Lecture 4:

Verification of Weak Memory Models
Part 2: Robustness against TSO

Ahmed Bouajjani

LIAFA, University Paris Diderot — Paris 7

Joint work with Roland Meyer, Egor Derevenetc (Univ. Kaiserslautern)
and Eike M&himann (Univ. Oldenburg)

VTSA, MPI-Saarbriicken, September 2012



Dekker's Protocol

Synchronise access of two threads to their critical sections

Dekker’'s mutual exclusion protocol

t1 1 qo > q1 s th:qp— g1 — q2 — CS



Dekker's Protocol

Synchronise access of two threads to their critical sections

Dekker’'s mutual exclusion protocol

» Indicate wish to enter Write own variable x to 1

(W7X71)
t1 1 qo > g1 s th:qp— g1 — q2 — CS




Dekker's Protocol

Synchronise access of two threads to their critical sections

Dekker’'s mutual exclusion protocol

» Indicate wish to enter Write own variable x to 1

» Check no wish from partner Check partner variable

(W7X71) (r7y70)
t1: qo q1 ¢s b:fqp—qr — q2 — CS




Dekker’'s Protocol

Synchronise access of two threads to their critical sections
Dekker’'s mutual exclusion protocol
> Indicate wish to enter Write own variable x to 1

» Check no wish from partner Check partner variable

» Symmetry Second thread behaves similarly

(w,x,1) (r.y,0) (w,y,1) f (rx,0)
t1: qo q1 ¢s b:iqo—>qr—~ q2 —— CS




Dekker's Protocol

Synchronise access of two threads to their critical sections
Dekker’'s mutual exclusion protocol

» Indicate wish to enter Write own variable x to 1
» Check no wish from partner Check partner variable

» Symmetry Second thread behaves similarly

(w,x,1) (r.y,0) (w,y,1) f (rx,0)
t1: qo q1 ¢s b:iqo—>qr—~ q2 —— CS

» What is the semantics of this program?



Dekker’'s Protocol

Synchronise access of two threads to their critical sections
Dekker’'s mutual exclusion protocol
> Indicate wish to enter Write own variable x to 1

» Check no wish from partner Check partner variable

» Symmetry Second thread behaves similarly

(w,x,1) (r.y,0) (w,y,1) f (r,x,0)
t1: qo g1 ¢s f:qo—>q1—~ g2 —— Cs

» What is the semantics of this program?

» Depends on the hardware architecture!



Sequential Consistency Semantics

Sequential Consistency memory model [Lamport 1979]

» Threads directly write to and read from memory

» Programmers often rely on this intuitive behaviour
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Sequential Consistency memory model [Lamport 1979]
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Sequential Consistency memory model [Lamport 1979]

» Take view from memory

(w,x,1).(r,y,0).(w,y, 1).f

Sequential Consistency semantics of Dekker's protocol

(w,x,1) (r.y,0) (w,y,1) f (rx,0)
t1:qo g1 ¢s thiqo—>q1 —~ g2 ——>Cs

Next: t» cannot read 0 from x

t1: cs

X
tr:qy |y=1




Sequential Consistency Semantics

Sequential Consistency memory model [Lamport 1979]

» Take view from memory

(w,x,1).(r,y,0).(w,y, 1).f

Sequential Consistency semantics of Dekker’s protocol
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t1:qo

M
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t1 . cs
Mutual exclusion holds!
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Total Store Ordering Semantics

» Buffers reduce latency of memory accesses

Total Store Ordering semantics of Dekker's protocol
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Total Store Ordering Semantics

» Buffers reduce latency of memory accesses

» Total Store Ordering architectures have write buffers

Total Store Ordering semantics of Dekker's protocol
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Total Store Ordering semantics of Dekker's protocol
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Total Store Ordering Semantics

» Reads prefetch last value written to x from buffer

Total Store Ordering semantics of Dekker's protocol

(w,x,1) (r,y,0) (w,y,1) f (r,x,0)
t1 : qo q1 cs tb:qo ——q1 — g2 —— Cs

Next: t; fails to read (r,y,0) from its buffer
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Total Store Ordering Semantics

> Reads prefetch last value written to x from buffer, if exists
(r.y,0)

Total Store Ordering semantics of Dekker's protocol

(w,x,1) (r.y,0) (w,y,1) (rx,0)
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Next: t; reads (r,y,0) from memory
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Total Store Ordering Semantics

» Reads prefetch last value written to x from buffer, if exists

» Fences forbid prefetches
(r,y,0)

Total Store Ordering semantics of Dekker's protocol
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Total Store Ordering Semantics

» Reads prefetch last value written to x from buffer, if exists

» Fences forbid prefetches
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(w,x,1) (r.y,0) (w,y,1) f (r,x,0)
e q1 P es tr:qo ——q1 — g2 —— Cs

t1 1 qo

Next: t» executes fence f

tt:es  (w,x,1)| M

X =
tr:qy y=1




Total Store Ordering Semantics

> Reads prefetch last value written to x from buffer, if exists
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(r,y,0).(w,y,1).f
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Total Store Ordering Semantics

> Reads prefetch last value written to x from buffer, if exists

» Fences forbid prefetches
(r,y,0).(w,y,1).f.(r,x,0)

Total Store Ordering semantics of Dekker's protocol
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Total Store Ordering Semantics

> Reads prefetch last value written to x from buffer, if exists
» Fences forbid prefetches
(r,y,0).(w,y,1).f.(r,x,0).(w,x,1)

Total Store Ordering semantics of Dekker's protocol

(w,x,1) (r.y,0) (w,y,1) f (rx,0)
t1 1 qo q1 > CS tb:qo ——q1 — g2 —— Cs
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Total Store Ordering Semantics

» Memory sees actions out of program order

-
(r,y,0) (w,y,1).f.(r,x,0).(w,x,1)

Total Store Ordering semantics of Dekker's protocol

(w,x,1) (r.y,0) (w.y,1) f (rx,0)
a1

t1: qo cs th:qo ——> g1 —~> 2 — CS

t1:cs M
x=1 Mutual exclusion fails!
tr:cs y=1
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Robustness against TSO

[Burckhardt, Musuvathi, 2008], [Owens, 2010], [Alglave, Maranget, 2011]

>

>

>

TSO semantics should not introduce new visible behaviors
What does it means precisely ?

State-Robustness:
TSO- and SC-reachable states are the same.

Reducible to state reachability: decidable but highly complex!

Trace-Robustness:
Preservation of the traces [Shasha, Snir, 88]

Checking trace-robustness is less costly than checking
state-robustness!
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Traces
Given a computation 7, consider:
» Program order —p,: Order of actions issued by one thread.

» Store order —g¢: Order of writes to a same variable
(by different threads).

» Source relation —gre: write is source of load.
» The trace T(r) is defined by the union of =55, —>st, —vsrc-

» Given a memory model M, and program P, Try(P) is the set
of all traces associated with computations of P under M.

» Robustness problem against TSO: Trrso(P) = Trsc(P)?
» Conflict relation —¢¢: load can be altered by write.
» Happen-Before relation —yp: union of all relations above.
» Thm [SS88|:

T(7) € Trsc(P) if and only if =y is acyclic.
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Example

Dekker's protocol

T(7) (w,x,1) (w,y, 1)
(r.y.0) DQ f
(r,x,0)

Dekker's protocol is not robust, 7 is a violation
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Deciding Robustness

Shasha and Snir do not give an algorithm to find cyclic traces !

Contribution: An Algorithm for Checking Trace-Robustness
» Reduce to SC reachability in instrumented programs
» Source-to-source translation with linear overhead
» Quadratic number of reachability queries
» Works for unbounded buffers and arbitrarily many threads
» P/EXP-SPACE-complete
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Minimal Violations

Goal

Show that we can restrict ourselves to

violations where only one thread reorders its actions
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Minimal Violations

TSO computations from rewriting
Reorder (w,x,1).(r,y,0) ~ve (r,y,0).(w,x,1)
Prefetch (w,x,v).(r,x,v) npr (W, x, V)
Minimal violations
Intuition: violations as close to SC as possible
» #(7) = number of rewritings to derive T
» violation 7 minimal if there is no violation 7" with

#(r') < #(7)

Minimal violations have good properties!
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Helpful Lemma for Minimal Violations

Lemma

Consider minimal violation «.b.3.a.y where b has overtaken a
Then b and a have —p, path through (:

b; “src/st/cf bit1 or bj _>;_ bit1

Example (Computation in Dekker's protocol is minimal)

(r,y,0).(w,y,1).f.(r,x,0).(w, x, 1)

-~

—hb
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Theorem (Locality of Robustness)
In a minimal violation, only a single thread uses rewriting

Proof sketch

Pick last writes that are overtaken in two threads t; and t;:
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Locality of Robustness

Theorem (Locality of Robustness)
In a minimal violation, only a single thread uses rewriting
Proof sketch

Pick last writes that are overtaken in two threads t; and t;:
Case 1: no interference

fj Wj Wi
Lemma: happens before cycle rj =, wj —} rj
Read r; not involved, delete everything from r; on
Saves a reordering, contradiction to minimality
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Theorem (Locality of Robustness)
In a minimal violation, only a single thread uses rewriting

Proof sketch

Pick last writes that are overtaken in two threads t; and t;:
Case 2: overlap

ri rj wj Wi

Argumentation similar, delete again r;
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Theorem (Locality of Robustness)
In a minimal violation, only a single thread uses rewriting

Proof sketch

Pick last writes that are overtaken in two threads t; and t;:
Case 3: interference
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Theorem (Locality of Robustness)

In a minimal violation, only a single thread uses rewriting
Proof sketch

Pick last writes that are overtaken in two threads t; and t;:
Case 3: interference
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Locality of Robustness

Theorem (Locality of Robustness)

In a minimal violation, only a single thread uses rewriting

Proof sketch
Pick last writes that are overtaken in two threads t; and t;:
Case 3: interference

Tt

Lemma: happens before cycle r; —>ﬁb wj —>,J;
Only thread t; may contribute, delete rest

Lemma: happens before cycle r; —>;fb w; —>;

rj

ri



Locality of Robustness

Theorem (Locality of Robustness)

In a minimal violation, only a single thread uses rewriting

Proof sketch
Pick last writes that are overtaken in two threads t; and t;:
Case 3: interference

Tt

Lemma: happens before cycle r; —>71“b wj —>;§
Only thread t; may contribute, delete rest

Lemma: happens before cycle r; —/, w; —
Read r; not on this cycle, delete it, contradiction

rj

ri



Roadmap

» Locality of robustness — only one thread uses buffers
» Robustness iff no attacks
» Find attacks with SC(!) reachability



Characterization of Robustness via Attacks

Goal

Reformulate Robustness in terms of a simpler problem:

absence of feasible attacks
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Characterization of Robustness via Attacks

Observation
If Prog not robust, there are these violation:

Attacker The thread that reorders reads: only 1 by locality

Helpers Remaining threads close cycle: r —>;rb w w —>,§ r

Example (Violation in Dekker’s protocol)

(r,y,0).(w,y,1).f.(r,x,0).(w, x, 1)

—hb




Characterization of Robustness via Attacks

Observation
If Prog not robust, there are these violation:

Attacker The thread that reorders reads: only 1 by locality

s . +
Helpers Remaining threads close cycle: r —;, w w —>;§ r

Intuition
Two data races r, first(/3) and last(3),w
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Characterization of Robustness via Attacks

Idea

» Fix thread, write instruction, read instruction

> Given these parameters, find a violation as above

Definition (Attack)

An attack is a triple A = (thread, write, read).
A TSO witness for attack A is a computation as above:

o p B w

Theorem (Complete Characterization of Robustness)

Program Prog is robust if and only if no attack has a TSO witness.
The number of attacks is quadratic in the size of Prog.



Roadmap

» Locality of robustness — only one thread uses buffers
> Robustness iff no attacks
» Find attacks with SC(!) reachability



Finding TSO witnesses with SC reachability

Fix an attack A = (thread, write, read)
Goal

TSO witnesses for A considerably restrict reorderings,

enough to find TSO witnesses with SC reachability
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Finding TSO witnesses with SC reachability

Idea
Turn TSO witness into an SC computation:

Let attacker execute under SC
Problem Writes may conflict with helper reads
Solution Hide them from other threads
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Instrumentation
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SC computation € Proga that is instrumented for attack A

» Attacker:

» Hide delayed writes

» Check that reads can move:
no fences, reads and prefetches have correct values
Only need the last written value on each variable

» Helpers: check their actions form a happen-before path

» Size of Progy is linear in size of Prog.

Theorem (Soundness and Completeness)
Attack A has a TSO witness iff Proga reaches goal state under SC.
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» Check existence of feasible attacks.

> Attacks can be found with SC reachability, in parallel.
» Trace-robustness is as complex as SC reachability.

» Holds for programs with parametric number of threads.

» Can be used for fence insertion: Compute a set of fence
locations that is irreducible, and of minimal size.
» Implementation using SPIN. (Prototype tool: TRENCHER.)

» Experiments: Mutex protocols, lock-free stack, work stealing
queue, non-blocking write protocol, etc. Reachability queries
are solved in few seconds.

» Can be extended to NSW. What about Power, ARM?
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The Programming Model: Assembler

(prog) := prog (pid) (thread)*

(thrd) = thread (tid) regs (reg)* init (label) begin (linst)* end
(linst) := (label): (inst); goto (label)

(inst) = (reg) <— mem[(expr)] | mem[({expr)] < (expr) | mfence

| (reg) < (expr) | if (expr)
(expr) = (fun)((reg)*)



Experiments

Spin as backend model checker
[ Prog. [T] L] ITPATIAL]IA2]FATF [ Spin |

PetNR 2|14 |18 23 2] 12 9|2 0.7
PetR 2116 | 20 12 ] 12 0| 00 0.0
DekNR 2124130119 | 15| 33| 71| 4 35
DekR 213238 30| 30 0| 00 0.0
LamNR 313336 36 9] 15| 12| 6 11
LamR 313942 27| 27 0| 00 0.0
LFSR 4|46 | 50 14| 14 0| 0} O 0.0
CLHLock || 7 | 62 | 58 54 | 48 6| 00 0.4
MCSLock || 4 | 52 | 50 30| 26 41 00 0.2
NBW5 312522 9 7 2|1 00 0.1
ParNR 21 9| 8 2 0 1 11 0.1
ParR 2110 9 2 2 0| 00 0.0
WsSQ 5|86 | 78| 147|137 | 10| 0 O 0.7




