Lecture 4:

Verification of Weak Memory Models
Part 2: Robustness against TSO

Ahmed Bouajjani

LIAFA, University Paris Diderot — Paris 7

Joint work with Roland Meyer, Egor Derevenetc (Univ. Kaiserslautern)
and Eike M&himann (Univ. Oldenburg)

VTSA, MPI-Saarbriicken, September 2012

Dekker's Protocol

Synchronise access of two threads to their critical sections

Dekker’'s mutual exclusion protocol

t1 1 qo > q1 s th:qp— g1 — q2 — CS

Dekker's Protocol

Synchronise access of two threads to their critical sections

Dekker’'s mutual exclusion protocol

» Indicate wish to enter Write own variable x to 1

(W7X71)
t1 1 qo > g1 s th:qp— g1 — q2 — CS

Dekker's Protocol

Synchronise access of two threads to their critical sections

Dekker’'s mutual exclusion protocol

» Indicate wish to enter Write own variable x to 1

» Check no wish from partner Check partner variable

(W7X71) (r7y70)
t1: qo q1 ¢s b:fqp—qr — q2 — CS

Dekker’'s Protocol

Synchronise access of two threads to their critical sections
Dekker’'s mutual exclusion protocol
> Indicate wish to enter Write own variable x to 1

» Check no wish from partner Check partner variable

» Symmetry Second thread behaves similarly

(w,x,1) (r.y,0) (w,y,1) f (rx,0)
t1: qo q1 ¢s b:iqo—>qr—~ q2 —— CS

Dekker's Protocol

Synchronise access of two threads to their critical sections
Dekker’'s mutual exclusion protocol

» Indicate wish to enter Write own variable x to 1
» Check no wish from partner Check partner variable

» Symmetry Second thread behaves similarly

(w,x,1) (r.y,0) (w,y,1) f (rx,0)
t1: qo q1 ¢s b:iqo—>qr—~ q2 —— CS

» What is the semantics of this program?

Dekker’'s Protocol

Synchronise access of two threads to their critical sections
Dekker’'s mutual exclusion protocol
> Indicate wish to enter Write own variable x to 1

» Check no wish from partner Check partner variable

» Symmetry Second thread behaves similarly

(w,x,1) (r.y,0) (w,y,1) f (r,x,0)
t1: qo g1 ¢s f:qo—>q1—~ g2 —— Cs

» What is the semantics of this program?

» Depends on the hardware architecture!

Sequential Consistency Semantics

Sequential Consistency memory model [Lamport 1979]

» Threads directly write to and read from memory

» Programmers often rely on this intuitive behaviour

Sequential Consistency Semantics

Sequential Consistency memory model [Lamport 1979]

» Take view from memory

Sequential Consistency semantics of Dekker's protocol

’»1 770 771 ,,0
fogo g O o g WY, g0 g 9 s

Next: t; writes x to 1
M
x=0
to:qo |y=0

t1 1 qo

Sequential Consistency Semantics

Sequential Consistency memory model [Lamport 1979]

» Take view from memory

(w,x,1)

Sequential Consistency semantics of Dekker’s protocol

(w,x,1) (r.y,0) (w,y,1) f (rx,0)
t1:qo g1 ¢s tiqp ——dq1 —+q2 —— CS

Next: t; reads O from y

t1: g1

tr:qe |y=0

Sequential Consistency Semantics

Sequential Consistency memory model [Lamport 1979]

» Take view from memory

(w,x,1).(r,y,0)

Sequential Consistency semantics of Dekker’s protocol

(w,x,1) (r.y,0) (w,y,1) f (rx,0)
t1:qo q1 ¢s tiqp —dq1 —+q2 —— CS

Next: tp writes y to 1

t1 . cs

tr:qe |y=0

Sequential Consistency Semantics

Sequential Consistency memory model [Lamport 1979]

» Take view from memory

(w,x,1).(r,y,0).(w,y, 1)

Sequential Consistency semantics of Dekker's protocol

(w,x,1) (r.y,0) (w,y,1) f (rx,0)
t1:qo g1 ¢s thiqo—>q1 —~ g2 ——>Cs

Next: t» executes fence f

M

t1: cs

tr:qr |y=1

Sequential Consistency Semantics

Sequential Consistency memory model [Lamport 1979]

» Take view from memory

(w,x,1).(r,y,0).(w,y, 1).f

Sequential Consistency semantics of Dekker's protocol

(w,x,1) (r.y,0) (w,y,1) f (rx,0)
t1:qo g1 ¢s thiqo—>q1 —~ g2 ——>Cs

Next: t» cannot read 0 from x

t1: cs

X
tr:qy |y=1

Sequential Consistency Semantics

Sequential Consistency memory model [Lamport 1979]

» Take view from memory

(w,x,1).(r,y,0).(w,y, 1).f

Sequential Consistency semantics of Dekker’s protocol

’»1 770 ,71 ,,0
(w,x,1) @ (r.y,0) s o (w.y,1) qlng (rx,0) cs

t1:qo

M
X =
b:qx |y=

t1 . cs
Mutual exclusion holds!

—_

Total Store Ordering Semantics

» Buffers reduce latency of memory accesses

Total Store Ordering semantics of Dekker's protocol

(W7X71) (r7.y70)\ (W,y,l) f (r7x70)
q1

t1: qo cs tb:qo ——>q1 — 2 ——> CS

t1 : M

b : y=0

Total Store Ordering Semantics

» Buffers reduce latency of memory accesses

» Total Store Ordering architectures have write buffers

Total Store Ordering semantics of Dekker's protocol

Y 71 9, 70 w7y71 f (r7x70)
D, g D sty qo M gy g 120, s

t1: qo

t1 : M

b : y=0

Total Store Ordering Semantics

Total Store Ordering semantics of Dekker's protocol

(W7X71) (rv}/70) (W’y’l) f (I’,X,O)
t1: qo g1 cs tb:qo ——q1 — g2 —— Cs

Next: t; writes (w,x,1) to its buffer

t1:qo M
x=0
tr 1 qo y=0

Total Store Ordering Semantics

Total Store Ordering semantics of Dekker's protocol

(w,x,1) (r.y,0) (w,y,1) f (rx,0)
t1:qo q1 cs tr:qo —>q1 — g2 —— Cs

Next: tp writes (w,y, 1) to its buffer

th:q1 (W,X,l) M
x=0
to : qo y=0

Total Store Ordering Semantics

» Reads prefetch last value written to x from buffer

Total Store Ordering semantics of Dekker's protocol

(w,x,1) (r,y,0) (w,y,1) f (r,x,0)
t1 : qo q1 cs tb:qo ——q1 — g2 —— Cs

Next: t; fails to read (r,y,0) from its buffer

t1:qr (w,x,1)| M

T x=0

tigr (w,y 1))y =0

Total Store Ordering Semantics

> Reads prefetch last value written to x from buffer, if exists
(r.y,0)

Total Store Ordering semantics of Dekker's protocol

(w,x,1) (r.y,0) (w,y,1) (rx,0)
a1

f r7x7
t1: qo cs tbh:qo ——q1 —+> g2 —— CS

Next: t; reads (r,y,0) from memory

t1:qn (w,x,1)| M
I
gy (w,y,1)

0
0

X
N
y

Total Store Ordering Semantics

» Reads prefetch last value written to x from buffer, if exists

» Fences forbid prefetches
(r,y,0)

Total Store Ordering semantics of Dekker's protocol

771 770 7,1 ,,0
(w,x,1) @ (ry0), t: qo (w,y,1) Q1L>Q2 (rx0), s

t1 1 qo

Next: t» cannot execute fence f while buffer not empty

tt:es (w,x,1)| M
x=0
t:qr (w,y,1)|y=0

Total Store Ordering Semantics

> Reads prefetch last value written to x from buffer, if exists

» Fences forbid prefetches
(r,y,0)

Total Store Ordering semantics of Dekker's protocol

771 770 ?71 770
(WX)ql (ry)/CS tQZQQMqlqu—(Li—)—)CS

t1 1 qo

Next: memory updates (w,y, 1) from buffer of t,

tir:cs (w,x,1)| M
x=0
t:qr (w,y,1)|y=0

Total Store Ordering Semantics

» Reads prefetch last value written to x from buffer, if exists

» Fences forbid prefetches
(r’ y? 0) '(w7 y? 1)

Total Store Ordering semantics of Dekker's protocol

(w,x,1) (r.y,0) (w,y,1) f (r,x,0)
e q1 P es tr:qo ——q1 — g2 —— Cs

t1 1 qo

Next: t» executes fence f

tt:es (w,x,1)| M

X =
tr:qy y=1

Total Store Ordering Semantics

> Reads prefetch last value written to x from buffer, if exists

» Fences forbid prefetches
(r,y,0).(w,y,1).f

Total Store Ordering semantics of Dekker's protocol

(w,x,1) (r.y,0) (w,y,1) f (r,x,0)
t1 1 qo q1 cs tr:qop ——>q1 — g —— Cs

Next: to reads (r,x,0) from memory

tr:cs (w,x,1)| M

[3 ¢) y=1

Total Store Ordering Semantics

> Reads prefetch last value written to x from buffer, if exists

» Fences forbid prefetches
(r,y,0).(w,y,1).f.(r,x,0)

Total Store Ordering semantics of Dekker's protocol

(w,x,1) (r.y,0) (w,y,1) f (r,x,0)
t1 1 qo q1 cs tr:qo ——>q1 — g2 —— Cs

Next: memory updates (w, x, 1) from buffer of t;

tr:cs (w,x,1)| M

ty: cs y=1

Total Store Ordering Semantics

> Reads prefetch last value written to x from buffer, if exists
» Fences forbid prefetches
(r,y,0).(w,y,1).f.(r,x,0).(w,x,1)

Total Store Ordering semantics of Dekker's protocol

(w,x,1) (r.y,0) (w,y,1) f (rx,0)
t1 1 qo q1 > CS tb:qo ——q1 — g2 —— Cs

t1:cs M

X
tr : Cs y=1

Total Store Ordering Semantics

» Memory sees actions out of program order

-
(r,y,0) (w,y,1).f.(r,x,0).(w,x,1)

Total Store Ordering semantics of Dekker's protocol

(w,x,1) (r.y,0) (w.y,1) f (rx,0)
a1

t1: qo cs th:qo ——> g1 —~> 2 — CS

t1:cs M
x=1 Mutual exclusion fails!
tr:cs y=1

Robustness against TSO

[Burckhardt, Musuvathi, 2008], [Owens, 2010], [Alglave, Maranget, 2011]

» TSO semantics should not introduce new visible behaviors

Robustness against TSO

[Burckhardt, Musuvathi, 2008], [Owens, 2010], [Alglave, Maranget, 2011]

» TSO semantics should not introduce new visible behaviors

» What does it means precisely ?

Robustness against TSO

[Burckhardt, Musuvathi, 2008], [Owens, 2010], [Alglave, Maranget, 2011]

» TSO semantics should not introduce new visible behaviors
» What does it means precisely ?

» State-Robustness:
TSO- and SC-reachable states are the same.

Robustness against TSO

[Burckhardt, Musuvathi, 2008], [Owens, 2010], [Alglave, Maranget, 2011]
» TSO semantics should not introduce new visible behaviors
» What does it means precisely ?
» State-Robustness:

TSO- and SC-reachable states are the same.

» Reducible to state reachability: decidable but highly complex!

Robustness against TSO

[Burckhardt, Musuvathi, 2008], [Owens, 2010], [Alglave, Maranget, 2011]

» TSO semantics should not introduce new visible behaviors
» What does it means precisely ?

State-Robustness:
TSO- and SC-reachable states are the same.

v

v

Reducible to state reachability: decidable but highly complex!

Trace-Robustness:
Preservation of the traces [Shasha, Snir, 88]

v

Robustness against TSO

[Burckhardt, Musuvathi, 2008], [Owens, 2010], [Alglave, Maranget, 2011]

>

>

>

TSO semantics should not introduce new visible behaviors
What does it means precisely ?

State-Robustness:
TSO- and SC-reachable states are the same.

Reducible to state reachability: decidable but highly complex!

Trace-Robustness:
Preservation of the traces [Shasha, Snir, 88]

Checking trace-robustness is less costly than checking
state-robustness!

Traces

Given a computation 7, consider:

» Program order —p,: Order of actions issued by one thread.

v

Store order —g¢: Order of writes to a same variable
(by different threads).

Source relation —grc: write is source of load.

v

v

The trace T(7) is defined by the union of =55, —>st, —vsrc-

Traces
Given a computation 7, consider:
» Program order —p,: Order of actions issued by one thread.

» Store order —g¢: Order of writes to a same variable
(by different threads).

» Source relation —gre: write is source of load.
» The trace T(r) is defined by the union of =55, —>st, —vsrc-

» Given a memory model M, and program P, Try(P) is the set
of all traces associated with computations of P under M.

» Robustness problem against TSO: Trrso(P) = Trsc(P)?

Traces
Given a computation 7, consider:
» Program order —p,: Order of actions issued by one thread.

» Store order —g¢: Order of writes to a same variable
(by different threads).

» Source relation —gre: write is source of load.
» The trace T(r) is defined by the union of =55, —>st, —vsrc-

» Given a memory model M, and program P, Try(P) is the set
of all traces associated with computations of P under M.

» Robustness problem against TSO: Trrso(P) = Trsc(P)?
» Conflict relation —¢¢: load can be altered by write.

» Happen-Before relation —yp: union of all relations above.

Traces
Given a computation 7, consider:
» Program order —p,: Order of actions issued by one thread.

» Store order —g¢: Order of writes to a same variable
(by different threads).

» Source relation —gre: write is source of load.
» The trace T(r) is defined by the union of =55, —>st, —vsrc-

» Given a memory model M, and program P, Try(P) is the set
of all traces associated with computations of P under M.

» Robustness problem against TSO: Trrso(P) = Trsc(P)?
» Conflict relation —¢¢: load can be altered by write.
» Happen-Before relation —yp: union of all relations above.
» Thm [SS88|:

T(7) € Trsc(P) if and only if =y is acyclic.

Example

Dekker's protocol

T(7) (w,x,1) (w,y, 1)
(r.y.0) DQ f
(r,x,0)

Example

Dekker's protocol

T(7) (w,x,1) (w,y, 1)
(r.y.0) DQ f
(r,x,0)

Dekker's protocol is not robust, 7 is a violation

Deciding Robustness

Shasha and Snir do not give an algorithm to find cyclic traces !

Deciding Robustness

Shasha and Snir do not give an algorithm to find cyclic traces !

Contribution: An Algorithm for Checking Trace-Robustness

Deciding Robustness

Shasha and Snir do not give an algorithm to find cyclic traces !

Contribution: An Algorithm for Checking Trace-Robustness

» Reduce to SC reachability in instrumented programs

Deciding Robustness

Shasha and Snir do not give an algorithm to find cyclic traces !

Contribution: An Algorithm for Checking Trace-Robustness
» Reduce to SC reachability in instrumented programs

» Source-to-source translation with linear overhead

Deciding Robustness

Shasha and Snir do not give an algorithm to find cyclic traces !

Contribution: An Algorithm for Checking Trace-Robustness
» Reduce to SC reachability in instrumented programs
» Source-to-source translation with linear overhead

» Quadratic number of reachability queries

Deciding Robustness

Shasha and Snir do not give an algorithm to find cyclic traces !

Contribution: An Algorithm for Checking Trace-Robustness

v

Reduce to SC reachability in instrumented programs

v

Source-to-source translation with linear overhead

v

Quadratic number of reachability queries

v

Works for unbounded buffers and arbitrarily many threads

Deciding Robustness

Shasha and Snir do not give an algorithm to find cyclic traces !

Contribution: An Algorithm for Checking Trace-Robustness
» Reduce to SC reachability in instrumented programs
» Source-to-source translation with linear overhead
» Quadratic number of reachability queries
» Works for unbounded buffers and arbitrarily many threads
» P/EXP-SPACE-complete

Roadmap

» Locality of robustness — only one thread uses buffers
> Robustness iff no attacks
» Find attacks with SC(!) reachability

Roadmap

» Locality of robustness — only one thread uses buffers
» Robustness iff no attacks
» Find attacks with SC(!) reachability

Minimal Violations

Goal

Show that we can restrict ourselves to

violations where only one thread reorders its actions

Minimal Violations

TSO computations from rewriting
Reorder (w,x,1).(r,y,0) ~ve (r,y,0).(w,x,1)
Prefetch (w,x,v).(r,x,v) npr (W, x, V)

Minimal Violations

TSO computations from rewriting
Reorder (w,x,1).(r,y,0) ~ve (r,y,0).(w,x,1)
Prefetch (w,x,v).(r,x,v) npr (W, x, V)

Minimal violations
Intuition: violations as close to SC as possible

Minimal Violations

TSO computations from rewriting

Reorder (w,x,1).(r,y,0) ~ve (r,y,0).(w,x,1)
Prefetch (w,x,v).(r,x,v) npr (W, x, V)
Minimal violations

Intuition: violations as close to SC as possible

» #(7) = number of rewritings to derive T

Minimal Violations

TSO computations from rewriting
Reorder (w,x,1).(r,y,0) ~ve (r,y,0).(w,x,1)
Prefetch (w,x,v).(r,x,v) npr (W, x, V)
Minimal violations
Intuition: violations as close to SC as possible

» #(7) = number of rewritings to derive 7

» violation 7 minimal if there is no violation 7/ with

#(r') < #(7)

Minimal Violations

TSO computations from rewriting
Reorder (w,x,1).(r,y,0) ~ve (r,y,0).(w,x,1)
Prefetch (w,x,v).(r,x,v) npr (W, x, V)
Minimal violations
Intuition: violations as close to SC as possible
» #(7) = number of rewritings to derive T
» violation 7 minimal if there is no violation 7" with

#(r') < #(7)

Minimal violations have good properties!

Helpful Lemma for Minimal Violations

Lemma
Consider minimal violation «.b.3.a.y where b has overtaken a

Helpful Lemma for Minimal Violations

Lemma
Consider minimal violation «.b.3.a.y where b has overtaken a
Then b and a have —p, path through 3:

Helpful Lemma for Minimal Violations

Lemma
Consider minimal violation o..b.3.a.y where b has overtaken a
Then b and a have —p, path through 3: subword by ... by with

b; “src/st/cf bit1 or bj _>;_ bit1

Helpful Lemma for Minimal Violations

Lemma

Consider minimal violation «.b.3.a.y where b has overtaken a
Then b and a have —p, path through (:

b; “src/st/cf bit1 or bj _>;_ bit1

Example (Computation in Dekker's protocol is minimal)

(r,y,0).(w,y,1).f.(r,x,0).(w, x, 1)

-~

—hb

Locality of Robustness

Theorem (Locality of Robustness)

In a minimal violation, only a single thread uses rewriting

Locality of Robustness

Theorem (Locality of Robustness)

In a minimal violation, only a single thread uses rewriting

Proof sketch
Pick last writes that are overtaken in two threads t; and t;:

Locality of Robustness

Theorem (Locality of Robustness)
In a minimal violation, only a single thread uses rewriting

Proof sketch

Pick last writes that are overtaken in two threads t; and t;:
Case 1: no interference

RS O~
1 Wi ri wi

Locality of Robustness

Theorem (Locality of Robustness)
In a minimal violation, only a single thread uses rewriting

Proof sketch

Pick last writes that are overtaken in two threads t; and t;:
Case 1: no interference

O~ O~
I Wj ri Wi

Lemma: happens before cycle r; —, w; —

p 1

Locality of Robustness

Theorem (Locality of Robustness)

In a minimal violation, only a single thread uses rewriting

Proof sketch
Pick last writes that are overtaken in two threads t; and t;:
Case 1: no interference

S T

j Wj i Wi

Lemma: happens before cycle rj =, wj —} r;

Read r; not involved, delete everything from r; on

Locality of Robustness

Theorem (Locality of Robustness)
In a minimal violation, only a single thread uses rewriting
Proof sketch

Pick last writes that are overtaken in two threads t; and t;:
Case 1: no interference

fj Wj Wi
Lemma: happens before cycle rj =, wj —} rj
Read r; not involved, delete everything from r; on
Saves a reordering, contradiction to minimality

Locality of Robustness

Theorem (Locality of Robustness)
In a minimal violation, only a single thread uses rewriting

Proof sketch

Pick last writes that are overtaken in two threads t; and t;:
Case 2: overlap

Locality of Robustness

Theorem (Locality of Robustness)
In a minimal violation, only a single thread uses rewriting

Proof sketch

Pick last writes that are overtaken in two threads t; and t;:
Case 2: overlap

ri rj wj Wi

Argumentation similar, delete again r;

Locality of Robustness

Theorem (Locality of Robustness)
In a minimal violation, only a single thread uses rewriting
Proof sketch

Pick last writes that are overtaken in two threads t; and t;:
Case 3: interference

Locality of Robustness

Theorem (Locality of Robustness)
In a minimal violation, only a single thread uses rewriting

Proof sketch

Pick last writes that are overtaken in two threads t; and t;:
Case 3: interference

] ri wj w;i

: +
Lemma: happens before cycle r; —,, wj =

pli

Locality of Robustness

Theorem (Locality of Robustness)

In a minimal violation, only a single thread uses rewriting
Proof sketch

Pick last writes that are overtaken in two threads t; and t;:
Case 3: interference

] ri wj w;i

: +
Lemma: happens before cycle r; —,, wj =

r
p i
Only thread t; may contribute, delete rest

Locality of Robustness

Theorem (Locality of Robustness)

In a minimal violation, only a single thread uses rewriting

Proof sketch
Pick last writes that are overtaken in two threads t; and t;:
Case 3: interference

Tt

Lemma: happens before cycle r; —>ﬁb wj —>,J;
Only thread t; may contribute, delete rest

Lemma: happens before cycle r; —>;fb w; —>;

rj

ri

Locality of Robustness

Theorem (Locality of Robustness)

In a minimal violation, only a single thread uses rewriting

Proof sketch
Pick last writes that are overtaken in two threads t; and t;:
Case 3: interference

Tt

Lemma: happens before cycle r; —>71“b wj —>;§
Only thread t; may contribute, delete rest

Lemma: happens before cycle r; —/, w; —
Read r; not on this cycle, delete it, contradiction

rj

ri

Roadmap

» Locality of robustness — only one thread uses buffers
» Robustness iff no attacks
» Find attacks with SC(!) reachability

Characterization of Robustness via Attacks

Goal

Reformulate Robustness in terms of a simpler problem:

absence of feasible attacks

Characterization of Robustness via Attacks

Observation
If Prog not robust, there are these violation:

Attacker The thread that reorders reads: only 1 by locality

Characterization of Robustness via Attacks

Observation
If Prog not robust, there are these violation:

Attacker The thread that reorders reads: only 1 by locality

- : + +
Helpers Remaining threads close cycle: r —,, ww — ' r

Characterization of Robustness via Attacks

Observation
If Prog not robust, there are these violation:

Attacker The thread that reorders reads: only 1 by locality

Helpers Remaining threads close cycle: r —>;rb w w —>,§ r

Example (Violation in Dekker’s protocol)

(r,y,0).(w,y,1).f.(r,x,0).(w, x, 1)

—hb

Characterization of Robustness via Attacks

Observation
If Prog not robust, there are these violation:

Attacker The thread that reorders reads: only 1 by locality

s . +
Helpers Remaining threads close cycle: r —;, w w —>;§ r

Intuition
Two data races r, first(/3) and last(3),w

Characterization of Robustness via Attacks

Idea

» Fix thread, write instruction, read instruction

> Given these parameters, find a violation as above

Characterization of Robustness via Attacks

Idea

» Fix thread, write instruction, read instruction

> Given these parameters, find a violation as above

Definition (Attack)

An attack is a triple A = (thread, write, read).
A TSO witness for attack A is a computation as above:

Characterization of Robustness via Attacks

Idea

» Fix thread, write instruction, read instruction

> Given these parameters, find a violation as above

Definition (Attack)

An attack is a triple A = (thread, write, read).
A TSO witness for attack A is a computation as above:

o p B w

Theorem (Complete Characterization of Robustness)
Program Prog is robust if and only if no attack has a TSO witness.

Characterization of Robustness via Attacks

Idea

» Fix thread, write instruction, read instruction

> Given these parameters, find a violation as above

Definition (Attack)

An attack is a triple A = (thread, write, read).
A TSO witness for attack A is a computation as above:

o p B w

Theorem (Complete Characterization of Robustness)

Program Prog is robust if and only if no attack has a TSO witness.
The number of attacks is quadratic in the size of Prog.

Roadmap

» Locality of robustness — only one thread uses buffers
> Robustness iff no attacks
» Find attacks with SC(!) reachability

Finding TSO witnesses with SC reachability

Fix an attack A = (thread, write, read)
Goal

TSO witnesses for A considerably restrict reorderings,

enough to find TSO witnesses with SC reachability

Finding TSO witnesses with SC reachability

Idea
Turn TSO witness into an SC computation:

Finding TSO witnesses with SC reachability

Idea
Turn TSO witness into an SC computation:

Finding TSO witnesses with SC reachability

ldea
Turn TSO witness into an SC computation:

Let attacker execute under SC
Problem Writes may conflict with helper reads

Finding TSO witnesses with SC reachability

Idea
Turn TSO witness into an SC computation:

Let attacker execute under SC
Problem Writes may conflict with helper reads
Solution Hide them from other threads

Wigc - r
« PLIWoc ﬁ

Finding TSO witnesses with SC reachability

Instrumentation

Wioc - r
«Q P L Wioc I5)

SC computation € Progy that is instrumented for attack A

Finding TSO witnesses with SC reachability

Instrumentation

Wioc - r
«Q P L Wioc I5}

SC computation € Proga that is instrumented for attack A

» Attacker:

» Hide delayed writes

» Check that reads can move:
no fences, reads and prefetches have correct values
Only need the last written value on each variable

» Helpers: check their actions form a happen-before path

» Size of Progy is linear in size of Prog.

Finding TSO witnesses with SC reachability

Instrumentation

Wioc - r
«Q P L Wioc I5}

SC computation € Proga that is instrumented for attack A

» Attacker:

» Hide delayed writes

» Check that reads can move:
no fences, reads and prefetches have correct values
Only need the last written value on each variable

» Helpers: check their actions form a happen-before path

» Size of Progy is linear in size of Prog.

Theorem (Soundness and Completeness)
Attack A has a TSO witness iff Proga reaches goal state under SC.

End of Lecture 4:

» Locality: focus on reorderings of one thread.
» Check existence of feasible attacks.

> Attacks can be found with SC reachability, in parallel.

End of Lecture 4:

» Locality: focus on reorderings of one thread.

Check existence of feasible attacks.

v

v

Attacks can be found with SC reachability, in parallel.

v

Trace-robustness is as complex as SC reachability.

v

Holds for programs with parametric number of threads.

End of Lecture 4:

» Locality: focus on reorderings of one thread.

» Check existence of feasible attacks.

> Attacks can be found with SC reachability, in parallel.
» Trace-robustness is as complex as SC reachability.

» Holds for programs with parametric number of threads.

» Can be used for fence insertion: Compute a set of fence
locations that is irreducible, and of minimal size.

End of Lecture 4:

» Locality: focus on reorderings of one thread.

» Check existence of feasible attacks.

> Attacks can be found with SC reachability, in parallel.
» Trace-robustness is as complex as SC reachability.

» Holds for programs with parametric number of threads.

» Can be used for fence insertion: Compute a set of fence
locations that is irreducible, and of minimal size.

» Implementation using SPIN. (Prototype tool: TRENCHER.)

» Experiments: Mutex protocols, lock-free stack, work stealing
queue, non-blocking write protocol, etc. Reachability queries
are solved in few seconds.

End of Lecture 4:

» Locality: focus on reorderings of one thread.

» Check existence of feasible attacks.

> Attacks can be found with SC reachability, in parallel.
» Trace-robustness is as complex as SC reachability.

» Holds for programs with parametric number of threads.

» Can be used for fence insertion: Compute a set of fence
locations that is irreducible, and of minimal size.
» Implementation using SPIN. (Prototype tool: TRENCHER.)

» Experiments: Mutex protocols, lock-free stack, work stealing
queue, non-blocking write protocol, etc. Reachability queries
are solved in few seconds.

» Can be extended to NSW. What about Power, ARM?

Q>

The Programming Model: Assembler

(prog) := prog (pid) (thread)*

(thrd) = thread (tid) regs (reg)* init (label) begin (linst)* end
(linst) := (label): (inst); goto (label)

(inst) = (reg) <— mem[(expr)] | mem[({expr)] < (expr) | mfence

| (reg) < (expr) | if (expr)
(expr) = (fun)((reg)*)

Experiments

Spin as backend model checker
[Prog. [T] L] ITPATIAL]IA2]FATF [Spin |

PetNR 2|14 |18 23 2] 12 9|2 0.7
PetR 2116 | 20 12] 12 0| 00 0.0
DekNR 2124130119 | 15| 33| 71| 4 35
DekR 213238 30| 30 0| 00 0.0
LamNR 313336 36 9] 15| 12| 6 11
LamR 313942 27| 27 0| 00 0.0
LFSR 4|46 | 50 14| 14 0| 0} O 0.0
CLHLock || 7 | 62 | 58 54 | 48 6| 00 0.4
MCSLock || 4 | 52 | 50 30| 26 41 00 0.2
NBW5 312522 9 7 2|1 00 0.1
ParNR 21 9| 8 2 0 1 11 0.1
ParR 2110 9 2 2 0| 00 0.0
WsSQ 5|86 | 78| 147|137 | 10| 0 O 0.7

