» 7 E it Nt 2y F ' N
= " i W, i’ - T e k.
’ SCOS
» www.iaik.tugraz.at
S ems

Ty,

End of Synthesis, Part |: Basics

= Synthesis as a Game

= General: LTL Synthesis

= Time-Efficient: GR(1) Synthesis

= Application: AMBA Bus Protocol

= Space-Efficient: Bounded/Safraless Approaches

snaos SCOS
Secure & Correct Systems

Swen Jacobs Y e

Ty,

Synthesis, Part Il: Advanced Topics

= Lazy Synthesis
= Distributed Synthesis
= Parameterized Synthesis

= Quantitative Specifications
= Robustness

VTSA 2013 SC(.)S

Swen Jacobs Secure & Correct Systems

Lazy Synthesis

VTSA 2013 SCOS
Secure & Co Systi

Swen Jacobs re & Correct Systems

Lazy Synthesis [VMCAI12]

» Based on SMT-based Bounded Synthesis

» |dea: instead of full translation to SMT, use lazy
encoding in abstraction refinement approach

= [ntegrates model checking approach to test
candidate models and obtain counterexamples

VTSA 2013 SC@S

Swen Jacobs Secure & Correct Systems

) Lazy Synthesis: Overview

Partial Design
+ Specification

&— Lazy Synthesis

Constraint Solving
+ Model Generation

& Refinement
Model Checking

'

Implementation

VTSA 2013 SC(.)S

Swen Jacobs Secure & Correct Systems

Partial Design l
; / \
. NG
= {
-
\ 4

= Part of system already implemented
= QOther part to be synthesized
* [Interface of processes given

VTSA 2013 SC(.)S

Swen Jacobs Secure & Correct Systems

B Lazy Synthesis: Overview

Outer Loop:

= Search for implementation of size n, increment n if
unrealizability is proved

Synthesis Loop:
For a given bound n:

1. SOLVE: check satisfiability of constraints,
obtain candidate implementation

2. CHECK: model check candidate and white-box
with monitor automata

3. REFINE: if errors are reachable,
construct constraints excluding error paths

VTSA 2013 SC@S

Swen Jacobs Secure & Correct Systems

B Lazy Synthesis: Solve Phase

= Transition relation represented as function
trans: Bl x N - N,

= Qutputs as functions of type N - B

= [nitial constraints: size constraint, initial state

= More constraints are added in subsequent calls

= Check satisfiability of constraints and obtain model

sazo SCOS
Swen Jacobs

Secure & Correct Systems

Lazy Synthesis: Check Phase

Translate assumptions & guarantees to safety automata
Assumption: GF READY
Guarantee: G(BUSREQi —» F (MASTER = i))

BUSREQi READY READY READY READY
Sheotheotthel

~O_ O
‘\\—//

MASTER=|

Restriction to safety depends on size bound

VTSA 2013 SCOS

Swen Jacobs Secure & Correct Systems

Lazy Synthesis: Check Phase

= Model-check candidate + white-box + automata

E3 E2

= |f errors found, call Refine phase,
otherwise candidate model satisfies full spec

VTSA 2013 SCOS

Swen Jacobs Secure & Correct Systems

Ty
Lazy Synthesis: Refine PhaXﬁee oranches On

input valualio™

= |f model checker finds errors, enc&je
them into SMT constraints, forbid them

= |In BDD-based implementation,
we can obtain tree of all error
paths of minimum length
= this tree can be translated

INto a constraint that forbid®
all minimal errors €7E1

VTSA 2013 SC(.)S

Swen Jacobs Secure & Correct Systems

Lazy Synthesis: Refine Phase

= Error tree translated to constraint
that forbids all error paths,
restricted to interface of black-box

= For every path, the constraint
expresses that at least one
output needs to be different

VTSA 2013 SCOS

Swen Jacobs Secure & Correct Systems

Lazy Synthesis: Overview

Outer Loop:

= Search for implementation of size n, increment n if
unrealizability is proved

Synthesis Loop:
For a given bound n:

1. SOLVE: check satisfiability of constraints,
obtain candidate implementation

2. CHECK: model check candidate and white-box
with monitor automata

3. REFINE: if errors are reachable,
construct constraints excluding error paths

VTSA 2013 SC@S

Swen Jacobs Secure & Correct Systems

Ty

Lazy Synthesis: AMBA Case Study

Reconsider AMBA case study, with partial implementation for
deterministic parts:

“The arbiter indicates which bus master is currently the
highest priority [...] by asserting the appropriate GRANTI
signal. When the current transfer completes, as indicated by
READY HIGH, then [...] the arbiter will change the
MASTER[3:0] signals to indicate the bus master number.”

[AMBA Specification (Rev 2.0), ARM Ltd.]

VTSA 2013 SCOS

Swen Jacobs Secure & Correct Systems

Ty,

Lazy Synthesis: AMBA Case Study

Other statements translated to LTL:

“The arbitration mechanism is used to ensure that only one
master has access to the bus at any one time.”
Vi # j: G(READY — —(GRANTi A GRANT)))

Some statements modeled with auxiliary variables:

“Normally the arbiter will only grant a different bus master
when a burst is completing.”
Vi: G(=DECIDE - (GRANTi & X GRANTY))

(DECIDE defined s.t. it is high when a burst completes)

VTSA 2013 SC(.)S

Swen Jacobs Secure & Correct Systems

Ty

Lazy Synthesis: AMBA Case Study

= AMBA with partial implementation for deterministic parts
= crucial part synthesized: arbiter

BUSREQ1l BUSREQn READY LOCK1 LOCKn BURST[1:0]

R

DECIDE /~
h —_ T
PAN — O k

n —-

GRANTI
-

"

GRANT1 GRANTN If‘lf

MASTER[mM:0] MASTLOCK

VTSA 2013 SCOS

Swen Jacobs Secure & Correct Systems

Ty

AMBA: Bounded size of implementations

140

Synthesis time still grows
(double) exponentially!

1200

/

1000

Circuit size
800

/

600

/

400

[
|

v

200

=t

O_

VTSA 2013
Swen Jacobs

I‘#I.I.I.—

1 2 3 456 7 8 910

#masters

- KS
-= cofactors
- new spec

-o— manual
o—®pounded/lazy

More recent results go up to 16 masters

SCOS

Secure & Correct Systems

Ty,

AMBA: Bounded size of implementations

Synthesis time still grows
(double) exponentially!

25000

20000

15000

10000

5000

0

o Anz Total Time

=== Marduk (Rev. 272) [

*—® bounded/lazy /

A

|
[V /-

2 Bl 6 8 10

12

14

16

VTSA 2013
Swen Jacobs

SCOS

Secure & Correct Systems

Lazy Synthesis: Challenges

SMT solving incremental, but Model Checking
restarted every time

= deep integration of incremental model checking?

Interface and safety abstraction currently given by
hand

= automatically minimize interface?

* automatic safety abstraction, or use liveness model
checker?

Parallelize?
Extend to distributed case?

VTSA 2013 SC@S

Swen Jacobs

Secure & Correct Systems

Distributed Synthesis

sazors SCOS
Secure & Co Systi

Swen Jacobs re & Correct Systems

Why Distributed Synthesis?

= Many interesting systems are distributed: |-
= multi-threaded programs
= multi-core processors P N s

lr4 / l

= communication protocols - .
lr3 ;2/ lgz

= distributed control
= N

= Both a prerequisite and a motivation for
parameterized synthesis

lgS

VTSA 2013 SC(.)S

Swen Jacobs Secure & Correct Systems

Distributed Synthesis

» Several processes, each decides about subset of
outputs

= Easy case: all processes have full information;
this reduces to standard synthesis problem
= How so0?
= Every process has all inputs, but only subset of outputs

* In worst case, synthesize full system for all processes
and throw away unnecessary outputs

VTSA 2013 SC@S

Swen Jacobs Secure & Correct Systems

Partial Information

= Hard case: every process only has limited
Information about environment (and other
processes)

= Very hard, but decidable, for some architectures
like pipelines

" _) _) _) _)OUtpUtS

rsazous SCOS
Secure & Ci

Swen Jacobs orrect Systems

Partial Information

= Undecidable if there is an information fork
[PnueliRosner90,FinkbeinerSchewe05]

VTSA 2013
Swen Jacobs

Ty
Partial Information: Bounded Synthesis

Semi-decision procedure possible, e.g. based on bounded
synthesis.

Model distributed systems by projection functions from a
global state t to local state d;(t) of component i

Partial information then expressed by constraints of the form
di(t) — di(t’) A (I N Il) — (I, N [l) — di('l'(t, I)) — di(T(t,,I’))
(for every process i)

VTSA 2013 SCOS

Swen Jacobs Secure & Correct Systems

Parameterized Synthesis

VTSA 2013 SCOS

Swen Jacobs ure & Correct System

Parameterized Synthesis
[TACAS12,VMCAI13]

= Many specifications are parametric in nature
= AMBA, communication protocols, etc.

KR Rt

~— <o — -

l gl In1 Inn l g4
Can we synthesize building blocks
for arbitrary size systems?

VTSA 2013 SCOS

Swen Jacobs ot Systoms

Parameterized Synthesis

Building blocks:

= Distributed synthesis
= of uniform processes

= Decidability results for parameterized verification
= particularly, cutoffs

VTSA 2013 SCOS

Swen Jacobs Secure & Correct Systems

Parameterized Verification

Parameterized verification is decidable for certain systems
Asynchronous System:

No global clock, a subset of processes B . 2
are allowed to make a move in every |- of Je AN {j

global step (decided by external scheduler). D

t2 g2
Token Ring: [N / l
Processes only communicate by passing B
single (value-less) token in ring architecture.
Always exactly one process is scheduled, lgs

except for token passing steps.

VTSA 2013 SC@S

Swen Jacobs Secure & Correct Systems

Parameterized Verification

Parameterized verification is decidable for certain systems

Theorem [EmersonNamjoshi95]: B

In token rings with fair token passing,) 2
a given process implementation satisfies lm M/ 191 \ l

parameterized specification ¢ in LTL\X

Iff it satisfies ¢ in aring of small size: D o 02
. . ~ /]

Corollary: For parameterized synthesis l“

In token rings, It is sufficient to synthesize D

a process implementation satisfying ¢ Iin

a ring of size 2 — 5. lga

.

VTSA 2013 SC@S

Swen Jacobs Secure & Correct Systems

(Un)Decidability

Does decidability of parameterized verification make
synthesis decidable?

No, since even for two uniform processes in a token ring,
distributed synthesis is undecidable.

Areduction result from Clarke et al. [CTTV04] shows that
parameterized synthesis for formulas Vi: ¢ (i) reduces to
synthesis of one process, which is decidable.

VTSA 2013 SC@S

Swen Jacobs Secure & Correct Systems

Ty,

Parameterized Synthesis: Procedure

1. Use cutoff to reduce parameterized synthesis
problem to distributed synthesis problem

2. Modified encoding (from bounded synthesis) of
realizability of specification with
= uniform processes
* In a token ring architecture
= with fair scheduling and fair token-passing

3. Solve problem with SMT solver
(for increasing bounds)

VTSA 2013 SC@S

Swen Jacobs Secure & Correct Systems

Modified Encoding

Bounded synthesis encoding with following extensions:

= synthesis of uniform processes:
= add constraints that specify equivalence of local transitions
= use same output labels for all processes

= token-passing systems:

= add constraints ensuring correct token passing of exactly
one token in the ring

= fairness of scheduling and token passing:
= added directly to LTL specification

VTSA 2013 SC(.)S

Swen Jacobs Secure & Correct Systems

(First) Experiments

Can synthesize distributed arbiter lm
In token ring of 4 processes
with spec
. t1 ‘

Vi:G(r; = Fg;) V lm lz
vi#ji-(g:iAg)) }
This takes Z3 about 10 sec. "

" t2 g2
But: problem gets hard very fast. lg4 ‘\ts er / l

For extended spec with

needs about 240 sec. lgs

VTSA 2013 SC(.)S

Vi: —lgiUT'l' N G(gl — —IgiUT'i) :

Swen Jacobs

Secure & Correct Systems

Ty

Benefits of Parameterized Synthesis

600

basic
extended —
500 f
w400 -
@
E
|_
E 300
=
aq 200
100 | .
0 — I
1 2 3 4 5 6

Number of Processes

VTSA 2013 SCOS

Swen Jacobs Secure & Correct Systems

Ty,

Parameterized Synthesis: Optimizations
[VMCAI13]

Modular Synthesis:

= [nstead of one cutoff for whole system, use different
cutoffs for conjuncts

Vi:G(r; - Fg;) ﬁ cutoff 2
Vi # j: G_I(gi /\gj) d cutoff 4
(before: one cutoff for whole formula)

* Encoded separately (with same uninterpreted
functions), conjoined for solving

= large parts of specifications have small cutoffs
(properties are local to the process)

VTSA 2013 SC@S

Swen Jacobs Secure & Correct Systems

TU

Grazm

Parameterized Synthesis: Optimizations

Table 2: Effect of general optimizations on solving time (in seconds). Timeout

1s 7200s.
simple4 full2 full3 full4 pnueli2 pnueli3 pnueli4 pnuelib pnueli6
bottom up 3 24 934 t/o 23 6737 t/o t/o t/o
strengthening 1 6 81 638 2 13 90 620 6375
modular 1 4 8 13 2 4 11 49 262

Size of SMT queries:
full4: 6MB) 0.6MB

pnueli4: 21MB) 4MB

VTSA 2013 SC(.)S

Swen Jacobs Secure & Correct Systems

Ty
Parameterized Synthesis: Optimizations

More optimizations:

= Jocal synthesis for local properties Vi: ¢ (i)

= optimized annotations (counters for SCCs)

= bottom-up encoding of global transition relation
= hard-coding token possession

103 on some examples

Speed-up: >

VTSA 2013 SCOS

Swen Jacobs Secure & Correct Systems

Ty
Parameterized Synthesis: Challenges

= Make approach applicable to more architectures

= |ots of parameterized verification results can potentially
be lifted to synthesis

= Find out what is needed to synthesize industrial case
studies, like AMBA, in parameterized way

* theoretical extensions (synchronous, architecture)
= additional optimizations

VTSA 2013 SC@S

Swen Jacobs Secure & Correct Systems

Quantitative Specifications

VTSA 2013 SCOS

Swen Jacobs Y iy s

Specification Example: Arbiter

go,
gl

ro,
rl

" InputrO, 1l Any nasty arbiters that
= Qutput: g0, g1 g
satisfy the spec?
= Specification (in LTL):
= G(r0 > Fg0)
= G(rl—>Fqgl)
= G—(g0Agl)

VTSA 2013 SC(‘)S

Swen Jacobs Secure & Correct Systems

Specification Example: Arbiter

ro, go!

rl gl
" Input:r0, rl = Unnecessary grants!
= Qutput: g0, g1 : :
= Arbitrary time between
= Specification (in LTL): request and grant!

= G(r0 > Fg0)
= G(rl—>Fqgl)
= G —=(g0Agl)

VTSA 2013 SC(‘)S

Swen Jacobs Secure & Correct Systems

A Different Arbiter (Safety)

go,
gl

ro,
rl

I 10, rl .
(r)]lI[J)tuptutr g(r), gl Any nasty arbiters that

' ?
Specification (in LTL): SatISfy the SPec:
Guarantees:

G(r0O — g0)

G(rl —» gl)

G —(g0 A 91)
Assumption:

G —(r0O A 1l)

VTSA 2013 SC(.)S

Swen Jacobs Secure & Correct Systems

A Different Arbiter (Safety)

go,
gl

ro,
rl

= |nput: r0, rl :
. Output: 40, gl = What if two requests

come simultaneously?
Specification (in LTL):

Guarantees: = Spec does not

" G(0—g0) guarantee robustness!
= G(r1 > g1l

= G—=(g0Agl

Assumption:

= G—(rOArl)

VTSA 2013 SC(.)S

Swen Jacobs Secure & Correct Systems

Specifications

= Claim: traditional specs have their drawbacks
» Goal: introduce new specification language to state
properties like
= ASAP
= As little as possible
= Robustness

VTSA 2013 SCOS

Swen Jacobs Secure & Correct Systems

Boolean View — Black & White

Language is function mapping words to {0,1}
System Is a set of words

A good system has only good words
But: some systems are better than others! Now what?

VTSA 2013 SC(.)S

Swen Jacobs Secure & Correct Systems

Boolean View — Black & White

Updating the spec may be hard
* Properties may be hard to find
* You may loose abstraction
= Spec may become long & unreadable

VTSA 2013 SCOS
Secure & Ci

Swen Jacobs orrect Systems

Revisit Basic Assumption

Language Is function mapping words to {0,1}

sazns SCOS
Secure & Ci

Swen Jacobs orrect Systems

Quantitative view — Grey scale

Language is function mapping words to R

VTSA 2013 SC(‘)S

Swen Jacobs Secure & Correct Systems

Questions

Design Questions:
= How do we assign a value to a word?
= Given L: 2 —» R, what is the value of a system?

Technical Questions
= How do we verify that the value of a system is OK?
= How do we synthesize an optimal system?

VTSA 2013 SC@S

Swen Jacobs Secure & Correct Systems

Value of a Word

= |dea: reward good events
» Use deterministic automata with weights on edges
= A 20— No
= Summarize weights of a word. Options:
= La(w) = min(A(w))
" La(w) = max(A(w))
= L,(w) = meanvalue(A(w))
= Mean value gives you mean payoff automata

VTSA 2013 SC@S

Swen Jacobs Secure & Correct Systems

14/1 — (rg rg]/'g)w (1] l)w value(wl) = 1

w,=(rg rg rg)’ 001)° value(w,) =3
w,=(rg rg rg)” (000)” value(w,) =0

Value determined by mean-payoff automaton
VTSA 2013 SCOS

Swen Jacobs ct Systems

Value of a System

What is the value of a system?
* The value of the worst word

* The value of an average word
* The value of the best word

Worst-case analysis is natural extension of Boolean case
better

(=)
©

VTSA 2013
Swen Jacobs

SCOS

Secure & Correct Systems

Questions

Design Questions:
= How do we assign a value to a word?
= Given L: 2 —» R, what is the value of a system?

Technical Questions
= How do we verify that the value of a system is OK?
= How do we synthesize an optimal system?

VTSA 2013 SC@S

Swen Jacobs Secure & Correct Systems

Compute System Value

= Given a mean-payoff automaton A and
a reactive system S, compute value(S)

alve -valuc, - vae,) \ | sews’

Swen Jacobs Secure & Correct Systems

72/9132

Tg/glgg
. 71/9192 T2/9192
' r172/9132 T1/9192
\ 7:G: (1) / \F1T2f§192 /
72/91G2(2)

72/9132(2)

. 71/8192(2) ro/g1g2(1)
O e O)
' r172/91g2(1) r1/G192(1)

F1r2/3194(2)

VTSA 2013 SC(‘)S

Swen Jacobs Secure & Correct Systems

4 g:(1) g (0)\ 4 Fz/glgg 72/9132 N\
71/9192 r2 /9132
@.0.
r1T2/91§2 r1/G192
\ Figi(l) / \‘r‘l?"gfglgg /

72/9192(2)

szﬂ1§2(2)

71/9192(2)

—-

rir2/g1G2(1)

‘Worst mean-payoff = payoff in minimum mean-payoff cycle ‘

VTSA 2013 SCOS

Swen Jacobs Secure & Correct Systems

How to Construct Optimal System?

Given
= A classical specification ¢
= A quantitative specification vy
Construct a reactive system S that
= satisfies ¢ and
= optimizes .

VTSA 2013 SCOS

Swen Jacobs Secure & Correct Systems

m Synthesis of Reactive Systems

Classical
Specification

Construct
two player
game

Construct
system

Correct
system

VTSA 2013 SC@S

Swen Jacobs Secure & Correct Systems

eactive Systems

Construct
two player
game

Construct
system

[EhrenfeuchtMycielski79] Optimal

Correct

system

VTSAZIEA 2013 S C (.) s

Swen Jacobs Secure & Correct Systems

turn into game.

VTSA 2013 SC(‘)S

Swen Jacobs Secure & Correct Systems

Example: Quick Grants

Mean payoff game:

= Circle maximizes, sguare minimizes.
= Unmarked edges have value 0
value? strategy?

g (1)
OO
B =

VTSA 2013 SC(.)S

Swen Jacobs Secure & Correct Systems

TU

Grazm

Drawbacks of Worst Case Analysis?

ro,
rl

- Input: r0, rl
= Qutput: g0, gl

Specification (in LTL):

Guarantees:
= G(r0O — g0)
= G(rl1 —» gl)

= G —(g0AQl)

" minimize #grants
Assumption:

= G —(rOAnl)

VTSA 2013 SC(.)S

Swen Jacobs Secure & Correct Systems

Drawbacks of Worst Case Analysis?

go,
gl

ro,
rl

* Input: 10, rl Worst case: grant in every tick —
= Output: g0, g1 payoff O

S Thus, behavior when no
Specification (in LTL): requests arrive is irrelevant!
Guarantees:
= G(r0 —» g0) _ _
- G(rl > g1) Arbiter that behaves best in
= G —(g0Agl) WOrst case
" minimize #grants e
Assumption: best arbiter!

= G —(rOAnl)

VTSA 2013 SCOS

Swen Jacobs e & Correct Systems

E Drawbacks of Worst-Case Analysis

9(0) ‘l'

nRoy

w

—g(1D) g(0)

G(r— g)
mininize #g

value?
worst-case optimal: 0

optimal strategy?

An optimal, but undesirable strategy!

VTSA 2013
Swen Jacobs

SCOS

Secure & Correct Systems

Admissibility

= Strategy c dominates strategy o' if
Vantagonist strategies p, payoff(c, p) > payoff(c’, p)
dJantagonist strategy p, payoff(c, p) > payoff(c’, p)

= Strategy o' is admissible if there is no ¢ such that
c dominates ¢’

= Careful: theorems from Boolean games break.
* e.g. admissible strategy may not be winning

= Not all mean payoff games have finite admissible
optimal strategies!

sazo SCOS
Swen Jacobs

Secure & Correct Systems

E Case Il: Liveness

= Liveness spec stated as parity automata

= Solve Mean-payoff parity game
[ChatterjeeHenzingerJurdzinskiO5]

= Lexicographic version for multiple objectives
[BloemChatterjeeHenzingerJobstmannQ9]

VTSA 2013 SCOS

Swen Jacobs Secure & Correct Systems

Robustness
(An Application of Quantitative Specs)

rsazous SCOS
Secure & Correct Systems

Swen Jacobs

Robustness

A robust system behaves “reasonably” even in
circumstances that were not anticipated in the
requirements specification.
[GhezziJazayeriMandrioli91]

Questions
= How do you specify robustness?

= How do you check robustness or construct robust
systems?

Very little attention in formal methods

sazo SCOS
Swen Jacobs

Secure & Correct Systems

Example: Air Traffic Control

The alir traffic control system must track up to 50 planes.
(In that case,) response time must be at most 1 second.

» What happens when plane 51 arrives? [Davis90]
= System crashes?
= Airplane 51 is ignored?
= Response time goes up to 1.2 seconds?

* What about airplane 527 537 992 Responsetime

1,2 /
| /
You want graceful degradation! 08 —
But: digital systems have no o _—
natural notion of continuity! o2 —

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56

VTSA 2013 SCOS

Swen Jacobs Secure & Correct Systems

TU

Grazm

Example: Arbiter

ro,
rl

= |nput: r0, rl
= Qutput: g0, gl

Specification (in LTL):
Guarantees G:

= G(r0 > Xg0)

= G(rl > Xgl)

= G—(g0Agl)
Assumption A:

= G—(rOArl)

VTSA 2013 SC(.)S

Swen Jacobs Secure & Correct Systems

Ty

&l Two Correct Controllers

Does not recover from an error! |5 I Does recover from an error! I

/Mz v,)

e

Verification does not distinguish between two systems
Synthesis may give you either system

a2 SCOS
Secure & Ci

Swen Jacobs orrect Systems

What May Go Wrong?

= System errors
= Soft errors (transient)
* Permanent faults
= Environment errors
= Operator error
= Transmission line error
* Implementation error

We focus on environment errors

VTSA 2013 SCOS

Swen Jacobs Secure & Correct Systems

What is Reasonable?

Typical proposals:
= System behavior unck

ed [FeySuelflowDrechsler]

= System behz Ng to original spec
[SeshiaLiMi

= System recovers to sg Ate [self-stabilization,
Dijkstra]

= System recd gsafe state quickly [Baarir et al.]

sazos SCOS
Swen Jacobs

Secure & Correct Systems

What is Reasonable?

Claim: User should decide
what Is reasonable

For arbiter:

When two requests come
= drop one? gl =G(rl > X gl) A G(r2 - X g2)
= drop both? 92 =G —(gl A g2)
= grant both? a =G —(r1Ar2)

Spec:a—»> gl Ag2

How do we state what Is
preferable?

VTSA 2013 SCOS

Swen Jacobs Secure & Correct Systems

Stating what is Preferable

Case by case analysis of wrong
behavior?

= pothersomel!

= Impossible?
Response time

1,2 /
<50 1 . -
51 11 0.8
- 15 06 //
53 1.3 -
0,2 /
rarargreressspnpngrprgrgrpngan
VTSA 2013 SC@S

Swen Jacobs Secure & Correct Systems

Ty

Proposal: Error Functions as Automata

r_l(O) r1g1(0) true (1)
r1(0) Q Q
BB o

r1gl (0)

Error measure ¢ isssui afiweights on gdogg1 111 ..
Good propertigs OfGBIG&E0rar function2 01 0000 ..

- Behavior o |§§ Eouré‘reko d(o)=0 9 993"

Behavior o has errors: 0)>0 g2 11000...
- S |) Environment error: 1
Bad property: Environment erro

System error;
- Does not d|S§XQU|n}werrgtR/veen smgle)é 5 multiple

errors

VTSA 2013 SCOS

Swen Jacobs Secure & Correct Systems

m A Better Error Function

11(0) r1g1(0) true
r1(0) o similar for
Q0 O Q)

Q.@ ‘ other properties

rIgl (0)

91(1)
ri 011111.. rl 011111..
r2 000000... r2 010000...
gl 001111... gl 000111...
g2 110000... g2 111000 ...
Environment error: O Environment error: 1
System error: 0 System error: 1

VTSA 2013 SC(.)S

Swen Jacobs Secure & Correct Systems

Error Specifications

= Specs have the form A — G

= Error specs consist of an error automaton for the
environment and one for the system

= For each word: an error value for environment and for
system

= Specify
= How you interpret incorrect input?
= How to continue with output
= Typical choices for input:
= |gnore input
= reset
= treat like similar input

VTSA 2013 SC@S

Swen Jacobs Secure & Correct Systems

Robustness

Robustness = recovery from error

* We call a system robust if
* Finite environment error implies finite system error

Cf. two arbiters

VTSA 2013 SC(.)S

Swen Jacobs Secure & Correct Systems

Refining the Idea — Quantitative Specs

Spec is of the form A — G Response time
= Aare assumptions on -)
. 1,2

environment 1 /

= G are guarantees of system o,
0,6 /
. 0,4 /

Idea: take ratio of system o

errors to environmenterrors |, 1

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56

= Airplanes: ratio of excess
planes to excess response
time
ro,

= Arbiter: ratio of double =
requests to missed requests

VTSA 2013 SC@S

Swen Jacobs Secure & Correct Systems

Ratios

System is k-robust if

For every environment error, there are
at most k system errors (in the limit)

id: sys-err =k - env-err + d

sys-err

env-err

VTSA 2013 SCOS

Swen Jacobs Secure & Correct Systems

Robustness — Wrap-up

Questions:
= how to specify robustness (graceful
= how to check robustness
= how to synthesize robust systems be

One solution: a' /%
» User defines costs for “non-standard” behaww
= Value of a words: mean payoff automaton
= Value of a system: minimium value of its words
= Combining values: addition or lexicographic

= Robustness means that system can only make finitely
many errors if the system does

= k-robustness means that the ration between system faults
and environment faults is at most k.

VTSA 2013 SCOS

Swen Jacobs Secure & Correct Systems

gQqradation)

Concluding - Synthesis

= Synthesis: Applying game theory to real problems
= Solving games
= Constructing efficient strategies/implementations
= Distributed and parameterized cases
= Specification

* influences complexity, expressibility, ease of use

= Quantitative measures may help

VTSA 2013 SC@S

Swen Jacobs Secure & Correct Systems

Ty

Thanks for your interest and patience.

s \ > A ’ .
PATIENT BEAR

Will be ready when you are

SCOS
Secure & Correct Systems

TU

Grazm

M Bibliography

[VMCAI12] B. Finkbeiner, S. Jacobs: Lazy Synthesis. VMCAI 12.

[PnueliRosner90] A. Pnueli, R. Rosner: Distributed Reactive Systems are Hard to
Synthesize. FOCS 90.

[FinkbeinerSchewe05] B. Finkbeiner, S. Schewe: Uniform Distributed Synthesis.
LICS 05.

[TACAS12] S. Jacobs, R. Bloem: Parameterized Synthesis. TACAS 12.

[VMCAIL13] A. Khalimov, S. Jacobs, R. Bloem: Towards Efficient Parameterized
Synthesis. VMCAI 13.

[EmersonNamjoshi95] E. Emerson, K. Namjoshi: Reasoning about Rings. POPL 95.

[EhrenfeuchtMycielski79] A. Ehrenfeucht, J. Mycielski: Positional Strategies for Mean
Payoff Games. [IJGT 79.

[ChatterjeeHenzingerJurdzinskiO5] K. Chatterjee, T. Henzinger, M. Jurdzinski: Mean-
Payoff Parity Games. LICS 05.

[BloemChatterjeeHenzingerJobstmann09] R. Bloem, K. Chatterjee, T. Henzinger, B.
Jobstmann: Better quality in synthesis through quantitative objectives. CAV 009.

[GhezziJazayeriMandrioli91] C. Ghezzi, M. Jazayeri, D. Mandrioli: Software qualities

and principles.
SCOS

Secure & Correct Systems

