
u www.iaik.tugraz.at

Reactive Synthesis

24.09.2013

Swen Jacobs <swen.jacobs@iaik.tugraz.at>

VTSA 2013

Nancy, France

End of Synthesis, Part I: Basics

Swen Jacobs

VTSA 2013

2

 Synthesis as a Game

 General: LTL Synthesis

 Time-Efficient: GR(1) Synthesis

 Application: AMBA Bus Protocol

 Space-Efficient: Bounded/Safraless Approaches

Synthesis, Part II: Advanced Topics

Swen Jacobs

VTSA 2013

3

 Lazy Synthesis

 Distributed Synthesis

 Parameterized Synthesis

 Quantitative Specifications

 Robustness

Swen Jacobs

VTSA 2013

4

Lazy Synthesis

Lazy Synthesis [VMCAI12]

Swen Jacobs

VTSA 2013

5

 Based on SMT-based Bounded Synthesis

 Idea: instead of full translation to SMT, use lazy

encoding in abstraction refinement approach

 Integrates model checking approach to test

candidate models and obtain counterexamples

Lazy Synthesis: Overview

Swen Jacobs

VTSA 2013

6

Partial Design

Swen Jacobs

VTSA 2013

7

 Part of system already implemented

 Other part to be synthesized

 Interface of processes given

Lazy Synthesis: Overview

Swen Jacobs

VTSA 2013

8

Outer Loop:

 Search for implementation of size 𝑛, increment 𝑛 if
unrealizability is proved

Synthesis Loop:

For a given bound 𝑛:

1. SOLVE: check satisfiability of constraints,
obtain candidate implementation

2. CHECK: model check candidate and white-box
with monitor automata

3. REFINE: if errors are reachable,

construct constraints excluding error paths

Lazy Synthesis: Solve Phase

Swen Jacobs

VTSA 2013

9

 Transition relation represented as function

𝑡𝑟𝑎𝑛𝑠:𝔹 𝐼 × ℕ → ℕ,

 Outputs as functions of type ℕ → 𝔹

 Initial constraints: size constraint, initial state

 More constraints are added in subsequent calls

 Check satisfiability of constraints and obtain model

Lazy Synthesis: Check Phase

Swen Jacobs

VTSA 2013

10

Translate assumptions & guarantees to safety automata

Assumption: 𝐆𝐅 𝑅𝐸𝐴𝐷𝑌

Guarantee: 𝐆 𝐵𝑈𝑆𝑅𝐸𝑄𝑖 → 𝐅 𝑀𝐴𝑆𝑇𝐸𝑅 = 𝑖

Restriction to safety depends on size bound

Lazy Synthesis: Check Phase

Swen Jacobs

VTSA 2013

11

 Model-check candidate + white-box + automata

 If errors found, call Refine phase,

otherwise candidate model satisfies full spec

Lazy Synthesis: Refine Phase

Swen Jacobs

VTSA 2013

12

 If model checker finds errors, encode

them into SMT constraints, forbid them

 In BDD-based implementation,

we can obtain tree of all error

paths of minimum length

 this tree can be translated

into a constraint that forbids

all minimal errors

∈?𝐄𝟐∈ 𝐄𝟐 ∈ 𝐄𝟐 ∈ 𝐄𝟐 ∉ 𝐄𝟐

∈?𝐄𝟏

∈?𝐄𝟎

Lazy Synthesis: Refine Phase

Swen Jacobs

VTSA 2013

13

 Error tree translated to constraint

that forbids all error paths,

restricted to interface of black-box

 For every path, the constraint

expresses that at least one

output needs to be different

Lazy Synthesis: Overview

Swen Jacobs

VTSA 2013

14

Outer Loop:

 Search for implementation of size 𝑛, increment 𝑛 if
unrealizability is proved

Synthesis Loop:

For a given bound 𝑛:

1. SOLVE: check satisfiability of constraints,
obtain candidate implementation

2. CHECK: model check candidate and white-box
with monitor automata

3. REFINE: if errors are reachable,

construct constraints excluding error paths

Reconsider AMBA case study, with partial implementation for

deterministic parts:

“The arbiter indicates which bus master is currently the

highest priority [...] by asserting the appropriate GRANTi

signal. When the current transfer completes, as indicated by

READY HIGH, then [...] the arbiter will change the

MASTER[3:0] signals to indicate the bus master number.”

[AMBA Specification (Rev 2.0), ARM Ltd.]

Lazy Synthesis: AMBA Case Study

Swen Jacobs

VTSA 2013

15

Other statements translated to LTL:

“The arbitration mechanism is used to ensure that only one

master has access to the bus at any one time.”

∀𝑖 ≠ 𝑗: 𝐆 𝑅𝐸𝐴𝐷𝑌 → ¬ 𝐺𝑅𝐴𝑁𝑇𝑖 ∧ 𝐺𝑅𝐴𝑁𝑇𝑗

Some statements modeled with auxiliary variables:

“Normally the arbiter will only grant a different bus master

when a burst is completing.”

∀𝑖: 𝐆 ¬𝐷𝐸𝐶𝐼𝐷𝐸 → 𝐺𝑅𝐴𝑁𝑇𝑖 ↔ 𝐗 𝐺𝑅𝐴𝑁𝑇𝑖

(𝐷𝐸𝐶𝐼𝐷𝐸 defined s.t. it is high when a burst completes)

Lazy Synthesis: AMBA Case Study

Swen Jacobs

VTSA 2013

16

 AMBA with partial implementation for deterministic parts

 crucial part synthesized: arbiter

Lazy Synthesis: AMBA Case Study

Swen Jacobs

VTSA 2013

17

Swen Jacobs

VTSA 2013

18 AMBA: Bounded size of implementations

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 10

KS

cofactors

new spec

manual

#masters

Circuit size

More recent results go up to 16 masters

bounded/lazy

Synthesis time still grows

(double) exponentially!

AMBA: Bounded size of implementations

Swen Jacobs

VTSA 2013

19

Synthesis time still grows

(double) exponentially!

bounded/lazy

Lazy Synthesis: Challenges

Swen Jacobs

VTSA 2013

20

 SMT solving incremental, but Model Checking

restarted every time

 deep integration of incremental model checking?

 interface and safety abstraction currently given by

hand

 automatically minimize interface?

 automatic safety abstraction, or use liveness model

checker?

 Parallelize?

 Extend to distributed case?

Swen Jacobs

VTSA 2013

21

Distributed Synthesis

Why Distributed Synthesis?

Swen Jacobs

VTSA 2013

22

 Many interesting systems are distributed:

 multi-threaded programs

 multi-core processors

 communication protocols

 distributed control

 …

 Both a prerequisite and a motivation for

parameterized synthesis

Distributed Synthesis

Swen Jacobs

VTSA 2013

23

 Several processes, each decides about subset of

outputs

 Easy case: all processes have full information;

this reduces to standard synthesis problem

 How so?

 Every process has all inputs, but only subset of outputs

 In worst case, synthesize full system for all processes

and throw away unnecessary outputs

Partial Information

Swen Jacobs

VTSA 2013

24

 Hard case: every process only has limited

information about environment (and other

processes)

 Very hard, but decidable, for some architectures

like pipelines

Partial Information

Swen Jacobs

VTSA 2013

25

 Undecidable if there is an information fork

[PnueliRosner90,FinkbeinerSchewe05]

Partial Information: Bounded Synthesis

Swen Jacobs

VTSA 2013

26

Semi-decision procedure possible, e.g. based on bounded

synthesis.

Model distributed systems by projection functions from a

global state 𝑡 to local state 𝑑𝑖 𝑡 of component 𝑖

Partial information then expressed by constraints of the form

𝑑𝑖 𝑡 = 𝑑𝑖 𝑡
′ ∧ 𝐼 ∩ 𝐼𝑖 = 𝐼′ ∩ 𝐼𝑖 → 𝑑𝑖 𝜏 𝑡, 𝐼 = 𝑑𝑖 𝜏 𝑡′, 𝐼′

(for every process 𝑖)

Swen Jacobs

VTSA 2013

27

Parameterized Synthesis

Parameterized Synthesis
[TACAS12,VMCAI13]

Swen Jacobs

VTSA 2013

28

 Many specifications are parametric in nature

 AMBA, communication protocols, etc.

Can we synthesize building blocks

for arbitrary size systems?

Parameterized Synthesis

Swen Jacobs

VTSA 2013

29

Building blocks:

 Distributed synthesis

 of uniform processes

 Decidability results for parameterized verification

 particularly, cutoffs

Parameterized Verification

Swen Jacobs

VTSA 2013

30

Parameterized verification is decidable for certain systems

Asynchronous System:

No global clock, a subset of processes

are allowed to make a move in every

global step (decided by external scheduler).

Token Ring:

Processes only communicate by passing

single (value-less) token in ring architecture.

Always exactly one process is scheduled,

except for token passing steps.

Parameterized Verification

Swen Jacobs

VTSA 2013

31

Parameterized verification is decidable for certain systems

Theorem [EmersonNamjoshi95]:

In token rings with fair token passing,

a given process implementation satisfies

parameterized specification 𝜑 in LTL\X

iff it satisfies 𝝋 in a ring of small size:

2 processes for 𝜑 = ∀𝑖: 𝑓 𝑖

3 processes for 𝜑 = ∀𝑖: 𝑓(𝑖, 𝑖 + 1)

4 processes for 𝜑 = ∀𝑖, 𝑗: 𝑓 𝑖, 𝑗

5 processes for 𝜑 = ∀𝑖, 𝑗: 𝑓 𝑖, 𝑖 + 1, 𝑗

Corollary: For parameterized synthesis

in token rings, it is sufficient to synthesize

a process implementation satisfying 𝜑 in

a ring of size 2 – 5.

(Un)Decidability

Swen Jacobs

VTSA 2013

32

Does decidability of parameterized verification make

synthesis decidable?

No, since even for two uniform processes in a token ring,

distributed synthesis is undecidable.

A reduction result from Clarke et al. [CTTV04] shows that

parameterized synthesis for formulas ∀𝑖: 𝜑 𝑖 reduces to

synthesis of one process, which is decidable.

Parameterized Synthesis: Procedure

Swen Jacobs

VTSA 2013

33

1. Use cutoff to reduce parameterized synthesis

problem to distributed synthesis problem

2. Modified encoding (from bounded synthesis) of

realizability of specification with

 uniform processes

 in a token ring architecture

 with fair scheduling and fair token-passing

3. Solve problem with SMT solver

(for increasing bounds)

Modified Encoding

Swen Jacobs

VTSA 2013

34

Bounded synthesis encoding with following extensions:

 synthesis of uniform processes:

 add constraints that specify equivalence of local transitions

 use same output labels for all processes

 token-passing systems:

 add constraints ensuring correct token passing of exactly

one token in the ring

 fairness of scheduling and token passing:

 added directly to LTL specification

(First) Experiments

Swen Jacobs

VTSA 2013

35

Can synthesize distributed arbiter

in token ring of 4 processes

with spec

∀𝑖: 𝐺 𝑟𝑖 → 𝐹𝑔𝑖

∀𝑖 ≠ 𝑗:¬ 𝑔𝑖 ∧ 𝑔𝑗

This takes Z3 about 10 sec.

But: problem gets hard very fast.

For extended spec with

∀𝑖:¬𝑔𝑖𝑈𝑟𝑖 ∧ 𝐺 𝑔𝑖 → ¬𝑔𝑖𝑈𝑟𝑖 ,

needs about 240 sec.

Benefits of Parameterized Synthesis

Swen Jacobs

VTSA 2013

36

Parameterized Synthesis: Optimizations

[VMCAI13]

Swen Jacobs

VTSA 2013

37

Modular Synthesis:

 Instead of one cutoff for whole system, use different

cutoffs for conjuncts

∀𝑖: 𝐺 𝑟𝑖 → 𝐹𝑔𝑖 cutoff 2

∀𝑖 ≠ 𝑗: 𝐺¬ 𝑔𝑖 ∧ 𝑔𝑗 cutoff 4

(before: one cutoff for whole formula)

 Encoded separately (with same uninterpreted

functions), conjoined for solving

 large parts of specifications have small cutoffs

(properties are local to the process)

Parameterized Synthesis: Optimizations

Swen Jacobs

VTSA 2013

38

Size of SMT queries:

full4: 6MB 0.6MB

pnueli4: 21MB 4MB

Parameterized Synthesis: Optimizations

Swen Jacobs

VTSA 2013

39

More optimizations:

 local synthesis for local properties ∀𝑖: 𝜑 𝑖

 optimized annotations (counters for SCCs)

 bottom-up encoding of global transition relation

 hard-coding token possession

Parameterized Synthesis: Challenges

Swen Jacobs

VTSA 2013

40

 Make approach applicable to more architectures

 lots of parameterized verification results can potentially

be lifted to synthesis

 Find out what is needed to synthesize industrial case

studies, like AMBA, in parameterized way

 theoretical extensions (synchronous, architecture)

 additional optimizations

Swen Jacobs

VTSA 2013

41

Quantitative Specifications

Swen Jacobs

VTSA 2013

42 Specification Example: Arbiter

 Input: r0, r1

 Output: g0, g1

 Specification (in LTL):

 G(r0  F g0)

 G(r1  F g1)

 G (g0  g1)

Arbiterr0,

r1

g0,

g1

Any nasty arbiters that

satisfy the spec?

Swen Jacobs

VTSA 2013

43 Specification Example: Arbiter

 Input: r0, r1

 Output: g0, g1

 Specification (in LTL):

 G(r0  F g0)

 G(r1  F g1)

 G (g0  g1)

 Unnecessary grants!

 Arbitrary time between

request and grant!

Arbiterr0,

r1

g0,

g1

Swen Jacobs

VTSA 2013

44 A Different Arbiter (Safety)

 Input: r0, r1

 Output: g0, g1

Specification (in LTL):

Guarantees:

 G(r0  g0)

 G(r1  g1)

 G (g0  g1)

Assumption:

 G (r0  r1)

Any nasty arbiters that

satisfy the spec?

Arbiterr0,

r1

g0,

g1

Swen Jacobs

VTSA 2013

45 A Different Arbiter (Safety)

 Input: r0, r1

 Output: g0, g1

Specification (in LTL):

Guarantees:

 G(r0  g0)

 G(r1  g1)

 G (g0  g1)

Assumption:

 G (r0  r1)

 What if two requests

come simultaneously?

 Spec does not

guarantee robustness!

Arbiterr0,

r1

g0,

g1

Swen Jacobs

VTSA 2013

46 Specifications

 Claim: traditional specs have their drawbacks

 Goal: introduce new specification language to state

properties like

 ASAP

 As little as possible

 Robustness

 …

Swen Jacobs

VTSA 2013

47 Boolean View – Black & White

Language is function mapping words to {0,1}

System is a set of words

A good system has only good words

But: some systems are better than others! Now what?

good (1)bad (0)

M2M1
M3

M4

M1 M2
M3

M4

Set of all words

Swen Jacobs

VTSA 2013

48 Boolean View – Black & White

Updating the spec may be hard

 Properties may be hard to find

 You may loose abstraction

 Spec may become long & unreadable

good (1)bad (0)

M2M1
M3

M4

M1 M2
M3

M4

Swen Jacobs

VTSA 2013

49 Revisit Basic Assumption

Language is function mapping words to {0,1}

good (1)bad (0)

M2M1
M3

M4

M1 M2
M3

M4

Swen Jacobs

VTSA 2013

50 Quantitative view – Grey scale

Language is function mapping words to ℝ

bad (0)

M2M1
M3

M4

M1 M2
M3

M4

better

>0

Swen Jacobs

VTSA 2013

51 Questions

Design Questions:

 How do we assign a value to a word?

 Given L:   ℝ, what is the value of a system?

Technical Questions

 How do we verify that the value of a system is OK?

 How do we synthesize an optimal system?

Swen Jacobs

VTSA 2013

52 Value of a Word

 Idea: reward good events

 Use deterministic automata with weights on edges

 A:   N

 Summarize weights of a word. Options:

 LA(w) = min(A(w))

 LA(w) = max(A(w))

 LA(w) = meanvalue(A(w))

 Mean value gives you mean payoff automata

Swen Jacobs

VTSA 2013

53 Example: Quick Grants



w1  (rg r g rg)



w2 (rg r g r g)



w3 (rg rg rg)


(111)



(001)



(000)


value(w1) 1



value(w2) 
1
3



value(w3)  0

Value determined by mean-payoff automaton

Arbiterr0,

r1

g0,

g1

Swen Jacobs

VTSA 2013

54 Value of a System

What is the value of a system?

 The value of the worst word

 The value of an average word

 The value of the best word

Worst-case analysis is natural extension of Boolean case

bad (0)

M2M1
M3

M4

M1 M2
M3

M4

better

Swen Jacobs

VTSA 2013

55 Questions

Design Questions:

 How do we assign a value to a word?

 Given L:   R, what is the value of a system?

Technical Questions

 How do we verify that the value of a system is OK?

 How do we synthesize an optimal system?

Swen Jacobs

VTSA 2013

56 Compute System Value

 Given a mean-payoff automaton A and

a reactive system S, compute value(S)

value = value𝐴1 + value𝐴2

2x

𝐴𝑖 S

Swen Jacobs

VTSA 2013

57 Specification × System

value = value𝐴1 + value𝐴2

2x

Swen Jacobs

VTSA 2013

58 Specification × System

2x

Worst mean-payoff = payoff in minimum mean-payoff cycle

Swen Jacobs

VTSA 2013

59 How to Construct Optimal System?

Given

 A classical specification 

 A quantitative specification 

Construct a reactive system S that

 satisfies  and

 optimizes .

Swen Jacobs

VTSA 2013

60 Synthesis of Reactive Systems

Classical

Specification

Construct

two player

game

Solve

game

Construct

system

Correct

system

Swen Jacobs

VTSA 2013

61

Swen Jacobs

VTSA 2013

61 Synthesis of Reactive Systems

Safety

Construct

two player

game

Solve

game

Construct

system

Correct

system

+ Mean-

payoff

Mean-

payoff

Optimal[EhrenfeuchtMycielski79]

Swen Jacobs

VTSA 2013

62 Example: Quick Grants

turn into game.

Arbiterr0,

r1

g0,

g1

Swen Jacobs

VTSA 2013

63

gamestrategy

Mean payoff game:

 Circle maximizes, square minimizes.

 Unmarked edges have value 0

value? strategy?

Example: Quick Grants

¬𝑟

𝑔 (1)

𝑟

𝑔 (1)

¬𝑔

Swen Jacobs

VTSA 2013

64 Drawbacks of Worst Case Analysis?

 Input: r0, r1

 Output: g0, g1

Specification (in LTL):

Guarantees:

 G(r0  g0)

 G(r1  g1)

 G (g0  g1)

 minimize #grants

Assumption:

 G (r0  r1)

Suppose payoff 1 when no

grant is given

Worst case value?

Optimal

implementation?

Arbiterr0,

r1

g0,

g1

Swen Jacobs

VTSA 2013

65 Drawbacks of Worst Case Analysis?

 Input: r0, r1

 Output: g0, g1

Specification (in LTL):

Guarantees:

 G(r0  g0)

 G(r1  g1)

 G (g0  g1)

 minimize #grants

Assumption:

 G (r0  r1)

Worst case: grant in every tick –
payoff 0

Thus, behavior when no
requests arrive is irrelevant!

Arbiter that behaves best in
worst case



best arbiter!

Arbiterr0,

r1

g0,

g1

Swen Jacobs

VTSA 2013

66 Drawbacks of Worst-Case Analysis

G(r  g)

mininize #g

value?

worst-case optimal: 0

optimal strategy?

¬𝑟

𝑔(0)

𝑟

𝑔(0)

¬𝑔(1)

¬𝑔(1)

An optimal, but undesirable strategy!

Swen Jacobs

VTSA 2013

67 Admissibility

 Strategy  dominates strategy ’ if

antagonist strategies , payoff(, )  payoff(’, )

antagonist strategy , payoff(, ) > payoff(’, )

 Strategy ’ is admissible if there is no  such that

 dominates ’

 Careful: theorems from Boolean games break.

 e.g. admissible strategy may not be winning

 Not all mean payoff games have finite admissible

optimal strategies!

Swen Jacobs

VTSA 2013

69 Case II: Liveness

 Liveness spec stated as parity automata

 Solve Mean-payoff parity game

[ChatterjeeHenzingerJurdzinski05]

 Lexicographic version for multiple objectives

[BloemChatterjeeHenzingerJobstmann09]

Swen Jacobs

VTSA 2013

70

Robustness

(An Application of Quantitative Specs)

Swen Jacobs

VTSA 2013

71

A robust system behaves “reasonably” even in
circumstances that were not anticipated in the
requirements specification.
[GhezziJazayeriMandrioli91]

Questions

 How do you specify robustness?

 How do you check robustness or construct robust
systems?

Very little attention in formal methods

Robustness

Swen Jacobs

VTSA 2013

72 Example: Air Traffic Control

The air traffic control system must track up to 50 planes.

(In that case,) response time must be at most 1 second.

 What happens when plane 51 arrives?
 System crashes?

 Airplane 51 is ignored?

 Response time goes up to 1.2 seconds?

 What about airplane 52? 53? 99?

You want graceful degradation!

But: digital systems have no

natural notion of continuity!
0

0,2

0,4

0,6

0,8

1

1,2

1,4

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56

Response time

[Davis90]

Swen Jacobs

VTSA 2013

73 Example: Arbiter

 Input: r0, r1

 Output: g0, g1

Specification (in LTL):

Guarantees G:

 G(r0  X g0)

 G(r1  X g1)

 G (g0  g1)

Assumption A:

 G (r0  r1)

Arbiterr0,

r1

g0,

g1

Swen Jacobs

VTSA 2013

74 Two Correct Controllers

Input trace: r1r2 r1 𝑟2
𝜔

Output trace: 𝑔1𝑔2 𝑔1𝑔2
𝜔

r1r2 r1 𝑟2
𝜔

𝑔1𝑔2 𝑔1𝑔2
𝜔

Specification: A  G

g1g2

g1g2

g1g2


r1r2

r1

r1r2

r1

M1

g1g2

g1g2

r2

r1r2

r1r2

r2

r1

r1 

M2

Does not recover from an error! Does recover from an error!

Verification does not distinguish between two systems

Synthesis may give you either system

Swen Jacobs

VTSA 2013

75 What May Go Wrong?

 System errors

 Soft errors (transient)

 Permanent faults

 Environment errors

 Operator error

 Transmission line error

 Implementation error

We focus on environment errors

Swen Jacobs

VTSA 2013

76 What is Reasonable?

Typical proposals:

 System behavior unchanged [FeySuelflowDrechsler]

 System behaves according to original spec
[SeshiaLiMitra]

 System recovers to safe state [self-stabilization,

Dijkstra]

 System recovers to safe state quickly [Baarir et al.]

Swen Jacobs

VTSA 2013

77 What is Reasonable?

Claim: User should decide
what is reasonable

For arbiter:

When two requests come

 drop one?

 drop both?

 grant both?

How do we state what is
preferable?

g1 = G(r1  X g1)  G(r2  X g2)

g2 = G (g1  g2)

a = G (r1  r2)

Spec: a g1  g2

Arbiterr0,

r1

g0,

g1

Swen Jacobs

VTSA 2013

78 Stating what is Preferable

Case by case analysis of wrong

behavior?

 bothersome!

 impossible?

0

0,2

0,4

0,6

0,8

1

1,2

1,4

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56

Response time

planes response time (s)

50 1

51 1.1

52 1.2

53 1.3

… …

Swen Jacobs

VTSA 2013

79 Proposal: Error Functions as Automata

Error measure d is sum of weights on edges

Good properties of this error function:

- Behavior σ is error-free: d(σ)=0

- Behavior σ has errors: d(σ)>0

Bad property:

- Does not distinguish between single and multiple
errors

r1

r1

r1g1

r1g1(0)

(0)

(0)

(0)

g1

true

(1)
G(r1  X g1)

(1)

Environment error: 0

System error: 0

Environment error: 1

System error: ∞

r1 0 1 1 1 1 1 ...

r2 0 0 0 0 0 0 ...

g1 0 0 1 1 1 1 …

g2 1 1 0 0 0 0 …

r1 0 1 1 1 1 1 ...

r2 0 1 0 0 0 0 ...

g1 0 0 0 1 1 1 …

g2 1 1 1 0 0 0 …

Swen Jacobs

VTSA 2013

80 A Better Error Function

r1

r1

r1g1

r1g1(0)

(0)

(0)

(0)

g1(1)

Environment error: 0

System error: 0

r1 0 1 1 1 1 1 ...

r2 0 0 0 0 0 0 ...

g1 0 0 1 1 1 1 …

g2 1 1 0 0 0 0 …

similar for

other propertiesg1

true

Environment error: 1

System error: 1

r1 0 1 1 1 1 1 ...

r2 0 1 0 0 0 0 ...

g1 0 0 0 1 1 1 …

g2 1 1 1 0 0 0 …

Swen Jacobs

VTSA 2013

81 Error Specifications

 Specs have the form A  G

 Error specs consist of an error automaton for the
environment and one for the system

 For each word: an error value for environment and for
system

 Specify

 How you interpret incorrect input?

 How to continue with output

 Typical choices for input:

 ignore input

 reset

 treat like similar input

Swen Jacobs

VTSA 2013

82 Robustness

Robustness = recovery from error

 We call a system robust if

 Finite environment error implies finite system error

g1g2

g1g2

g1g2



g1g2

g1g2

r1r2

r1 r2

r1r2 r1r2

r1r2
r2

r1

r1
r1 

M1 M2

Cf. two arbiters

Swen Jacobs

VTSA 2013

83 Refining the Idea – Quantitative Specs

Spec is of the form A  G

 A are assumptions on
environment

 G are guarantees of system

Idea: take ratio of system
errors to environment errors

 Airplanes: ratio of excess
planes to excess response
time

 Arbiter: ratio of double
requests to missed requests

0

0,2

0,4

0,6

0,8

1

1,2

1,4

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56

Response time

Arbiterr0,

r1

g0,

g1

Swen Jacobs

VTSA 2013

84 Ratios

System is k-robust if

For every environment error, there are

at most k system errors (in the limit)

d: sys-err = k  env-err + d

env-err

sys-err

d

Swen Jacobs

VTSA 2013

85 Robustness – Wrap-up

Questions:
 how to specify robustness (graceful degradation)

 how to check robustness

 how to synthesize robust systems

One solution:
 User defines costs for “non-standard” behavior

 Value of a words: mean payoff automaton

 Value of a system: minimium value of its words

 Combining values: addition or lexicographic

 Robustness means that system can only make finitely
many errors if the system does

 k-robustness means that the ration between system faults
and environment faults is at most k.

Swen Jacobs

VTSA 2013

86 Concluding - Synthesis

 Synthesis: Applying game theory to real problems

 Solving games

 Constructing efficient strategies/implementations

 Distributed and parameterized cases

 Specification

 influences complexity, expressibility, ease of use

 Quantitative measures may help

Thanks for your interest and patience.

Bibliography

[VMCAI12] B. Finkbeiner, S. Jacobs: Lazy Synthesis. VMCAI 12.

[PnueliRosner90] A. Pnueli, R. Rosner: Distributed Reactive Systems are Hard to

Synthesize. FOCS 90.

[FinkbeinerSchewe05] B. Finkbeiner, S. Schewe: Uniform Distributed Synthesis.

LICS 05.

[TACAS12] S. Jacobs, R. Bloem: Parameterized Synthesis. TACAS 12.

[VMCAI13] A. Khalimov, S. Jacobs, R. Bloem: Towards Efficient Parameterized

Synthesis. VMCAI 13.

[EmersonNamjoshi95] E. Emerson, K. Namjoshi: Reasoning about Rings. POPL 95.

[EhrenfeuchtMycielski79] A. Ehrenfeucht, J. Mycielski: Positional Strategies for Mean

Payoff Games. IJGT 79.

[ChatterjeeHenzingerJurdzinski05] K. Chatterjee, T. Henzinger, M. Jurdzinski: Mean-

Payoff Parity Games. LICS 05.

[BloemChatterjeeHenzingerJobstmann09] R. Bloem, K. Chatterjee, T. Henzinger, B.

Jobstmann: Better quality in synthesis through quantitative objectives. CAV 09.

[GhezziJazayeriMandrioli91] C. Ghezzi, M. Jazayeri, D. Mandrioli: Software qualities

and principles.

