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 Synthesis as a Game

 General: LTL Synthesis

 Time-Efficient: GR(1) Synthesis

 Application: AMBA Bus Protocol

 Space-Efficient: Bounded/Safraless Approaches



Synthesis, Part II: Advanced Topics

Swen Jacobs

VTSA 2013

3

 Lazy Synthesis

 Distributed Synthesis

 Parameterized Synthesis

 Quantitative Specifications

 Robustness
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Lazy Synthesis



Lazy Synthesis [VMCAI12]
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 Based on SMT-based Bounded Synthesis

 Idea: instead of full translation to SMT, use lazy 

encoding in abstraction refinement approach

 Integrates model checking approach to test 

candidate models and obtain counterexamples
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Partial Design
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 Part of system already implemented

 Other part to be synthesized

 Interface of processes given



Lazy Synthesis: Overview
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Outer Loop:

 Search for implementation of size 𝑛, increment 𝑛 if 
unrealizability is proved

Synthesis Loop:

For a given bound 𝑛:

1. SOLVE: check satisfiability of constraints, 
obtain candidate implementation

2. CHECK: model check candidate and white-box 
with monitor automata

3. REFINE: if errors are reachable,

construct constraints excluding error paths



Lazy Synthesis: Solve Phase
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 Transition relation represented as function

𝑡𝑟𝑎𝑛𝑠:𝔹 𝐼 × ℕ → ℕ,

 Outputs as functions of type ℕ → 𝔹

 Initial constraints: size constraint, initial state

 More constraints are added in subsequent calls

 Check satisfiability of constraints and obtain model



Lazy Synthesis: Check Phase
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Translate assumptions & guarantees to safety automata

Assumption: 𝐆𝐅 𝑅𝐸𝐴𝐷𝑌

Guarantee: 𝐆 𝐵𝑈𝑆𝑅𝐸𝑄𝑖 → 𝐅 𝑀𝐴𝑆𝑇𝐸𝑅 = 𝑖

Restriction to safety depends on size bound
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 Model-check candidate + white-box + automata

 If errors found, call Refine phase,

otherwise candidate model satisfies full spec



Lazy Synthesis: Refine Phase
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 If model checker finds errors, encode

them into SMT constraints, forbid them

 In BDD-based implementation, 

we can obtain tree of all error 

paths of minimum length

 this tree can be translated 

into a constraint that forbids 

all minimal errors

∈?𝐄𝟐∈ 𝐄𝟐 ∈ 𝐄𝟐 ∈ 𝐄𝟐 ∉ 𝐄𝟐

∈?𝐄𝟏

∈?𝐄𝟎
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 Error tree translated to constraint 

that forbids all error paths,

restricted to interface of black-box

 For every path, the constraint

expresses that at least one 

output needs to be different



Lazy Synthesis: Overview
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Outer Loop:

 Search for implementation of size 𝑛, increment 𝑛 if 
unrealizability is proved

Synthesis Loop:

For a given bound 𝑛:

1. SOLVE: check satisfiability of constraints, 
obtain candidate implementation

2. CHECK: model check candidate and white-box 
with monitor automata

3. REFINE: if errors are reachable,

construct constraints excluding error paths



Reconsider AMBA case study, with partial implementation for

deterministic parts:

“The arbiter indicates which bus master is currently the 

highest priority [...] by asserting the appropriate GRANTi

signal. When the current transfer completes, as indicated by 

READY HIGH, then [...] the arbiter will change the 

MASTER[3:0] signals to indicate the bus master number.”

[AMBA Specification (Rev 2.0), ARM Ltd.]

Lazy Synthesis: AMBA Case Study
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Other statements translated to LTL:

“The arbitration mechanism is used to ensure that only one 

master has access to the bus at any one time.”

∀𝑖 ≠ 𝑗: 𝐆 𝑅𝐸𝐴𝐷𝑌 → ¬ 𝐺𝑅𝐴𝑁𝑇𝑖 ∧ 𝐺𝑅𝐴𝑁𝑇𝑗

Some statements modeled with auxiliary variables:

“Normally the arbiter will only grant a different bus master 

when a burst is completing.”

∀𝑖: 𝐆 ¬𝐷𝐸𝐶𝐼𝐷𝐸 → 𝐺𝑅𝐴𝑁𝑇𝑖 ↔ 𝐗 𝐺𝑅𝐴𝑁𝑇𝑖

(𝐷𝐸𝐶𝐼𝐷𝐸 defined s.t. it is high when a burst completes)

Lazy Synthesis: AMBA Case Study
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 AMBA with partial implementation for deterministic parts

 crucial part synthesized: arbiter

Lazy Synthesis: AMBA Case Study
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More recent results go up to 16 masters

bounded/lazy

Synthesis time still grows 

(double) exponentially!
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Synthesis time still grows 

(double) exponentially!

bounded/lazy
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 SMT solving incremental, but Model Checking 

restarted every time

 deep integration of incremental model checking?

 interface and safety abstraction currently given by 

hand

 automatically minimize interface?

 automatic safety abstraction, or use liveness model 

checker?

 Parallelize?

 Extend to distributed case?
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Distributed Synthesis



Why Distributed Synthesis?
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 Many interesting systems are distributed:

 multi-threaded programs

 multi-core processors

 communication protocols

 distributed control

 …

 Both a prerequisite and a motivation for 

parameterized synthesis



Distributed Synthesis
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 Several processes, each decides about subset of 

outputs

 Easy case: all processes have full information; 

this reduces to standard synthesis problem

 How so?

 Every process has all inputs, but only subset of outputs

 In worst case, synthesize full system for all processes 

and throw away unnecessary outputs



Partial Information
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 Hard case: every process only has limited 

information about environment (and other 

processes)

 Very hard, but decidable, for some architectures 

like pipelines



Partial Information
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 Undecidable if there is an information fork

[PnueliRosner90,FinkbeinerSchewe05]



Partial Information: Bounded Synthesis
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Semi-decision procedure possible, e.g. based on bounded 

synthesis.

Model distributed systems by projection functions from a 

global state 𝑡 to local state 𝑑𝑖 𝑡 of component 𝑖

Partial information then expressed by constraints of the form

𝑑𝑖 𝑡 = 𝑑𝑖 𝑡
′ ∧ 𝐼 ∩ 𝐼𝑖 = 𝐼′ ∩ 𝐼𝑖 → 𝑑𝑖 𝜏 𝑡, 𝐼 = 𝑑𝑖 𝜏 𝑡′, 𝐼′

(for every process 𝑖)
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Parameterized Synthesis



Parameterized Synthesis 
[TACAS12,VMCAI13]
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 Many specifications are parametric in nature

 AMBA, communication protocols, etc.

Can we synthesize building blocks 

for arbitrary size systems?



Parameterized Synthesis

Swen Jacobs

VTSA 2013

29

Building blocks:

 Distributed synthesis

 of uniform processes

 Decidability results for parameterized verification

 particularly, cutoffs



Parameterized Verification
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Parameterized verification is decidable for certain systems

Asynchronous System:

No global clock, a subset of processes

are allowed to make a move in every 

global step (decided by external scheduler).

Token Ring:

Processes only communicate by passing 

single (value-less) token in ring architecture. 

Always exactly one process is scheduled, 

except for token passing steps.



Parameterized Verification
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Parameterized verification is decidable for certain systems

Theorem [EmersonNamjoshi95]:

In token rings with fair token passing, 

a given process implementation satisfies

parameterized specification 𝜑 in LTL\X 

iff it satisfies 𝝋 in a ring of small size:

2 processes for 𝜑 = ∀𝑖: 𝑓 𝑖

3 processes for 𝜑 = ∀𝑖: 𝑓(𝑖, 𝑖 + 1)

4 processes for 𝜑 = ∀𝑖, 𝑗: 𝑓 𝑖, 𝑗

5 processes for 𝜑 = ∀𝑖, 𝑗: 𝑓 𝑖, 𝑖 + 1, 𝑗

Corollary: For parameterized synthesis

in token rings, it is sufficient to synthesize 

a process implementation satisfying 𝜑 in 

a ring of size 2 – 5.



(Un)Decidability
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Does decidability of parameterized verification make 

synthesis decidable?

No, since even for two uniform processes in a token ring, 

distributed synthesis is undecidable.

A reduction result from Clarke et al. [CTTV04] shows that 

parameterized synthesis for formulas ∀𝑖: 𝜑 𝑖 reduces to 

synthesis of one process, which is decidable.



Parameterized Synthesis: Procedure

Swen Jacobs

VTSA 2013

33

1. Use cutoff to reduce parameterized synthesis 

problem to distributed synthesis problem

2. Modified encoding (from bounded synthesis) of 

realizability of specification with 

 uniform processes

 in a token ring architecture

 with fair scheduling and fair token-passing

3. Solve problem with SMT solver 

(for increasing bounds)



Modified Encoding
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Bounded synthesis encoding with following extensions:

 synthesis of uniform processes:

 add constraints that specify equivalence of local transitions

 use same output labels for all processes

 token-passing systems:

 add constraints ensuring correct token passing of exactly 

one token in the ring

 fairness of scheduling and token passing:

 added directly to LTL specification



(First) Experiments
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Can synthesize distributed arbiter

in token ring of 4 processes

with spec

∀𝑖: 𝐺 𝑟𝑖 → 𝐹𝑔𝑖

∀𝑖 ≠ 𝑗:¬ 𝑔𝑖 ∧ 𝑔𝑗

This takes Z3 about 10 sec.

But: problem gets hard very fast.

For extended spec with

∀𝑖:¬𝑔𝑖𝑈𝑟𝑖 ∧ 𝐺 𝑔𝑖 → ¬𝑔𝑖𝑈𝑟𝑖 ,

needs about 240 sec.
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Parameterized Synthesis: Optimizations

[VMCAI13]
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Modular Synthesis:

 Instead of one cutoff for whole system, use different 

cutoffs for conjuncts

∀𝑖: 𝐺 𝑟𝑖 → 𝐹𝑔𝑖 cutoff 2

∀𝑖 ≠ 𝑗: 𝐺¬ 𝑔𝑖 ∧ 𝑔𝑗 cutoff 4

(before: one cutoff for whole formula)

 Encoded separately (with same uninterpreted

functions), conjoined for solving

 large parts of specifications have small cutoffs

(properties are local to the process)



Parameterized Synthesis: Optimizations
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Size of SMT queries:

full4: 6MB 0.6MB

pnueli4: 21MB 4MB



Parameterized Synthesis: Optimizations
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More optimizations:

 local synthesis for local properties ∀𝑖: 𝜑 𝑖

 optimized annotations (counters for SCCs)

 bottom-up encoding of global transition relation

 hard-coding token possession
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 Make approach applicable to more architectures

 lots of parameterized verification results can potentially 

be lifted to synthesis

 Find out what is needed to synthesize industrial case 

studies, like AMBA, in parameterized way

 theoretical extensions (synchronous, architecture)

 additional optimizations
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Quantitative Specifications
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 Input: r0, r1

 Output: g0, g1

 Specification (in LTL):

 G(r0  F g0)

 G(r1  F g1)

 G (g0  g1)

Arbiterr0, 

r1

g0, 

g1

Any nasty arbiters that 

satisfy the spec?
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43 Specification Example: Arbiter

 Input: r0, r1

 Output: g0, g1

 Specification (in LTL):

 G(r0  F g0)

 G(r1  F g1)

 G (g0  g1)

 Unnecessary grants!

 Arbitrary time between 

request and grant!

Arbiterr0, 

r1

g0, 

g1
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 Input: r0, r1

 Output: g0, g1

Specification (in LTL):

Guarantees:

 G(r0  g0)

 G(r1  g1)

 G (g0  g1)

Assumption:

 G (r0  r1)

Any nasty arbiters that 

satisfy the spec?

Arbiterr0, 

r1

g0, 

g1
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45 A Different Arbiter (Safety)

 Input: r0, r1

 Output: g0, g1

Specification (in LTL):

Guarantees:

 G(r0  g0)

 G(r1  g1)

 G (g0  g1)

Assumption:

 G (r0  r1)

 What if two requests 

come simultaneously?

 Spec does not 

guarantee robustness!

Arbiterr0, 

r1

g0, 

g1
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 Claim: traditional specs have their drawbacks

 Goal: introduce new specification language to state 

properties like

 ASAP

 As little as possible

 Robustness

 …
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Language is function mapping words to {0,1}

System is a set of words 

A good system has only good words

But: some systems are better than others!  Now what?

good (1)bad (0)

M2M1
M3

M4

M1 M2
M3

M4

Set of all words
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Updating the spec may be hard

 Properties may be hard to find

 You may loose abstraction

 Spec may become long & unreadable

good (1)bad (0)

M2M1
M3

M4

M1 M2
M3

M4
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Language is function mapping words to {0,1}

good (1)bad (0)

M2M1
M3

M4

M1 M2
M3

M4
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Language is function mapping words to ℝ

bad (0)

M2M1
M3

M4

M1 M2
M3

M4

better

>0
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Design Questions:

 How do we assign a value to a word?

 Given L:   ℝ, what is the value of a system?

Technical Questions

 How do we verify that the value of a system is OK?

 How do we synthesize an optimal system?
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 Idea: reward good events

 Use deterministic automata with weights on edges

 A:   N

 Summarize weights of a word.  Options:

 LA(w) = min(A(w))

 LA(w) = max(A(w))

 LA(w) = meanvalue(A(w))

 Mean value gives you mean payoff automata
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

w1  (rg r g rg)

  



w2 (rg r g r g)

  



w3 (rg rg rg )


(111)



(001)



(000)


value(w1) 1



value(w2) 
1
3



value(w3)  0

Value determined by mean-payoff automaton

Arbiterr0, 

r1

g0, 

g1
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What is the value of a system?

 The value of the worst word

 The value of an average word

 The value of the best word

Worst-case analysis is natural extension of Boolean case

bad (0)

M2M1
M3

M4

M1 M2
M3

M4

better



Swen Jacobs

VTSA 2013

55 Questions

Design Questions:

 How do we assign a value to a word?

 Given L:   R, what is the value of a system?

Technical Questions

 How do we verify that the value of a system is OK?

 How do we synthesize an optimal system?
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 Given a mean-payoff automaton A and 

a reactive system S, compute value(S)

value = value𝐴1 + value𝐴2

2x

𝐴𝑖 S
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57 Specification × System

value = value𝐴1 + value𝐴2

2x
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2x

Worst mean-payoff = payoff in minimum mean-payoff cycle
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Given

 A classical specification 

 A quantitative specification 

Construct a reactive system S that

 satisfies  and

 optimizes .
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60 Synthesis of Reactive Systems

Classical

Specification

Construct

two player

game

Solve

game

Construct

system

Correct

system
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Swen Jacobs
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61 Synthesis of Reactive Systems

Safety

Construct

two player

game

Solve

game

Construct

system

Correct

system

+ Mean-

payoff

Mean-

payoff

Optimal[EhrenfeuchtMycielski79]
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62 Example: Quick Grants

turn into game.

Arbiterr0, 

r1

g0, 

g1
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gamestrategy

Mean payoff game:

 Circle maximizes, square minimizes.  

 Unmarked edges have value 0

value? strategy?

Example: Quick Grants

¬𝑟

𝑔 (1)

𝑟

𝑔 (1)

¬𝑔
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 Input: r0, r1

 Output: g0, g1

Specification (in LTL):

Guarantees:

 G(r0  g0)

 G(r1  g1)

 G (g0  g1)

 minimize #grants

Assumption:

 G (r0  r1)

Suppose payoff 1 when no 

grant is given

Worst case value?

Optimal 

implementation?

Arbiterr0, 

r1

g0, 

g1
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65 Drawbacks of Worst Case Analysis?

 Input: r0, r1

 Output: g0, g1

Specification (in LTL):

Guarantees:

 G(r0  g0)

 G(r1  g1)

 G (g0  g1)

 minimize #grants

Assumption:

 G (r0  r1)

Worst case: grant in every tick –
payoff 0

Thus, behavior when no 
requests arrive is irrelevant!

Arbiter that behaves best in 
worst case 



best arbiter!

Arbiterr0, 

r1

g0, 

g1
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66 Drawbacks of Worst-Case Analysis

G(r  g)

mininize #g

value?

worst-case optimal: 0

optimal strategy?

¬𝑟

𝑔(0)

𝑟

𝑔(0)

¬𝑔(1)

¬𝑔(1)

An optimal, but undesirable strategy!
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67 Admissibility

 Strategy  dominates strategy ’ if

antagonist strategies , payoff(, )  payoff(’, )

antagonist strategy , payoff(, ) > payoff(’, )

 Strategy ’ is admissible if there is no  such that 

 dominates ’

 Careful: theorems from Boolean games break.

 e.g. admissible strategy may not be winning

 Not all mean payoff games have finite admissible 

optimal strategies!
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 Liveness spec stated as parity automata

 Solve Mean-payoff parity game 

[ChatterjeeHenzingerJurdzinski05]

 Lexicographic version for multiple objectives 

[BloemChatterjeeHenzingerJobstmann09]
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Robustness

(An Application of Quantitative Specs)
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A robust system behaves “reasonably” even in 
circumstances that were not anticipated in the 
requirements specification. 
[GhezziJazayeriMandrioli91]

Questions

 How do you specify robustness?

 How do you check robustness or construct robust 
systems?

Very little attention in formal methods

Robustness
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72 Example: Air Traffic Control

The air traffic control system must track up to 50 planes. 

(In that case,) response time must be at most 1 second.

 What happens when plane 51 arrives?
 System crashes?

 Airplane 51 is ignored?

 Response time goes up to 1.2 seconds?

 What about airplane 52? 53? 99?

You want graceful degradation!

But: digital systems have no 

natural notion of continuity!
0

0,2

0,4

0,6

0,8

1

1,2

1,4

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56

Response time

[Davis90]
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73 Example: Arbiter

 Input: r0, r1

 Output: g0, g1

Specification (in LTL):

Guarantees G:

 G(r0  X g0)

 G(r1  X g1)

 G (g0  g1)

Assumption A:

 G (r0  r1)

Arbiterr0, 

r1

g0, 

g1
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74 Two Correct Controllers

Input trace: r1r2 r1  𝑟2
𝜔

Output trace: 𝑔1𝑔2 𝑔1𝑔2
𝜔

r1r2 r1  𝑟2
𝜔

𝑔1𝑔2 𝑔1𝑔2
𝜔

Specification: A  G

g1g2

g1g2

g1g2


r1r2

r1

r1r2

r1

M1

g1g2

g1g2

r2

r1r2

r1r2

r2

r1

r1 

M2

Does not recover from an error! Does recover from an error!

Verification does not distinguish between two systems

Synthesis may give you either system
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75 What May Go Wrong?

 System errors

 Soft errors (transient)

 Permanent faults

 Environment errors

 Operator error

 Transmission line error

 Implementation error

We focus on environment errors
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76 What is Reasonable?

Typical proposals:

 System behavior unchanged [FeySuelflowDrechsler]

 System behaves according to original spec 
[SeshiaLiMitra]

 System recovers to safe state [self-stabilization, 

Dijkstra]

 System recovers to safe state quickly [Baarir et al.]
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77 What is Reasonable?

Claim: User should decide 
what is reasonable

For arbiter: 

When two requests come

 drop one?

 drop both?

 grant both?

How do we state what is 
preferable? 

g1 = G(r1  X g1)  G(r2  X g2) 

g2 = G (g1  g2) 

a   = G (r1  r2) 

Spec: a g1  g2

Arbiterr0, 

r1

g0, 

g1
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78 Stating what is Preferable

Case by case analysis of wrong 

behavior?

 bothersome!

 impossible? 

0

0,2

0,4

0,6

0,8

1

1,2

1,4

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56

Response time

planes response time (s)

50 1

51 1.1

52 1.2

53 1.3

… …
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79 Proposal: Error Functions as Automata

Error measure d is sum of weights on edges

Good properties of this error function:

- Behavior σ is error-free: d(σ)=0

- Behavior σ has errors: d(σ)>0

Bad property:

- Does not distinguish between single and multiple 
errors

r1

r1

r1g1

r1g1(0)

(0)

(0)

(0)

g1

true

(1)
G(r1  X g1)

(1)

Environment error: 0

System error: 0

Environment error: 1

System error: ∞

r1    0 1 1 1 1 1 ...

r2    0 0 0 0 0 0 ...

g1   0 0 1 1 1 1 …

g2   1 1 0 0 0 0 …

r1    0 1 1 1 1 1 ...

r2    0 1 0 0 0 0 ...

g1   0 0 0 1 1 1 …

g2   1 1 1 0 0 0 …
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80 A Better Error Function

r1

r1

r1g1

r1g1(0)

(0)

(0)

(0)

g1(1)

Environment error: 0

System error: 0

r1    0 1 1 1 1 1 ...

r2    0 0 0 0 0 0 ...

g1   0 0 1 1 1 1 …

g2   1 1 0 0 0 0 …

similar for  

other propertiesg1

true

Environment error: 1

System error: 1

r1    0 1 1 1 1 1 ...

r2    0 1 0 0 0 0 ...

g1   0 0 0 1 1 1 …

g2   1 1 1 0 0 0 …
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81 Error Specifications

 Specs have the form A  G

 Error specs consist of an error automaton for the 
environment and one for the system

 For each word: an error value for environment and for 
system

 Specify

 How you interpret incorrect input?

 How to continue with output

 Typical choices for input:

 ignore input

 reset

 treat like similar input
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82 Robustness

Robustness = recovery from error

 We call a system robust if 

 Finite environment error  implies finite system error

g1g2

g1g2

g1g2



g1g2

g1g2

r1r2

r1 r2

r1r2 r1r2

r1r2
r2

r1

r1
r1 

M1 M2

Cf. two arbiters
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83 Refining the Idea – Quantitative Specs

Spec is of the form A  G

 A are assumptions on 
environment

 G are guarantees of system

Idea: take ratio of  system 
errors to environment errors

 Airplanes: ratio of excess 
planes to excess response 
time

 Arbiter: ratio of double 
requests to missed requests

0

0,2

0,4

0,6

0,8

1

1,2

1,4

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56

Response time

Arbiterr0, 

r1

g0, 

g1
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84 Ratios

System is k-robust if

For every environment error, there are 

at most k system errors (in the limit)

d: sys-err = k  env-err + d

env-err

sys-err

d
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85 Robustness – Wrap-up

Questions: 
 how to specify robustness (graceful degradation)

 how to check robustness

 how to synthesize robust systems

One solution:
 User defines costs for “non-standard” behavior

 Value of a words: mean payoff automaton

 Value of a system: minimium value of its words

 Combining values: addition or lexicographic

 Robustness means that system can only make finitely 
many errors if the system does

 k-robustness means that the ration between system faults 
and environment faults is at most k.



Swen Jacobs

VTSA 2013

86 Concluding - Synthesis

 Synthesis: Applying game theory to real problems

 Solving games

 Constructing efficient strategies/implementations

 Distributed and parameterized cases

 Specification

 influences complexity, expressibility, ease of use

 Quantitative measures may help



Thanks for your interest and patience.
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