reachable under K -CB in P iff qwin in reachable in Ps .

Create 2K copies of the global variables Xj and X ′j , for j ∈ {1, . . . ,K}

Start the simulation of T1. At each round j ∈ {1, . . . ,K}, thread T1:

1 Starts by putting some values in Xj (guesses the input I 1j)
2 Copies Xj in X ′j , and runs by using X ′j as global variables
3 Choses nondeterministically the next context-switch point
4 Moves to round j + 1 (locals are not modified) and go to 1 (using new

copies of globals Xj+1 and X ′j+1).

When T 1 reaches q1, start simulating T2. At each round j , thread T2:

1 Starts from the content of X ′j that was produced by T1 in its j-th round
2 Runs by using X ′j as global variables
3 Choses nondeterministically the next context-switch point
4 Checks that X ′j = Xj+1 (composability check), and move to round j + 1

If q2 is reachable at round K , then go to state qwin

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs II September 2012 16 / 18

Context-bounded analysis: Complexity

Finite Number of Threads:

Unbounded K-Bounded

Finite-state systems PSPACE-complete NP-complete

Pushdown systems Undecidable NP-complete

Dynamic Creation of Threads:

Unbounded K-Bounded

Finite-state systems EXPSPACE-complete EXPSPACE-complete

Pushdown systems Undecidable In 2EXPSPACE

RR: EXPSPACE-complete
[ABQ + Lal]

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs II September 2012 17 / 18

Sequentialization for Dynamic Programs

VASS are sequential machines, so there is a precise sequentialization

What do we mean by “sequentialization” ?

We want to use pushdown systems

We do not want to expose locals: compositional reasoning

We want to obtain a program of the same type: we should not add
other data structures, variables, etc.

In this context, a precise sequentialization of dynamic programs
cannot exist (we cannot encode VASS with PDS)

Under-approximate sequentialization [B., Emmi, Parlato, 2011]

Idea:
I Transform thread creation into procedure calls
I Allow some reordering using the idea of bounded interfaces

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs II September 2012 18 / 18

Sequentialization for Dynamic Programs

VASS are sequential machines, so there is a precise sequentialization

What do we mean by “sequentialization” ?

We want to use pushdown systems

We do not want to expose locals: compositional reasoning

We want to obtain a program of the same type: we should not add
other data structures, variables, etc.

In this context, a precise sequentialization of dynamic programs
cannot exist (we cannot encode VASS with PDS)

Under-approximate sequentialization [B., Emmi, Parlato, 2011]

Idea:
I Transform thread creation into procedure calls
I Allow some reordering using the idea of bounded interfaces

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs II September 2012 18 / 18

Sequentialization for Dynamic Programs

VASS are sequential machines, so there is a precise sequentialization

What do we mean by “sequentialization” ?

We want to use pushdown systems

We do not want to expose locals: compositional reasoning

We want to obtain a program of the same type: we should not add
other data structures, variables, etc.

In this context, a precise sequentialization of dynamic programs
cannot exist (we cannot encode VASS with PDS)

Under-approximate sequentialization [B., Emmi, Parlato, 2011]

Idea:
I Transform thread creation into procedure calls
I Allow some reordering using the idea of bounded interfaces

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs II September 2012 18 / 18

Sequentialization for Dynamic Programs

VASS are sequential machines, so there is a precise sequentialization

What do we mean by “sequentialization” ?

We want to use pushdown systems

We do not want to expose locals: compositional reasoning

We want to obtain a program of the same type: we should not add
other data structures, variables, etc.

In this context, a precise sequentialization of dynamic programs
cannot exist (we cannot encode VASS with PDS)

Under-approximate sequentialization [B., Emmi, Parlato, 2011]

Idea:
I Transform thread creation into procedure calls
I Allow some reordering using the idea of bounded interfaces

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs II September 2012 18 / 18

Sequentialization for Dynamic Programs

VASS are sequential machines, so there is a precise sequentialization

What do we mean by “sequentialization” ?

We want to use pushdown systems

We do not want to expose locals: compositional reasoning

We want to obtain a program of the same type: we should not add
other data structures, variables, etc.

In this context, a precise sequentialization of dynamic programs
cannot exist (we cannot encode VASS with PDS)

Under-approximate sequentialization [B., Emmi, Parlato, 2011]

Idea:
I Transform thread creation into procedure calls
I Allow some reordering using the idea of bounded interfaces

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs II September 2012 18 / 18

End of Lecture 2:

Finding adequate bounding notions for concurrent programs is an important
issue.

Adequate bounding should allow to lower the complexity of the analysis, and
compositional reductions to sequential analysis.

Source-to-source reduction are important: allow the use of existing tools.

Context-bounding is a interesting concept, but there are others, e.g., delay
bounding [Emmi, Qadeer, Rakamaric, 2011]

Bounding notion for message-passing programs ?

Phase-bounding has been proposed recently [B., Emmi, 2012]

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs II September 2012 19 / 18

End of Lecture 2:

Finding adequate bounding notions for concurrent programs is an important
issue.

Adequate bounding should allow to lower the complexity of the analysis, and
compositional reductions to sequential analysis.

Source-to-source reduction are important: allow the use of existing tools.

Context-bounding is a interesting concept, but there are others, e.g., delay
bounding [Emmi, Qadeer, Rakamaric, 2011]

Bounding notion for message-passing programs ?

Phase-bounding has been proposed recently [B., Emmi, 2012]

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs II September 2012 19 / 18

End of Lecture 2:

Finding adequate bounding notions for concurrent programs is an important
issue.

Adequate bounding should allow to lower the complexity of the analysis, and
compositional reductions to sequential analysis.

Source-to-source reduction are important: allow the use of existing tools.

Context-bounding is a interesting concept, but there are others, e.g., delay
bounding [Emmi, Qadeer, Rakamaric, 2011]

Bounding notion for message-passing programs ?

Phase-bounding has been proposed recently [B., Emmi, 2012]

A. Bouajjani (LIAFA, UP7) Lecture 2: Concurrent Programs II September 2012 19 / 18

