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Modular instantiation-based reasoning



SAT/SMT vs First-Order

The problem: Show that a given formula is a theorem.

Ground (SAT/SMT)

P(a) ∨ Q(c , d)

¬P(a) ∨ Q(d , c)

Very efficient

Not very expressive

DPLL

Industry

First-Order

∀x∃y Q(x , y) ∨ ¬Q(y , f (x))

P(a) ∨ Q(d , c)

Very expressive

Ground: not as efficient

Resolution/Superposition

Academia → Industry

From Ground to First-Order: Efficient at gound + Expressive?
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Traditional Methods: Resolution

Reasoning Problem

Given a set of first order clauses S , prove S is unsatisfiable.

Resolution :

C ∨ L L′ ∨ D
(C ∨ D)σ

Example :

Q(x) ∨ P(x) ¬P(a) ∨ R(y)

Q(a) ∨ R(y)

L1 ∨ C1

...

Ln ∨ Cn

Weaknesses:

I Inefficient in propositional case

I Length of clauses can grow fast

I Recombination of clauses

I No effective model representation
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Basic idea behind instantiation proving

Can we approximate first-order by ground reasoning?

Theorem (Herbrand). For a quantifier free formula ϕ(x̄);

∀x̄ϕ(x̄) is unsatisfiable iff
∧

i ϕ(t̄i ) is unsatisfiable,

for some ground terms t̄1, . . . , t̄n.

Basic idea: Interleave instantiation with propositional reasoning.

Main issues:

I How to restrict instantiations.

I How to interleave instantiation with propositional reasoning.

6 / 144



Basic idea behind instantiation proving

Can we approximate first-order by ground reasoning?

Theorem (Herbrand). For a quantifier free formula ϕ(x̄);

∀x̄ϕ(x̄) is unsatisfiable iff
∧

i ϕ(t̄i ) is unsatisfiable,

for some ground terms t̄1, . . . , t̄n.

Basic idea: Interleave instantiation with propositional reasoning.

Main issues:

I How to restrict instantiations.

I How to interleave instantiation with propositional reasoning.

7 / 144



Different approaches

Gilmore (1960): generation of ground instances

Robinson (1965): resolution

Plaisted et al (1992): hyper-linking

Plaisted & Zhu (2000): semantics-based instance generation

Letz & Stenz (2000): disconnection tableaux-type calculus

Hooker et al (2002): generation of instances with sem. selection

Baumgartner & Tinelli (2003): ME: Lifting of DPLL

Ganzinger & Korovin (2003): Inst-Gen calculus, modular ground

reasoning

Claessen (2005): Equinox

. . . many instantiation based methods for different

fragments/logics
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Overview of the Inst-Gen procedure

First-Order Clauses

S

Ground Clauses

S⊥

⊥ : x̄ → ⊥

Theorem Proved

S⊥ UnSAT

C ∨ L L′ ∨ D

(C ∨ L)σ (L′ ∨ D)σ

Igr |= L⊥, L′⊥ σ = mgu(L, L′)

S⊥ SAT

Igr |= S⊥

Theorem.[Ganzinger, Korovin LICS’03] Inst-Gen is sound and complete.
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Example:

p(f (x), b) ∨ q(x , y)

¬p(f (f (x)), y)

¬q(f (x), x)

p(f (⊥), b) ∨ q(⊥,⊥)

¬p(f (f (⊥)),⊥)

¬q(f (⊥),⊥)

p(f (f (x)), b) ∨ q(f (x), y)

¬p(f (f (x)), b)

p(f (x), b) ∨ q(x , y)

¬p(f (f (x)), y)

¬q(f (x), x)

p(f (f (⊥)), b) ∨ q(f (⊥),⊥)

¬p(f (f (⊥)), b)

p(f (⊥), b) ∨ q(⊥,⊥)

¬p(f (f (⊥)),⊥)

¬q(f (⊥),⊥)

The final set is propositionally unsatisfiable.
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Resolution vs Inst-Gen

Resolution :

(C ∨ L) (L′ ∨ D)

(C ∨ D)σ

σ = mgu(L, L′)

Instantiation :

(C ∨ L) (L′ ∨ D)

(C ∨ L)σ (L′ ∨ D)σ

σ = mgu(L, L′)

Weaknesses of resolution:

Inefficient in the ground/EPR case

Length of clauses can grow fast

Recombination of clauses

No explicit model representation

Strengths of instantiation:

Modular ground reasoning

Length of clauses is fixed

Decision procedure for EPR

No recombination

Semantic selection

Redundancy elimination

Effective model presentation
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Redundancy Elimination

The key to efficiency is redundancy elimination.

Ground clause C is redundant if

I C 1, . . . ,Cn |= C

I C 1, . . . ,Cn ≺ C

I P(a) |= Q(b) ∨ P(a)

I P(a) ≺(((((
(

Q(b) ∨ P(a)

Where ≺ is a well-founded ordering.

Theorem [Ganzinger, Korovin]. Redundant clauses/closures can be

eliminated.

Consequences:

I many usual redundancy elimination techniques

I redundancy for inferences

I new instantiation-specific redundancies
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Simplifications by SAT/SMT solver [Korovin IJCAR’08]

Can off-the-shelf ground solver be used to simplify ground clauses?

Abstract redundancy:

C1, . . . ,Cn |= C

C1, . . . ,Cn ≺ C

Sgr |= C — ground solver

follows from smaller ?

Basic idea:

I split D ⊂ C

I check Sgr |= D

I add D to S and remove C

Global ground subsumption:

���
�

D ∨ C ′

D

where Sgr |= D and C ′ 6= ∅
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Global Ground Subsumption [Korovin IJCAR’08]

Sgr

¬Q(a, b) ∨ P(a) ∨ P(b)

P(a) ∨ Q(a, b)

¬P(b)

C

P(a) ∨ Q(c , d) ∨ Q(a, c)

A minimal D ⊂ C such that Sgr |= D can be found in

a linear number of implication checks.

Global Ground Subsumption generalises:

I strict subsumption

I subsumption resolution

I . . .
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Non-Ground Simplifications by SAT/SMT [Korovin IJCAR’08]

Off-the-shelf ground solver can be used to simplify ground clauses.

Can we do more?

Yes!

Ground solver can be used to simplify non-ground clauses.

The main idea:

Sgr |= ∀x̄C (x̄)

C1(x̄), . . . ,Cn(x̄) ∈ S

C1(x̄), . . . ,Cn(x̄) ≺ C (x̄)

Sgr |= C (d̄) for fresh d̄

C1(d̄), . . . ,Cn(d̄) |= C (d̄) as

in Global Subsumption

Non-Ground Global Subsumption
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Non-Ground Global Subsumption

S

¬P(x) ∨ Q(x)

¬Q(x) ∨ S(x , y)

P(x) ∨ S(x , y)

C

S(x , y) ∨ Q(x)

Sgr

¬P(a) ∨ Q(a)

¬Q(a) ∨ S(a, b)

P(a) ∨ S(a, b)

Cgr

Simplify first-order by purely ground reasoning!
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Non-Ground Global Subsumption
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Finer-grained control: closure orderings

Finer-grained control: replace ground clauses with ground closures.

Closure, a closure is a pair C · σ,

where C is a clause and σ a grounding substitution

(A(a) ∨ B(x)) · [b/x ]

Represents: ground clause Cσ

A(a) ∨ B(b)

Closure ordering: any total, well-founded ordering such that

Cθ · τ ≺ C · σ if

I Cσ = Cθτ , and

I θ properly instantiates C

Slogan: more specific representations take priority over less specific ones

Ex: (p(a) ∨ q(z)) · [b/z ] ≺ (p(y) ∨ q(z)) · [a/y , b/z ]
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Finer-grained control: closure orderings

Finer-grained control: replace ground clauses with ground closures.

Closure, a closure is a pair C · σ,

where C is a clause and σ a grounding substitution
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Closure-based redundancy elimination

Definition call C · σ redundant in S if

I C1 · σ1, . . . ,Cn · σn |= C · σ and

I C1 · σ1, . . . ,Cn · σn ≺ C · σ

Theorem. [Ganzinger, Korovin]

Redundant closures (and clauses) can be eliminated.

Consequences:

I generalises usual redundancy

I new instantiation specific redundancies

I blocking non-proper instances (merging variables) can be eliminated

I dismatching constraints

I redundancy for inferences
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Dismatching Constraints [Korovin (IJCAR’08, vol. HG’13)]

Example:

p(x) ∨ ¬q(f (x)) (1)

p(f (x)) ∨ ¬q(f (f (x))) (2)

q(f(f(a))) (3)

Then the inference between (1) and (2) is redundant!

Why? the conclusion is represented twice p(f (a)) ∨ ¬q(f (f (a)))

p(f (x)) ∨ ¬q(f (f (x))) · [a/x ] ≺ p(x) ∨ ¬q(f (x)) · [f (a)/x ]

This can be represented as a dismatching constraint.

p(x) ∨ ¬q(f (x)) | x /ds f (x)

How to make closures redundant? Instantiate!

Every proper instantiation inference makes closures redundant in the

premise.
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Dismatching Constraints [Korovin IJCAR’08, HG’13]

Example

A(f (y)) ∨ D1 ¬A(x) ∨ C

| x /ds f (y)

A(f 3(y)) ∨ D2

¬A(f (y)) ∨ C

A(f 5(y)) ∨ D3

. . .

A(f in(y)) ∨ Dn

All other inferences with ¬A(x) ∨ C are blocked!

Premises inherit the constraints during instantiation inferences.
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Summary

Inst-Gen modular instantiation based reasoning for first-order logic.

I Inst-Gen is sound and complete for first-order logic

I combines efficient ground reasoning with first-order reasoning

I decision procedure for effectively propositional logic (EPR)

I redundancy elimination

I usual: tautology elimination, strict subsumption

I global subsumption:

non-ground simplifications using SAT/SMT reasoning
I closure-based redundancies:

I blocking non-proper instantiators

I dismatching constraints
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Equational instantiation-based reasoning



Equality and Paramodulation

Superposition calculus:

C ∨ s ' t L[s ′] ∨ D

(C ∨ D ∨ L[t])θ

where (i) θ = mgu(s, s ′), (ii) s ′ is not a variable, (iii) sθσ � tθσ , (iv) . . .

The same weaknesses as resolution has:

I Inefficient in the ground/EPR case

I Length of clauses can grow fast

I Recombination of clauses

I No explicit model representation
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Equality Superposition vs Inst-Gen

Superposition

C ∨ l ' r L[l ′] ∨ D

(C ∨ D ∨ L[r ])θ

θ = mgu(l , l ′)

Instantiation?

C ∨ l ' r L[l ′] ∨ D

(C ∨ l ' r)θ (L[l ′] ∨ D)θ

θ = mgu(l , l ′)

Incomplete !
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Superposition+Instantiation

f (h(x)) ' c

∨ C1(x , y)

h(x) ' x

∨ C2(x , y)

f (a) 6' c

∨ C3(x , y)

f (h(a)) ' c ∨ C1(a, y)

h(a) ' a ∨ C2(a, y)

f (a) 6' c ∨ C3(a, y)

This set is inconsistent but the contradiction is not deducible by the inference

system above.

The idea is to consider proofs generated by unit superposition:

h(x) ' x f (h(y)) ' c

f (x) ' c

[x/y ]

f (a) 6' c

c 6' c

[a/x ]

�

Propagating substitutions: {h(a) ' a; f (h(a)) ' c ; f (a) 6' c}
ground unsatisfiable.
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Inst-Gen-Eq instantiation-based equational reasoning

f.-o. clauses

S

Ground Clauses

S⊥

⊥ : x̄ → ⊥ theorem

proved

S⊥ UnSAT

Semantic selection

of literals I⊥ |= L⊥

S⊥ SAT

I⊥ |= S⊥

Inst. gen.

from UP proofs

L ` �

S

satisfiable

L 6` �

Theorem.[Ganzinger, Korovin CSL’04] Inst-Gen-Eq is sound and complete. 77 / 144
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Inst-Gen-Eq: Key properties

Inst-Gen-Eq is

I sound and complete for first-order logic with equality

I combines SMT for ground reasoning and superposition-based unit

reasoning

I unit superposition does not have weaknesses of the general

superposition

I all redundancy elimination techniques from Inst-Gen are applicable

to Inst-Gen-Eq

I redundancy elimination become more powerful: now we can use

SMT to simplify first-order rather than SAT

New technical issue: Potentially we need to consider

all unit-superposition proofs!
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Labelled Unit Superposition [Korovin, Sticksel LPAR’10]

General idea: Dismatching constraints can be used to block already

derived proofs!

Unit superposition with dismatching constraints:

(l ' r) | [ D1 ] L[l ′] | [ D2 ]

L[r ]θ | [ (D1 ∧ D2)θ ]
(θ)

s 6' t | [ D ]

�
(µ)

where (i) θ = mgu(l , l ′); (ii) l ′ is not a variable; (iii) for some grounding substitution

σ, satisfying (D1 ∧ D2)θ, lσ � rσ; (iv) µ = mgu(s, t); (v) Dµ is satisfiable.

Next technical issue: The same unit literal can

I correspond to different clauses,

I have different dismatching constraints

I be represented many times in the same proof search

Solution: labelled approach
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Labelled Unit Superposition [Korovin, Sticksel LPAR’10]
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Tree Labelled Unit Superposition

I Preserve Boolean structure of proofs

I Closure is a propositional variable in an AND/OR tree

I Conjunction ∧ in superposition, disjunction ∨ in merging

Label of the Contradiction �
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OBDD Labelled Unit Superposition

Label of the

contradiction �

Disadvantages of trees

I Not produced in normal form

I Sequence of inferences determines shape

I Potential growth ad infinitum

I OBDD as normal form

I Maintenance effort

I Reordering required
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Labels: Sets vs. Trees vs. OBDDs

iProver-Eq – CVC3 as a background solver on pure equational problems.

(developed with Christoph Sticksel)

Solved equational

problems

193

216 13

1393

344

30

76

set

2006

tree

1983

OBDD

1512

Features
Normal

form

Precise

elim.
Sets yes no

Trees no yes

OBDDs yes yes

[Korovin, Sticksel LPAR’10]
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Theory instantiation



Theory instantiation [Ganzinger, Korovin LPAR’06]

f.-o. clauses S

theory T

Ground Clauses

S⊥

⊥ : x̄ → ⊥ theorem

proved

S⊥ UnSAT

Semantic selection

of literals I⊥ |=T L⊥

S⊥ SAT

I⊥ |=T S⊥

L1 ∨ C1, . . . , Ln ∨ Cn

(L1 ∨ C1)θ, . . . , (Ln ∨ Cn)θ

L1θ⊥ ∧ . . . ∧ Lnθ⊥ |=T 0

L `T �

S

satisfiable

L 6`T �
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Theory instantiation

Conditions on completeness:

I complete ground reasoning modulo T

I answer completeness of unit reasoning modulo T

I T is universal

Answer completeness: If L1τ ∧ . . . ∧ Lnτ |=T � for ground τ . Then

L1, . . . , Ln
L1θ, . . . , Lnθ

UC

such that θ is a genralization of τ and L1θ⊥, . . . , Lnθ⊥ `T �

Theorem. Theory instantiation is sound and complete under these

conditions.

103 / 144



Theory instantiation

Conditions on completeness:

I complete ground reasoning modulo T

I answer completeness of unit reasoning modulo T

I T is universal

Answer completeness: If L1τ ∧ . . . ∧ Lnτ |=T � for ground τ . Then

L1, . . . , Ln
L1θ, . . . , Lnθ

UC

such that θ is a genralization of τ and L1θ⊥, . . . , Lnθ⊥ `T �

Theorem. Theory instantiation is sound and complete under these

conditions.

104 / 144



Theory instantiation

Conditions on completeness:

I complete ground reasoning modulo T

I answer completeness of unit reasoning modulo T

I T is universal

Answer completeness: If L1τ ∧ . . . ∧ Lnτ |=T � for ground τ . Then

L1, . . . , Ln
L1θ, . . . , Lnθ

UC

such that θ is a genralization of τ and L1θ⊥, . . . , Lnθ⊥ `T �

Theorem. Theory instantiation is sound and complete under these

conditions.

105 / 144



Evaluation



CASC 2013
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CASC 2013 results

General first-order (FOF) 300 problems

Vampire E iProver E-KRHyper Prover9

prob 281 249 167 122 119

time 12 29 12 8 12

Effectively propositional 100 problems

iProver Vampire PEPR E EKRHyper

prob 81 47 43 23 8

time 27 15 26 50 27

First-order satisfiability (FNT) 150 problems

iProver Paradox CVC4 E Nitrox Vampire

prob 122 99 96 79 79 78

time 52 2 25 20 29 30

Non-cyclic sorts for first-order satisfiability [Korovin FroCoS’13]
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Effectively propositional logic (EPR)



Effectively Propositional Logic (EPR)

EPR: No functions except constants: P(x , y) ∨ ¬Q(c , y)

Transitivity: ¬P(x , y) ∨ ¬P(y , z) ∨ P(x , z)

Symmetry: P(x , y) ∨ ¬P(y , x)

Verification:

∀A(wrenh1 ∧ A = wraddrFunc→
∀B(range[35,0](B)→ (imem′(A,B)↔ iwrite(B)))).

Applications:

I Hardware Verification (Intel)

I Planning/Scheduling

I Finite model reasoning

EPR is hard for resolution, but decidable by instantiation methods.
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Properties of EPR

Direct reduction to SAT — exponential blow-up.

Satisfiability for EPR is NEXPTIME-complete.

More succinct but harder to solve.... Any gain?

Yes: Reasoning can be done at a more general level.

Restricting instances:

¬mem(a1, x1) ∨ ¬mem(a2, x2) ∨ . . .¬mem(an, xn)

mem(b1, x1) ∨ mem(b2, x2) ∨ . . . ∨ mem(bn, xn)

General lemmas:
¬a(x) ∨ b(x)

mem(x , y)

More expressive logics can speed up calculations!
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Hardware verification

Functional Equivalence Checking

I The same functional behaviour can be implemented in different ways

I Optimised for:

I Timing – better performance

I Power – longer battery life

I Area – smaller chips

I Verification: optimisations do not change functional behaviour

Method of choice: Bounded Model Checking (BMC) used at Intel, IBM
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EPR-based BMC Navarro-Perez, Voronkov (CADE’07)

EPR encoding:

I s0, . . . , sk constants denote unrolling bounds

I first-order formulas I (S),P(S),T (S ,S ′)

I next state predicate Next(S ,S ′)

BMC can be encoded

I (s0);¬P(sk); initial and final states

∀S , S ′(Next(S , S ′)→ T (S , S ′)); transition relation

Next(s0, s1);Next(s1, s2); . . .Next(sk−1, sk); next state relation

I EPR encoding provides succinct representation

I avoids copying transition relation

I reasoning can be done at higher level

BMC with bit-vectors, memories:

[M. Emmer, Z. Khasidashvili, K. Korovin, C. Sticksel, A. Voronkov IJCAR’12]
119 / 144



EPR-based BMC Navarro-Perez, Voronkov (CADE’07)

EPR encoding:

I s0, . . . , sk constants denote unrolling bounds

I first-order formulas I (S),P(S),T (S ,S ′)

I next state predicate Next(S ,S ′)

BMC can be encoded

I (s0);¬P(sk); initial and final states

∀S , S ′(Next(S , S ′)→ T (S , S ′)); transition relation

Next(s0, s1);Next(s1, s2); . . .Next(sk−1, sk); next state relation

I EPR encoding provides succinct representation

I avoids copying transition relation

I reasoning can be done at higher level

BMC with bit-vectors, memories:

[M. Emmer, Z. Khasidashvili, K. Korovin, C. Sticksel, A. Voronkov IJCAR’12]
120 / 144



Experiments: iProver vs Intel BMC

Problem # Memories # Transient BVs Intel BMC iProver BMC

ROB2 2 (4704 bits) 255 (3479 bits) 50 8

DCC2 4 (8960 bits) 426 (1844 bits) 8 11

DCC1 4 (8960 bits) 1827 (5294 bits) 7 8

DCI1 32 (9216 bits) 3625 (6496 bits) 6 4

BPB2 4 (10240 bits) 550 (4955 bits) 50 11

SCD2 2 (16384 bits) 80 (756 bits) 4 14

SCD1 2 (16384 bits) 556 (1923 bits) 4 12

PMS1 8 (46080 bits) 1486 (6109 bits) 2 10

Large memories:

iProver outperforms highly optimised Intel SAT-based model checker.
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Implementation



iProver general features

I Inst-Gen also uses SAT solver and resolution for simplifications

I Query answering: using answer substitutions

I Finite model finding: based on EPR/sort inference/non-cyclic sorts

I Bounded model checking mode: (Intel format)

I Proof representation: non-trivial due to SAT solver simplifications

I Model representation: using formulas in term algebra;

special model representation for hardware BMC
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iProver implementation features

iProver is implemented in OCaml, around 50,000 LOC

Core:

I Inst-Gen Given clause algorithm

I SAT solvers for ground reasoning: MiniSAT, PicoSAT, Lingeling

I strategy scheduling

I preprocessing

I splitting with naming

Simplifications:

I Literal selection

I Subsumption (forward/backward)

I Subsumption resolution (forward/backward)

I Dismatching constraints

I Blocking non-proper instantiators

I Global subsumption: SAT solver is used for non-ground

simplifications
124 / 144



Inst-Gen given clause algorithm

Passive: clauses that are waiting to participate in inferences

I priority queues based on lexicographic combinations of parameters

−− inst pass queue1 [−conj dist; +conj symb;−num var ]

−− inst pass queue2 [+age;−num symb]

Active: clauses between which all inferences are done

I unification index on selected literals

Non-perfect discrimination trees

Given clause: C

1. C – next clause from the top of Passive

2. simplify C : compressed feature indexes

3. perform all inferences between C and Active

4. add all conclusions to passive

5. add ⊥-grounding of conclusions to the SAT solver
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Inst-Gen Loop

Passive (Queues) Given Clause
simpl. II

SAT

passive
empty

Active (Unif. Index)

literal selection change

Instantiation Inferences

Unprocessed
simpl. I

Input

SAT Solver

grounding

Unsatisfiable
unsat

sat, propositional model

literal selection

[Korovin (Essays in Memory of Harald Ganzinger 2013])
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Indexing

Why indexing:

I Single subsumption is NP-hard.

I We can have 100,000 clauses in our search space

I Applying naively between all pairs of clauses we need

10,000,000,000 subsumption checks !

Indexes in iProver:

I non-perfect discrimination trees for unification, matching

I compressed feature vector indexes for subsumption, subsumption

resolution, dismatching constraints.
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Discrimination trees

ε

f

g

∗

a

f (g(x), a)

∗

h

∗

f (x , h(x))
f (y , h(x))

h

. . . . . .

g

. . . a

g(a)

Efficient filtering unification, matching and generalisation candidates
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Feature vector index

Subsumption is very expensive and usual indexing are complicated.

Feature vector index [Schulz’04] works well for subsumption, and many

other operations

Design efficient filters based on “features of clauses”:

I clause C can not subsume any clause with number of literals strictly

less than C

I clause C can not subsume any clause with number of positive

literals strictly less than C

I clause C can not subsume any clause with the number of

occurrences of a symbol f less than in C

I . . .
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Feature vector index

Fix: a list of features:

1. number of literals

2. number of occurrences of f

3. number of occurrences of g

With each clause associate a feature vector:

numeric vector of feature values

Example: feature vector of C = p(f (f (x))) ∨ ¬p(g(y)) is

fv(C ) = [2, 2, 1]

Arrange feature vectors in a trie data structure.

For retrieving all candidates which can be subsumed by C we need to

traverse only vectors which are component-wise greater or equal to fv(C ).
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Compressed feature vector index [Korovin (iProver’08)]

The signature based features are most useful but also expensive.

Example: is signature contains 1000 symbols and we use all symbols as

features then feature vector for every clause will be 1000 in length.

Basic idea: for each clause most features will be 0.

Compress feature vector: use list of pairs [(p1, v1), . . . , (pn, v1)] where pi

are non-zero positions and vi are values that start from this position.

Sequential positions with the same value are combined.

iProver uses compressed feature vector index for forward and backward

subsumption, subsumption resolution and dismatching constraints.
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Summary

iProver is a theorem prover for full clausal first-order logic which features

I Query answering: using answer substitutions

I Finite model finding: based on EPR/sort inference/non-cyclic sorts

I Bounded model checking mode: (Intel format)

I Proof representation: non-trivial due to SAT solver simplifications

I Model representation: using formulas in term algebra;

special model representation for hardware BMC

iProver has solid performance over the whole range of TPTP.

iProver excels on EPR problems and in turn on satisfiability, bounded

model checking and other encodings into EPR.
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PhD opportunities at the University of Manchester

PhD opportunities in reasoning, logic and verification, please contact:

korovin@cs.man.ac.uk
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