
Lecture 4:

Verification of Weak Memory Models
Part 2: Robustness against TSO

Ahmed Bouajjani

LIAFA, University Paris Diderot – Paris 7

Joint work with Roland Meyer, Egor Derevenetc (Univ. Kaiserslautern)

and Eike Möhlmann (Univ. Oldenburg)

VTSA, MPI-Saarbrücken, September 2012

Dekker’s Protocol

Synchronise access of two threads to their critical sections

Dekker’s mutual exclusion protocol

I Indicate wish to enter Write own variable x to 1

I Check no wish from partner Check partner variable

I Symmetry Second thread behaves similarly

t1 : q0

(w ,x ,1)

−−−−→ q1

(r ,y ,0)

−−−−→ cs t2 : q0

(w,y,1)

−−−−→ q1

f

−→ q2

(r,x,0)

−−−−→ cs

I What is the semantics of this program?

I Depends on the hardware architecture!

Dekker’s Protocol

Synchronise access of two threads to their critical sections

Dekker’s mutual exclusion protocol

I Indicate wish to enter Write own variable x to 1

I Check no wish from partner Check partner variable

I Symmetry Second thread behaves similarly

t1 : q0
(w ,x ,1)−−−−→ q1

(r ,y ,0)

−−−−→ cs t2 : q0

(w,y,1)

−−−−→ q1

f

−→ q2

(r,x,0)

−−−−→ cs

I What is the semantics of this program?

I Depends on the hardware architecture!

Dekker’s Protocol

Synchronise access of two threads to their critical sections

Dekker’s mutual exclusion protocol

I Indicate wish to enter Write own variable x to 1

I Check no wish from partner Check partner variable

I Symmetry Second thread behaves similarly

t1 : q0
(w ,x ,1)−−−−→ q1

(r ,y ,0)−−−−→ cs t2 : q0

(w,y,1)

−−−−→ q1

f

−→ q2

(r,x,0)

−−−−→ cs

I What is the semantics of this program?

I Depends on the hardware architecture!

Dekker’s Protocol

Synchronise access of two threads to their critical sections

Dekker’s mutual exclusion protocol

I Indicate wish to enter Write own variable x to 1

I Check no wish from partner Check partner variable

I Symmetry Second thread behaves similarly

t1 : q0
(w ,x ,1)−−−−→ q1

(r ,y ,0)−−−−→ cs t2 : q0
(w,y,1)−−−−→ q1

f−→ q2
(r,x,0)−−−−→ cs

I What is the semantics of this program?

I Depends on the hardware architecture!

Dekker’s Protocol

Synchronise access of two threads to their critical sections

Dekker’s mutual exclusion protocol

I Indicate wish to enter Write own variable x to 1

I Check no wish from partner Check partner variable

I Symmetry Second thread behaves similarly

t1 : q0
(w ,x ,1)−−−−→ q1

(r ,y ,0)−−−−→ cs t2 : q0
(w,y,1)−−−−→ q1

f−→ q2
(r,x,0)−−−−→ cs

I What is the semantics of this program?

I Depends on the hardware architecture!

Dekker’s Protocol

Synchronise access of two threads to their critical sections

Dekker’s mutual exclusion protocol

I Indicate wish to enter Write own variable x to 1

I Check no wish from partner Check partner variable

I Symmetry Second thread behaves similarly

t1 : q0
(w ,x ,1)−−−−→ q1

(r ,y ,0)−−−−→ cs t2 : q0
(w,y,1)−−−−→ q1

f−→ q2
(r,x,0)−−−−→ cs

I What is the semantics of this program?

I Depends on the hardware architecture!

Sequential Consistency Semantics

Sequential Consistency memory model [Lamport 1979]

I Threads directly write to and read from memory

I Programmers often rely on this intuitive behaviour

Sequential Consistency semantics of Dekker’s protocol

t1 : q0
(w ,x ,1)−−−−→ q1

(r ,y ,0)−−−−→ cs t2 : q0
(w,y,1)−−−−→ q1

f−→ q2
(r,x,0)−−−−→ cs

Mt1 :

t2 :

Sequential Consistency Semantics

Sequential Consistency memory model [Lamport 1979]

I Take view from memory

(w , x , 1).(r , y , 0).(w, y, 1).f

Sequential Consistency semantics of Dekker’s protocol

t1 : q0
(w ,x ,1)−−−−→ q1

(r ,y ,0)−−−−→ cs t2 : q0
(w,y,1)−−−−→ q1

f−→ q2
(r,x,0)−−−−→ cs

Next: t1 writes x to 1

M
x = 0
y = 0

t1 : q0

t2 : q0

Sequential Consistency Semantics

Sequential Consistency memory model [Lamport 1979]

I Take view from memory

(w , x , 1)

.(r , y , 0).(w, y, 1).f

Sequential Consistency semantics of Dekker’s protocol

t1 : q0
(w ,x ,1)−−−−→ q1

(r ,y ,0)−−−−→ cs t2 : q0
(w,y,1)−−−−→ q1

f−→ q2
(r,x,0)−−−−→ cs

Next: t1 reads 0 from y

M
x = 1
y = 0

t1 : q1

t2 : q0

Sequential Consistency Semantics

Sequential Consistency memory model [Lamport 1979]

I Take view from memory

(w , x , 1).(r , y , 0)

.(w, y, 1).f

Sequential Consistency semantics of Dekker’s protocol

t1 : q0
(w ,x ,1)−−−−→ q1

(r ,y ,0)−−−−→ cs t2 : q0
(w,y,1)−−−−→ q1

f−→ q2
(r,x,0)−−−−→ cs

Next: t2 writes y to 1

M
x = 1
y = 0

t1 : cs

t2 : q0

Sequential Consistency Semantics

Sequential Consistency memory model [Lamport 1979]

I Take view from memory

(w , x , 1).(r , y , 0).(w, y, 1)

.f

Sequential Consistency semantics of Dekker’s protocol

t1 : q0
(w ,x ,1)−−−−→ q1

(r ,y ,0)−−−−→ cs t2 : q0
(w,y,1)−−−−→ q1

f−→ q2
(r,x,0)−−−−→ cs

Next: t2 executes fence f

M
x = 1
y = 1

t1 : cs

t2 : q1

Sequential Consistency Semantics

Sequential Consistency memory model [Lamport 1979]

I Take view from memory

(w , x , 1).(r , y , 0).(w, y, 1).f

Sequential Consistency semantics of Dekker’s protocol

t1 : q0
(w ,x ,1)−−−−→ q1

(r ,y ,0)−−−−→ cs t2 : q0
(w,y,1)−−−−→ q1

f−→ q2
(r,x,0)−−−−→ cs

Next: t2 cannot read 0 from x

M
x = 1
y = 1

t1 : cs

t2 : q2

Sequential Consistency Semantics

Sequential Consistency memory model [Lamport 1979]

I Take view from memory

(w , x , 1).(r , y , 0).(w, y, 1).f

Sequential Consistency semantics of Dekker’s protocol

t1 : q0
(w ,x ,1)−−−−→ q1

(r ,y ,0)−−−−→ cs t2 : q0
(w,y,1)−−−−→ q1

f−→ q2
(r,x,0)−−−−→ cs

M
x = 1
y = 1

t1 : cs

t2 : q2
Mutual exclusion holds!

Total Store Ordering Semantics

I Buffers reduce latency of memory accesses

I Total Store Ordering architectures have write buffers

Total Store Ordering semantics of Dekker’s protocol

t1 : q0
(w ,x ,1)−−−−→ q1

(r ,y ,0)−−−−→ cs t2 : q0
(w,y,1)−−−−→ q1

f−→ q2
(r,x,0)−−−−→ cs

M
x = 0
y = 0

t1 :

t2 :

Total Store Ordering Semantics

I Buffers reduce latency of memory accesses

I Total Store Ordering architectures have write buffers

Total Store Ordering semantics of Dekker’s protocol

t1 : q0
(w ,x ,1)−−−−→ q1

(r ,y ,0)−−−−→ cs t2 : q0
(w,y,1)−−−−→ q1

f−→ q2
(r,x,0)−−−−→ cs

M
x = 0
y = 0

t1 :

t2 :

Total Store Ordering Semantics

I Reads prefetch last value written to x from buffer

, if exists

I Fences forbid prefetches

(r , y , 0) .(w, y, 1).f.(r, x, 0) .(w , x , 1)

Total Store Ordering semantics of Dekker’s protocol

t1 : q0
(w ,x ,1)−−−−→ q1

(r ,y ,0)−−−−→ cs t2 : q0
(w,y,1)−−−−→ q1

f−→ q2
(r,x,0)−−−−→ cs

Next: t1 writes (w , x , 1) to its buffer

M
x = 0
y = 0

t1 : q0

t2 : q0

Total Store Ordering Semantics

I Reads prefetch last value written to x from buffer

, if exists

I Fences forbid prefetches

(r , y , 0) .(w, y, 1).f.(r, x, 0) .(w , x , 1)

Total Store Ordering semantics of Dekker’s protocol

t1 : q0
(w ,x ,1)−−−−→ q1

(r ,y ,0)−−−−→ cs t2 : q0
(w,y,1)−−−−→ q1

f−→ q2
(r,x,0)−−−−→ cs

Next: t2 writes (w, y, 1) to its buffer

M
x = 0
y = 0

(w , x , 1)t1 : q1

t2 : q0

Total Store Ordering Semantics

I Reads prefetch last value written to x from buffer

, if exists

I Fences forbid prefetches

(r , y , 0) .(w, y, 1).f.(r, x, 0) .(w , x , 1)

Total Store Ordering semantics of Dekker’s protocol

t1 : q0
(w ,x ,1)−−−−→ q1

(r ,y ,0)−−−−→ cs t2 : q0
(w,y,1)−−−−→ q1

f−→ q2
(r,x,0)−−−−→ cs

Next: t1 fails to read (r , y , 0) from its buffer

M
x = 0
y = 0

(w , x , 1)t1 : q1

(w, y, 1)t2 : q1
×

Total Store Ordering Semantics

I Reads prefetch last value written to x from buffer, if exists

I Fences forbid prefetches

(r , y , 0)

.(w, y, 1).f.(r, x, 0) .(w , x , 1)

Total Store Ordering semantics of Dekker’s protocol

t1 : q0
(w ,x ,1)−−−−→ q1

(r ,y ,0)−−−−→ cs t2 : q0
(w,y,1)−−−−→ q1

f−→ q2
(r,x,0)−−−−→ cs

Next: t1 reads (r , y , 0) from memory

M
x = 0
y = 0

(w , x , 1)t1 : q1

(w, y, 1)t2 : q1

Total Store Ordering Semantics

I Reads prefetch last value written to x from buffer, if exists

I Fences forbid prefetches

(r , y , 0)

.(w, y, 1).f.(r, x, 0) .(w , x , 1)

Total Store Ordering semantics of Dekker’s protocol

t1 : q0
(w ,x ,1)−−−−→ q1

(r ,y ,0)−−−−→ cs t2 : q0
(w,y,1)−−−−→ q1

f−→ q2
(r,x,0)−−−−→ cs

Next: t2 cannot execute fence f while buffer not empty

M
x = 0
y = 0

(w , x , 1)t1 : cs

(w, y, 1)t2 : q1

Total Store Ordering Semantics

I Reads prefetch last value written to x from buffer, if exists

I Fences forbid prefetches

(r , y , 0)

.(w, y, 1).f.(r, x, 0) .(w , x , 1)

Total Store Ordering semantics of Dekker’s protocol

t1 : q0
(w ,x ,1)−−−−→ q1

(r ,y ,0)−−−−→ cs t2 : q0
(w,y,1)−−−−→ q1

f−→ q2
(r,x,0)−−−−→ cs

Next: memory updates (w, y, 1) from buffer of t2

M
x = 0
y = 0

(w , x , 1)t1 : cs

(w, y, 1)t2 : q1

Total Store Ordering Semantics

I Reads prefetch last value written to x from buffer, if exists

I Fences forbid prefetches

(r , y , 0) .(w, y, 1)

.f.(r, x, 0) .(w , x , 1)

Total Store Ordering semantics of Dekker’s protocol

t1 : q0
(w ,x ,1)−−−−→ q1

(r ,y ,0)−−−−→ cs t2 : q0
(w,y,1)−−−−→ q1

f−→ q2
(r,x,0)−−−−→ cs

Next: t2 executes fence f

M
x = 0
y = 1

(w , x , 1)t1 : cs

t2 : q1

Total Store Ordering Semantics

I Reads prefetch last value written to x from buffer, if exists

I Fences forbid prefetches

(r , y , 0) .(w, y, 1).f

.(r, x, 0) .(w , x , 1)

Total Store Ordering semantics of Dekker’s protocol

t1 : q0
(w ,x ,1)−−−−→ q1

(r ,y ,0)−−−−→ cs t2 : q0
(w,y,1)−−−−→ q1

f−→ q2
(r,x,0)−−−−→ cs

Next: t2 reads (r, x, 0) from memory

M
x = 0
y = 1

(w , x , 1)t1 : cs

t2 : q2

Total Store Ordering Semantics

I Reads prefetch last value written to x from buffer, if exists

I Fences forbid prefetches

(r , y , 0) .(w, y, 1).f.(r, x, 0)

.(w , x , 1)

Total Store Ordering semantics of Dekker’s protocol

t1 : q0
(w ,x ,1)−−−−→ q1

(r ,y ,0)−−−−→ cs t2 : q0
(w,y,1)−−−−→ q1

f−→ q2
(r,x,0)−−−−→ cs

Next: memory updates (w , x , 1) from buffer of t1

M
x = 0
y = 1

(w , x , 1)t1 : cs

t2 : cs

Total Store Ordering Semantics

I Reads prefetch last value written to x from buffer, if exists

I Fences forbid prefetches

(r , y , 0) .(w, y, 1).f.(r, x, 0) .(w , x , 1)

Total Store Ordering semantics of Dekker’s protocol

t1 : q0
(w ,x ,1)−−−−→ q1

(r ,y ,0)−−−−→ cs t2 : q0
(w,y,1)−−−−→ q1

f−→ q2
(r,x,0)−−−−→ cs

M
x = 1
y = 1

t1 : cs

t2 : cs

Total Store Ordering Semantics

I Memory sees actions out of program order

(r , y , 0) .(w, y, 1).f.(r, x, 0) .(w , x , 1)

Total Store Ordering semantics of Dekker’s protocol

t1 : q0
(w ,x ,1)−−−−→ q1

(r ,y ,0)−−−−→ cs t2 : q0
(w,y,1)−−−−→ q1

f−→ q2
(r,x,0)−−−−→ cs

M
x = 1
y = 1

t1 : cs

t2 : cs
Mutual exclusion fails!

Robustness against TSO

[Burckhardt, Musuvathi, 2008], [Owens, 2010], [Alglave, Maranget, 2011]

I TSO semantics should not introduce new visible behaviors

I What does it means precisely ?

I State-Robustness:
TSO- and SC-reachable states are the same.

I Reducible to state reachability: decidable but highly complex!

I Trace-Robustness:
Preservation of the traces [Shasha, Snir, 88]

I Checking trace-robustness is less costly than checking
state-robustness!

Robustness against TSO

[Burckhardt, Musuvathi, 2008], [Owens, 2010], [Alglave, Maranget, 2011]

I TSO semantics should not introduce new visible behaviors

I What does it means precisely ?

I State-Robustness:
TSO- and SC-reachable states are the same.

I Reducible to state reachability: decidable but highly complex!

I Trace-Robustness:
Preservation of the traces [Shasha, Snir, 88]

I Checking trace-robustness is less costly than checking
state-robustness!

Robustness against TSO

[Burckhardt, Musuvathi, 2008], [Owens, 2010], [Alglave, Maranget, 2011]

I TSO semantics should not introduce new visible behaviors

I What does it means precisely ?

I State-Robustness:
TSO- and SC-reachable states are the same.

I Reducible to state reachability: decidable but highly complex!

I Trace-Robustness:
Preservation of the traces [Shasha, Snir, 88]

I Checking trace-robustness is less costly than checking
state-robustness!

Robustness against TSO

[Burckhardt, Musuvathi, 2008], [Owens, 2010], [Alglave, Maranget, 2011]

I TSO semantics should not introduce new visible behaviors

I What does it means precisely ?

I State-Robustness:
TSO- and SC-reachable states are the same.

I Reducible to state reachability: decidable but highly complex!

I Trace-Robustness:
Preservation of the traces [Shasha, Snir, 88]

I Checking trace-robustness is less costly than checking
state-robustness!

Robustness against TSO

[Burckhardt, Musuvathi, 2008], [Owens, 2010], [Alglave, Maranget, 2011]

I TSO semantics should not introduce new visible behaviors

I What does it means precisely ?

I State-Robustness:
TSO- and SC-reachable states are the same.

I Reducible to state reachability: decidable but highly complex!

I Trace-Robustness:
Preservation of the traces [Shasha, Snir, 88]

I Checking trace-robustness is less costly than checking
state-robustness!

Robustness against TSO

[Burckhardt, Musuvathi, 2008], [Owens, 2010], [Alglave, Maranget, 2011]

I TSO semantics should not introduce new visible behaviors

I What does it means precisely ?

I State-Robustness:
TSO- and SC-reachable states are the same.

I Reducible to state reachability: decidable but highly complex!

I Trace-Robustness:
Preservation of the traces [Shasha, Snir, 88]

I Checking trace-robustness is less costly than checking
state-robustness!

Traces
Given a computation 𝜏 , consider:

I Program order →po: Order of actions issued by one thread.

I Store order →st: Order of writes to a same variable
(by different threads).

I Source relation →src: write is source of load.

I The trace T (𝜏) is defined by the union of →po, →st, →src.

I Given a memory model M, and program P, TrM(P) is the set
of all traces associated with computations of P under M.

I Robustness problem against TSO: TrTSO(P) = TrSC (P)?

I Conflict relation →cf: load can be altered by write.

I Happen-Before relation →hb: union of all relations above.

I Thm [SS88]:

T (𝜏) ∈ TrSC (P) if and only if →hb is acyclic.

Traces
Given a computation 𝜏 , consider:

I Program order →po: Order of actions issued by one thread.

I Store order →st: Order of writes to a same variable
(by different threads).

I Source relation →src: write is source of load.

I The trace T (𝜏) is defined by the union of →po, →st, →src.

I Given a memory model M, and program P, TrM(P) is the set
of all traces associated with computations of P under M.

I Robustness problem against TSO: TrTSO(P) = TrSC (P)?

I Conflict relation →cf: load can be altered by write.

I Happen-Before relation →hb: union of all relations above.

I Thm [SS88]:

T (𝜏) ∈ TrSC (P) if and only if →hb is acyclic.

Traces
Given a computation 𝜏 , consider:

I Program order →po: Order of actions issued by one thread.

I Store order →st: Order of writes to a same variable
(by different threads).

I Source relation →src: write is source of load.

I The trace T (𝜏) is defined by the union of →po, →st, →src.

I Given a memory model M, and program P, TrM(P) is the set
of all traces associated with computations of P under M.

I Robustness problem against TSO: TrTSO(P) = TrSC (P)?

I Conflict relation →cf: load can be altered by write.

I Happen-Before relation →hb: union of all relations above.

I Thm [SS88]:

T (𝜏) ∈ TrSC (P) if and only if →hb is acyclic.

Traces
Given a computation 𝜏 , consider:

I Program order →po: Order of actions issued by one thread.

I Store order →st: Order of writes to a same variable
(by different threads).

I Source relation →src: write is source of load.

I The trace T (𝜏) is defined by the union of →po, →st, →src.

I Given a memory model M, and program P, TrM(P) is the set
of all traces associated with computations of P under M.

I Robustness problem against TSO: TrTSO(P) = TrSC (P)?

I Conflict relation →cf: load can be altered by write.

I Happen-Before relation →hb: union of all relations above.

I Thm [SS88]:

T (𝜏) ∈ TrSC (P) if and only if →hb is acyclic.

Example

Dekker’s protocol

(w , x , 1)T (𝜏)

(r , y , 0)

(w, y, 1)

f

(r, x, 0)

Dekker’s protocol is not robust, 𝜏 is a violation

Example

Dekker’s protocol

(w , x , 1)T (𝜏)

(r , y , 0)

(w, y, 1)

f

(r, x, 0)

Dekker’s protocol is not robust, 𝜏 is a violation

Deciding Robustness

Shasha and Snir do not give an algorithm to find cyclic traces !

Contribution: An Algorithm for Checking Trace-Robustness

I Reduce to SC reachability in instrumented programs

I Source-to-source translation with linear overhead

I Quadratic number of reachability queries

I Works for unbounded buffers and arbitrarily many threads

I P/EXP-SPACE-complete

Deciding Robustness

Shasha and Snir do not give an algorithm to find cyclic traces !

Contribution: An Algorithm for Checking Trace-Robustness

I Reduce to SC reachability in instrumented programs

I Source-to-source translation with linear overhead

I Quadratic number of reachability queries

I Works for unbounded buffers and arbitrarily many threads

I P/EXP-SPACE-complete

Deciding Robustness

Shasha and Snir do not give an algorithm to find cyclic traces !

Contribution: An Algorithm for Checking Trace-Robustness

I Reduce to SC reachability in instrumented programs

I Source-to-source translation with linear overhead

I Quadratic number of reachability queries

I Works for unbounded buffers and arbitrarily many threads

I P/EXP-SPACE-complete

Deciding Robustness

Shasha and Snir do not give an algorithm to find cyclic traces !

Contribution: An Algorithm for Checking Trace-Robustness

I Reduce to SC reachability in instrumented programs

I Source-to-source translation with linear overhead

I Quadratic number of reachability queries

I Works for unbounded buffers and arbitrarily many threads

I P/EXP-SPACE-complete

Deciding Robustness

Shasha and Snir do not give an algorithm to find cyclic traces !

Contribution: An Algorithm for Checking Trace-Robustness

I Reduce to SC reachability in instrumented programs

I Source-to-source translation with linear overhead

I Quadratic number of reachability queries

I Works for unbounded buffers and arbitrarily many threads

I P/EXP-SPACE-complete

Deciding Robustness

Shasha and Snir do not give an algorithm to find cyclic traces !

Contribution: An Algorithm for Checking Trace-Robustness

I Reduce to SC reachability in instrumented programs

I Source-to-source translation with linear overhead

I Quadratic number of reachability queries

I Works for unbounded buffers and arbitrarily many threads

I P/EXP-SPACE-complete

Deciding Robustness

Shasha and Snir do not give an algorithm to find cyclic traces !

Contribution: An Algorithm for Checking Trace-Robustness

I Reduce to SC reachability in instrumented programs

I Source-to-source translation with linear overhead

I Quadratic number of reachability queries

I Works for unbounded buffers and arbitrarily many threads

I P/EXP-SPACE-complete

Roadmap

I Locality of robustness — only one thread uses buffers

I Robustness iff no attacks

I Find attacks with SC(!) reachability

Roadmap

I Locality of robustness — only one thread uses buffers

I Robustness iff no attacks

I Find attacks with SC(!) reachability

Minimal Violations

Goal
Show that we can restrict ourselves to

violations where only one thread reorders its actions

Minimal violations
Intuition: violations as close to SC as possible

I #(𝜏) = number of rewritings to derive 𝜏

I violation 𝜏 minimal if there is no violation 𝜏 ′ with
#(𝜏 ′) < #(𝜏)

Minimal violations have good properties!

Minimal Violations

TSO computations from rewriting

Reorder (w , x , 1).(r , y , 0) yre (r , y , 0).(w , x , 1)
Prefetch (w , x , v).(r , x , v) ypf (w , x , v)

Minimal violations
Intuition: violations as close to SC as possible

I #(𝜏) = number of rewritings to derive 𝜏

I violation 𝜏 minimal if there is no violation 𝜏 ′ with
#(𝜏 ′) < #(𝜏)

Minimal violations have good properties!

Minimal Violations

TSO computations from rewriting

Reorder (w , x , 1).(r , y , 0) yre (r , y , 0).(w , x , 1)
Prefetch (w , x , v).(r , x , v) ypf (w , x , v)

Minimal violations
Intuition: violations as close to SC as possible

I #(𝜏) = number of rewritings to derive 𝜏

I violation 𝜏 minimal if there is no violation 𝜏 ′ with
#(𝜏 ′) < #(𝜏)

Minimal violations have good properties!

Minimal Violations

TSO computations from rewriting

Reorder (w , x , 1).(r , y , 0) yre (r , y , 0).(w , x , 1)
Prefetch (w , x , v).(r , x , v) ypf (w , x , v)

Minimal violations
Intuition: violations as close to SC as possible

I #(𝜏) = number of rewritings to derive 𝜏

I violation 𝜏 minimal if there is no violation 𝜏 ′ with
#(𝜏 ′) < #(𝜏)

Minimal violations have good properties!

Minimal Violations

TSO computations from rewriting

Reorder (w , x , 1).(r , y , 0) yre (r , y , 0).(w , x , 1)
Prefetch (w , x , v).(r , x , v) ypf (w , x , v)

Minimal violations
Intuition: violations as close to SC as possible

I #(𝜏) = number of rewritings to derive 𝜏

I violation 𝜏 minimal if there is no violation 𝜏 ′ with
#(𝜏 ′) < #(𝜏)

Minimal violations have good properties!

Minimal Violations

TSO computations from rewriting

Reorder (w , x , 1).(r , y , 0) yre (r , y , 0).(w , x , 1)
Prefetch (w , x , v).(r , x , v) ypf (w , x , v)

Minimal violations
Intuition: violations as close to SC as possible

I #(𝜏) = number of rewritings to derive 𝜏

I violation 𝜏 minimal if there is no violation 𝜏 ′ with
#(𝜏 ′) < #(𝜏)

Minimal violations have good properties!

Helpful Lemma for Minimal Violations

Lemma
Consider minimal violation 𝛼.b.𝛽.a.𝛾 where b has overtaken a

Then b and a have →hb path through 𝛽: subword b1 . . . bk with

bi →src/st/cf bi+1 or bi →+
p bi+1

Example (Computation in Dekker’s protocol is minimal)

(r , y , 0).(w, y, 1).f.(r, x, 0).(w , x , 1)⏟ ⏞
→hb

Helpful Lemma for Minimal Violations

Lemma
Consider minimal violation 𝛼.b.𝛽.a.𝛾 where b has overtaken a
Then b and a have →hb path through 𝛽:

subword b1 . . . bk with

bi →src/st/cf bi+1 or bi →+
p bi+1

Example (Computation in Dekker’s protocol is minimal)

(r , y , 0).(w, y, 1).f.(r, x, 0).(w , x , 1)⏟ ⏞
→hb

Helpful Lemma for Minimal Violations

Lemma
Consider minimal violation 𝛼.b.𝛽.a.𝛾 where b has overtaken a
Then b and a have →hb path through 𝛽: subword b1 . . . bk with

bi →src/st/cf bi+1 or bi →+
p bi+1

Example (Computation in Dekker’s protocol is minimal)

(r , y , 0).(w, y, 1).f.(r, x, 0).(w , x , 1)⏟ ⏞
→hb

Helpful Lemma for Minimal Violations

Lemma
Consider minimal violation 𝛼.b.𝛽.a.𝛾 where b has overtaken a
Then b and a have →hb path through 𝛽:

subword b1 . . . bk with

bi →src/st/cf bi+1 or bi →+
p bi+1

Example (Computation in Dekker’s protocol is minimal)

(r , y , 0).(w, y, 1).f.(r, x, 0).(w , x , 1)⏟ ⏞
→hb

Locality of Robustness

Theorem (Locality of Robustness)

In a minimal violation, only a single thread uses rewriting

Proof sketch
Pick last writes that are overtaken in two threads ti and tj :

Locality of Robustness

Theorem (Locality of Robustness)

In a minimal violation, only a single thread uses rewriting

Proof sketch
Pick last writes that are overtaken in two threads ti and tj :

Locality of Robustness

Theorem (Locality of Robustness)

In a minimal violation, only a single thread uses rewriting

Proof sketch
Pick last writes that are overtaken in two threads ti and tj :
Case 1: no interference

rj wj ri wi

Lemma: happens before cycle rj →+
hb wj →+

p rj
Read ri not involved, delete everything from ri on
Saves a reordering, contradiction to minimality

Locality of Robustness

Theorem (Locality of Robustness)

In a minimal violation, only a single thread uses rewriting

Proof sketch
Pick last writes that are overtaken in two threads ti and tj :
Case 1: no interference

rj wj ri wi

Lemma: happens before cycle rj →+
hb wj →+

p rj

Read ri not involved, delete everything from ri on
Saves a reordering, contradiction to minimality

Locality of Robustness

Theorem (Locality of Robustness)

In a minimal violation, only a single thread uses rewriting

Proof sketch
Pick last writes that are overtaken in two threads ti and tj :
Case 1: no interference

rj wj ri wi

Lemma: happens before cycle rj →+
hb wj →+

p rj
Read ri not involved, delete everything from ri on

Saves a reordering, contradiction to minimality

Locality of Robustness

Theorem (Locality of Robustness)

In a minimal violation, only a single thread uses rewriting

Proof sketch
Pick last writes that are overtaken in two threads ti and tj :
Case 1: no interference

rj wj wi

Lemma: happens before cycle rj →+
hb wj →+

p rj
Read ri not involved, delete everything from ri on
Saves a reordering, contradiction to minimality

Locality of Robustness

Theorem (Locality of Robustness)

In a minimal violation, only a single thread uses rewriting

Proof sketch
Pick last writes that are overtaken in two threads ti and tj :
Case 2: overlap

ri rj wj wi

Argumentation similar, delete again ri

Locality of Robustness

Theorem (Locality of Robustness)

In a minimal violation, only a single thread uses rewriting

Proof sketch
Pick last writes that are overtaken in two threads ti and tj :
Case 2: overlap

ri rj wj wi

Argumentation similar, delete again ri

Locality of Robustness

Theorem (Locality of Robustness)

In a minimal violation, only a single thread uses rewriting

Proof sketch
Pick last writes that are overtaken in two threads ti and tj :
Case 3: interference

rj ri wj wi

Lemma: happens before cycle rj →+
hb wj →+

p rj
Only thread ti may contribute, delete rest
Lemma: happens before cycle ri →+

hb wi →+
p ri

Read rj not on this cycle, delete it, contradiction

Locality of Robustness

Theorem (Locality of Robustness)

In a minimal violation, only a single thread uses rewriting

Proof sketch
Pick last writes that are overtaken in two threads ti and tj :
Case 3: interference

rj ri wj wi

Lemma: happens before cycle rj →+
hb wj →+

p rj

Only thread ti may contribute, delete rest
Lemma: happens before cycle ri →+

hb wi →+
p ri

Read rj not on this cycle, delete it, contradiction

Locality of Robustness

Theorem (Locality of Robustness)

In a minimal violation, only a single thread uses rewriting

Proof sketch
Pick last writes that are overtaken in two threads ti and tj :
Case 3: interference

rj ri wj wi

Lemma: happens before cycle rj →+
hb wj →+

p rj
Only thread ti may contribute, delete rest

Lemma: happens before cycle ri →+
hb wi →+

p ri
Read rj not on this cycle, delete it, contradiction

Locality of Robustness

Theorem (Locality of Robustness)

In a minimal violation, only a single thread uses rewriting

Proof sketch
Pick last writes that are overtaken in two threads ti and tj :
Case 3: interference

rj ri wj wi
↑ ti

Lemma: happens before cycle rj →+
hb wj →+

p rj
Only thread ti may contribute, delete rest
Lemma: happens before cycle ri →+

hb wi →+
p ri

Read rj not on this cycle, delete it, contradiction

Locality of Robustness

Theorem (Locality of Robustness)

In a minimal violation, only a single thread uses rewriting

Proof sketch
Pick last writes that are overtaken in two threads ti and tj :
Case 3: interference

ri wj wi
↑ ti

Lemma: happens before cycle rj →+
hb wj →+

p rj
Only thread ti may contribute, delete rest
Lemma: happens before cycle ri →+

hb wi →+
p ri

Read rj not on this cycle, delete it, contradiction

Roadmap

I Locality of robustness — only one thread uses buffers

I Robustness iff no attacks

I Find attacks with SC(!) reachability

Characterization of Robustness via Attacks

Goal
Reformulate Robustness in terms of a simpler problem:

absence of feasible attacks

Characterization of Robustness via Attacks

Observation
If Prog not robust, there are these violation:

r r w
𝛼 𝜌 𝛽 𝜔

Attacker The thread that reorders reads: only 1 by locality

Helpers Remaining threads close cycle: r→+
hb w w→+

p r

Characterization of Robustness via Attacks

Observation
If Prog not robust, there are these violation:

r r w
𝛼 𝜌 𝛽 𝜔

Attacker The thread that reorders reads: only 1 by locality

Helpers Remaining threads close cycle: r→+
hb w w→+

p r

Characterization of Robustness via Attacks

Observation
If Prog not robust, there are these violation:

r r w
𝛼 𝜌 𝛽 𝜔

Attacker The thread that reorders reads: only 1 by locality

Helpers Remaining threads close cycle: r→+
hb w w→+

p r

Example (Violation in Dekker’s protocol)

(r , y , 0).(w, y, 1).f.(r, x, 0).(w , x , 1)⏟ ⏞
→hb

Characterization of Robustness via Attacks

Observation
If Prog not robust, there are these violation:

r r w
𝛼 𝜌 𝛽 𝜔

Attacker The thread that reorders reads: only 1 by locality

Helpers Remaining threads close cycle: r→+
hb w w→+

p r

Intuition
Two data races r, first(𝛽) and last(𝛽),w

Characterization of Robustness via Attacks

Idea

I Fix thread, write instruction, read instruction

I Given these parameters, find a violation as above

Definition (Attack)

An attack is a triple A = (thread ,write, read).
A TSO witness for attack A is a computation as above:

r r w
𝛼 𝜌 𝛽 𝜔

Theorem (Complete Characterization of Robustness)

Program Prog is robust if and only if no attack has a TSO witness.

The number of attacks is quadratic in the size of Prog.

Characterization of Robustness via Attacks

Idea

I Fix thread, write instruction, read instruction

I Given these parameters, find a violation as above

Definition (Attack)

An attack is a triple A = (thread ,write, read).
A TSO witness for attack A is a computation as above:

r r w
𝛼 𝜌 𝛽 𝜔

Theorem (Complete Characterization of Robustness)

Program Prog is robust if and only if no attack has a TSO witness.

The number of attacks is quadratic in the size of Prog.

Characterization of Robustness via Attacks

Idea

I Fix thread, write instruction, read instruction

I Given these parameters, find a violation as above

Definition (Attack)

An attack is a triple A = (thread ,write, read).
A TSO witness for attack A is a computation as above:

r r w
𝛼 𝜌 𝛽 𝜔

Theorem (Complete Characterization of Robustness)

Program Prog is robust if and only if no attack has a TSO witness.

The number of attacks is quadratic in the size of Prog.

Characterization of Robustness via Attacks

Idea

I Fix thread, write instruction, read instruction

I Given these parameters, find a violation as above

Definition (Attack)

An attack is a triple A = (thread ,write, read).
A TSO witness for attack A is a computation as above:

r r w
𝛼 𝜌 𝛽 𝜔

Theorem (Complete Characterization of Robustness)

Program Prog is robust if and only if no attack has a TSO witness.
The number of attacks is quadratic in the size of Prog.

Roadmap

I Locality of robustness — only one thread uses buffers

I Robustness iff no attacks

I Find attacks with SC(!) reachability

Finding TSO witnesses with SC reachability

Fix an attack A = (thread ,write, read)

Goal
TSO witnesses for A considerably restrict reorderings,

enough to find TSO witnesses with SC reachability

Finding TSO witnesses with SC reachability

Idea
Turn TSO witness into an SC computation:

r r w
𝛼 𝜌 𝛽 𝜔

Let attacker execute under SC
Problem Writes may conflict with helper reads
Solution Hide them from other threads

· r r
𝛼 𝜌 𝜔 𝛽

Finding TSO witnesses with SC reachability

Idea
Turn TSO witness into an SC computation:

r r w
𝛼 𝜌 𝛽 𝜔

Let attacker execute under SC

Problem Writes may conflict with helper reads
Solution Hide them from other threads

w · r r
𝛼 𝜌 𝜔 𝛽

Finding TSO witnesses with SC reachability

Idea
Turn TSO witness into an SC computation:

r r w
𝛼 𝜌 𝛽 𝜔

Let attacker execute under SC
Problem Writes may conflict with helper reads

Solution Hide them from other threads

w · r r X𝛼 𝜌 𝜔 𝛽

Finding TSO witnesses with SC reachability

Idea
Turn TSO witness into an SC computation:

r r w
𝛼 𝜌 𝛽 𝜔

Let attacker execute under SC
Problem Writes may conflict with helper reads
Solution Hide them from other threads

wloc · r r
𝛼 𝜌 𝜔loc 𝛽

Finding TSO witnesses with SC reachability

Instrumentation

wloc · r r
𝛼 𝜌 𝜔loc 𝛽

SC computation ∈ ProgA that is instrumented for attack A

I Attacker:
I Hide delayed writes
I Check that reads can move:

no fences, reads and prefetches have correct values
Only need the last written value on each variable

I Helpers: check their actions form a happen-before path

I Size of ProgA is linear in size of Prog.

Theorem (Soundness and Completeness)

Attack A has a TSO witness iff ProgA reaches goal state under SC.

Finding TSO witnesses with SC reachability

Instrumentation

wloc · r r
𝛼 𝜌 𝜔loc 𝛽

SC computation ∈ ProgA that is instrumented for attack A

I Attacker:
I Hide delayed writes
I Check that reads can move:

no fences, reads and prefetches have correct values
Only need the last written value on each variable

I Helpers: check their actions form a happen-before path

I Size of ProgA is linear in size of Prog.

Theorem (Soundness and Completeness)

Attack A has a TSO witness iff ProgA reaches goal state under SC.

Finding TSO witnesses with SC reachability

Instrumentation

wloc · r r
𝛼 𝜌 𝜔loc 𝛽

SC computation ∈ ProgA that is instrumented for attack A

I Attacker:
I Hide delayed writes
I Check that reads can move:

no fences, reads and prefetches have correct values
Only need the last written value on each variable

I Helpers: check their actions form a happen-before path

I Size of ProgA is linear in size of Prog.

Theorem (Soundness and Completeness)

Attack A has a TSO witness iff ProgA reaches goal state under SC.

End of Lecture 4:

I Locality: focus on reorderings of one thread.

I Check existence of feasible attacks.

I Attacks can be found with SC reachability, in parallel.

I Trace-robustness is as complex as SC reachability.

I Holds for programs with parametric number of threads.

I Can be used for fence insertion: Compute a set of fence
locations that is irreducible, and of minimal size.

I Implementation using SPIN. (Prototype tool: Trencher.)

I Experiments: Mutex protocols, lock-free stack, work stealing
queue, non-blocking write protocol, etc. Reachability queries
are solved in few seconds.

I Can be extended to NSW. What about Power, ARM?

End of Lecture 4:

I Locality: focus on reorderings of one thread.

I Check existence of feasible attacks.

I Attacks can be found with SC reachability, in parallel.

I Trace-robustness is as complex as SC reachability.

I Holds for programs with parametric number of threads.

I Can be used for fence insertion: Compute a set of fence
locations that is irreducible, and of minimal size.

I Implementation using SPIN. (Prototype tool: Trencher.)

I Experiments: Mutex protocols, lock-free stack, work stealing
queue, non-blocking write protocol, etc. Reachability queries
are solved in few seconds.

I Can be extended to NSW. What about Power, ARM?

End of Lecture 4:

I Locality: focus on reorderings of one thread.

I Check existence of feasible attacks.

I Attacks can be found with SC reachability, in parallel.

I Trace-robustness is as complex as SC reachability.

I Holds for programs with parametric number of threads.

I Can be used for fence insertion: Compute a set of fence
locations that is irreducible, and of minimal size.

I Implementation using SPIN. (Prototype tool: Trencher.)

I Experiments: Mutex protocols, lock-free stack, work stealing
queue, non-blocking write protocol, etc. Reachability queries
are solved in few seconds.

I Can be extended to NSW. What about Power, ARM?

End of Lecture 4:

I Locality: focus on reorderings of one thread.

I Check existence of feasible attacks.

I Attacks can be found with SC reachability, in parallel.

I Trace-robustness is as complex as SC reachability.

I Holds for programs with parametric number of threads.

I Can be used for fence insertion: Compute a set of fence
locations that is irreducible, and of minimal size.

I Implementation using SPIN. (Prototype tool: Trencher.)

I Experiments: Mutex protocols, lock-free stack, work stealing
queue, non-blocking write protocol, etc. Reachability queries
are solved in few seconds.

I Can be extended to NSW. What about Power, ARM?

End of Lecture 4:

I Locality: focus on reorderings of one thread.

I Check existence of feasible attacks.

I Attacks can be found with SC reachability, in parallel.

I Trace-robustness is as complex as SC reachability.

I Holds for programs with parametric number of threads.

I Can be used for fence insertion: Compute a set of fence
locations that is irreducible, and of minimal size.

I Implementation using SPIN. (Prototype tool: Trencher.)

I Experiments: Mutex protocols, lock-free stack, work stealing
queue, non-blocking write protocol, etc. Reachability queries
are solved in few seconds.

I Can be extended to NSW. What about Power, ARM?

The Programming Model: Assembler

⟨prog⟩ ::= prog ⟨pid⟩ ⟨thread⟩*

⟨thrd⟩ ::= thread ⟨tid⟩ regs ⟨reg⟩* init ⟨label⟩ begin ⟨linst⟩* end

⟨linst⟩ ::= ⟨label⟩: ⟨inst⟩; goto ⟨label⟩
⟨inst⟩ ::= ⟨reg⟩ ← mem[⟨expr⟩] | mem[⟨expr⟩] ← ⟨expr⟩ | mfence

| ⟨reg⟩ ← ⟨expr⟩ | if ⟨expr⟩
⟨expr⟩ ::= ⟨fun⟩(⟨reg⟩*)

Experiments

Spin as backend model checker
Prog. T L I PA IA1 IA2 FA F Spin

PetNR 2 14 18 23 2 12 9 2 0.7

PetR 2 16 20 12 12 0 0 0 0.0

DekNR 2 24 30 119 15 33 71 4 3.5

DekR 2 32 38 30 30 0 0 0 0.0

LamNR 3 33 36 36 9 15 12 6 1.1

LamR 3 39 42 27 27 0 0 0 0.0

LFSR 4 46 50 14 14 0 0 0 0.0

CLHLock 7 62 58 54 48 6 0 0 0.4

MCSLock 4 52 50 30 26 4 0 0 0.2

NBW5 3 25 22 9 7 2 0 0 0.1

ParNR 2 9 8 2 0 1 1 1 0.1

ParR 2 10 9 2 2 0 0 0 0.0

WSQ 5 86 78 147 137 10 0 0 0.7

