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Assertion Synthesis — Example: Array Partition

Program

a:=0; b:=0; c:=0;
while (a< N) do
it Ala] > 0
then B[b] := Ala]; b:=b+ 1

else Clc] :=Ala]; c:=c+1;

a=a+1;
end while

Loop Assertions
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Assertion Synthesis — Example: Array Partition

Program

a:=0; b:=0; c:=0;
while (a< N) do
it Ala] > 0
then B[b] := Ala]; b:=b+ 1

else Clc] :=Ala]; c:=c+1;

a=a+1;
end while

Loop Assertions

Polynomial Equalities and Inequalities, Quantified FO properties
a=b+c

a>0Ab>0Ac>0

a<N v N<ZO

(Vp)(p > b = B[p] = Bo[p])

()0 <p<b —
Blo] > 0 A
(3)0 <i<an Al = Blp])
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Our Approach:
SYMBOL ELIMINATION

Grobner Basis

Recurrence Solving

Extend language with extra symbols: . Eliminate symbols
Loop Loop Properties —
loop cnt, array update predicates

Monotonicity Properties of Scalars Array Update Properties

Consequence Finding



Part 2: Polynomial Invariant Generation

Symbol Elimination by Grébner Basis Computation
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quo :=0; rem = X,
while y < remdo rem:=rem—y; quo:=quo+ 1 endwhile

1. Express state from (n+ 1) iteration in n>0
terms of n” iteration — recurrence relations remin+1] = rem[n]—y
of variables; quo[n+1] = quo[n] + 1

2. Solve recurrence relations — closed forms of
variables: functions of iteration counter n remin] = rem[0]—nxy
1 methods from symbolic summation; quoln] quo[0] + n

3. Eliminate n and (optionally) initial value

s rem = rem[0] — (quo — quol0Q]) = y
substitution;

4. Result: set of invariants rem= x — quo =y — Poly Invariant
Polynomial ideal — Finite basis
Pyt =0,pp =0 —p; +pp =0, p;-q=0,Vg.

Grobner basis
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Overview of the Method
x:=1, y:=0;
while[. .., X := 2 x X; y::%*y+1]

n>0,a=2" b=2""

1. Express state from (n + 1)" iteration in xn+1] = 2x]
terms of " iteration — recurrence relations { [0+ 1] _ 1 « y[] + 1
of variables; y -

2. Solve recurrence relations — closed forms of X[ = 2"«x[0]
variables: functions of iteration coyntfar n { ylnl = Leylo]— 2 +2
1 methods from symbolic summation;

3. Identify polynomial/algebraic dependencies x = axx(]
among exponentials in n; y = bxy[0]-2xb+2

’ 0 = axb—-1

4. Eliminate n and variables standing for
algebraically related exponentials in n — Xxy—2xx+2=0
elimination by Grébner bases;

5. Result: Polynomial ideal— Grébner basis

py =0,pp=0—p; +pp =0, p;-qg=0,vq.
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Loop body
1

System of recurrence equations

‘wwng quig

System of closed forms
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Overview of the Method - Further Considerations

» Loops with assignments

Structural constraints on assignments with polynomial rhs.

+ Summation algorithms (Gosper’s, C-finite)

Tests are ignored — (basic) non-deterministic programs;

while cond do S end while — while ... do Sdo — S*

» Automated Loop Invariant Generation by Algebraic Techniques
Over the Rationals:

polynomial invariant generation by symbolic summation and
polynomial algebra algorithms «+— P-solvable loops;

{p(X)=0 A X=X} S {p(X)=0}
» Implementation: ALIGATOR — programs working on numbers.

http://mtc.epfl.ch/software-tools/Aligator
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C-finite Recurrences x[n] in a Field K

— linear recurrences with constant coefficients:

x[n+r] = apx[n] + ...+ a—_1x[n+r—1],
where
» r € Nis the recurrence order;
> a,...,ar_1 € K, with ag # 0.
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C-finite Recurrences x[n] in a Field K

— linear recurrences with constant coefficients:

x[n+r] = apx[n] + ...+ a—_1x[n+r—1],

CHARACTERISTIC POLYNOMIAL ¢(y) of x[n] is:

cy)=y —a—ay—-—a_1y"
— distinct roots: 64, ... ,0s € K with multiplicity ; > 1.
— CLOSED FORM OF x[n]: Linear combination of:

o7, ... n(n—1)---(n—e; +1)67

07, nobf, n(n—1

03, no3, n(n—1)05 ... ... n(n—1)---(n— e +1)02
9;17 neg? n(n_1)9g ...... n(n—1)(n_es+1)9g
By regrouping:

X[n] = q(”? H?a U aag)
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C-finite Recurrences x[n] in a Field K

Example
Given x[n+2] =3x[n+ 1] —2x[n] with x[0] =0, x[1] =1.

1. Characteristic polynomial:

y2—38y+2=0 - Roots:6;=1,6,=2 withe; =e =1

2. Closed form of x[n]:
x[n] = a1 + p2"

0= x[0]= a+p8 _ _
{1: M= o > a=-1,8=1

3. Closed form of x[n]:
x[n]=2"-1



Program Assignments and C-finite Recurrences

x:=ax+h — x[n+1] = ax[n]+ h(n)
with ~ h(n) = n% 0y +--- 4+ n%p7

Example
x[n+1] = x[n] + 1

x[n+1] =2x[n] + 4



Program Assignments and C-finite Recurrences

x:=ax+h — x[n+1] = ax[n]+ h(n)
with ~ h(n) = n% 0y +--- 4+ n%p7

Example
x[n+1]=x[n]+1 — x[n+2]—2x[n+1]+x[n=0

x[n+1]=2x[n]+4 — x[n+2]-3x[n+1]+2x[n]=0



Program Assignments and C-finite Recurrences

x:=ax+h — x[n+1] = ax[n]+ h(n)
with ~ h(n) = n% 0y +--- 4+ n%p7

Example
x[n+1]=x[n]+1 — x[n+2]—2x[n+1]+x[n=0

x[n+1]=2x[n]+4 — x[n+2]-3x[n+1]+2x[n]=0

I Py = Ph-(Sfa), where P, = (8791)d1+1 ---(Sfes)dsJr1
P,-x=0 P,-h=0

x[n+r] = apir—ax[n+r—1]+--- + apx[nl, with r > 1
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Sequences

Let 6s,...,0s € K, and their exponential sequences 67, ...,07 € K.
An algebraic dependency of these sequences is a polynomial p :

p(6y7,....60) =0, (¥n>0).

— ideal: I(67,...,67) = I(n,07,....00).
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Algebraic Dependencies Among Exponential
Sequences

Let 6s,...,0s € K, and their exponential sequences 67, ...,07 € K.
An algebraic dependency of these sequences is a polynomial p :

p67,...,65) =0, (vn=0).

— ideal: I(67,...,67) = I(n,07,....00).

Example.
» The algebraic dependency among the exponential sequences of 6y = 2
and 6, = J is:

07 %05 —1=0;

» The algebraic dependency among the exponential sequences of
6y = 55 and 6, = 155 is:

(67)% + (65)° =1 =0;

» There is no algebraic dependency among the exponential sequences of
91 :2and62:3.
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P-solvable Loops: while ... do S end while

The closed forms of the loop variables X = {x1, ...,
xi[n] = qi(n, 67,
CF(S”,Es,X,Xo) : .

Xm[n] = CIm(na 01n7 .

with algebraic dependencies A = I(n, 67, ...,07).

Notations:

1. n e Nis the loop counter and S” denotes S;...; S;
——

ntimes
2. xi[n] is the value of x; at iteration n.

Xo are the initial values of loop variables before S”;
3. g,....,qm €K[n,07,...,00;
4. 04,...,0s €K, Es={67,...,07}.

Xm}:

.00

., 00)



P-solvable Loops: while ... do S end while

The closed forms of the loop variables X = {xi,..., Xn}:
X1[n] = q1(n79?7"~79g)
CF(S",Es,X,Xo) : .

Xm[n] = gm(n,07,...,07)
with algebraic dependencies A= I(n, 67, ...,67).

Polynomial Invariant Ideal: /(x,

ooy Xm)-
I(X1 g ,Xm)ciB <Xi - qi(n> 9?7

W 0) +ANKX1, ..y Xm]

{p(X)=0 A X=X} S

{p(X) = 0}



Invariant Generation for Loops with Assignments Only
Example. [K. Zuse, 1993]

z=0,y:=1, x:=1/2;

while ... do
Z2:=2%z2—-2x%xy—X,
y=y+x
X :=x/2

end while
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z=0,y:=1, x:=1/2;

while ... do
Z2:=2%z2—-2x%xy—X,
y=y+x
X :=x/2

end while
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Example. [K. Zuse, 1993]

z=0,y:=1, x:=1/2;

while ... do
Z2:=2%z2—-2x%xy—X,
y=y+x
X :=x/2

end while

x[n x[n+1] x[n+2]

yinl yln+1]  yln+2]
z[n]  z[n+1]




Invariant Generation for Loops with Assignments Only
Example. [K. Zuse, 1993]

z=0,y:=1, x:=1/2;

while ... do
Z2:=2%z2—-2x%xy—X,
y=y+x
X :=x/2

end while

x[n]  x[n+1] x[n+2]

yinl yIn+1] yln+2]
z[n] z[n+1] z[n+2]




Extracting

z:=0,y:=1, x:=1/2;

while ... do
Z2:=2%xzZ—-2%xy — X,
y=y+Xx

X :=x/2

end while

Recurrences

n>0

|

x[n+1]
y[n+1]
z[n]

x[n]/2
y[nl + x[n]
2xz[n] — 2 y[n] — x[n]



Extracting and Solving Recurrences

n>0

z:=0,y:=1, x:=1/2 x[n+1] - x[n]/2
while ... do {y[n+1] - Yl A0
Zi=2xz=2x) =X z[n| - 2xz[n]—2xy[n] - x[n|
yi=y+x
X :=x/2
end while
x[n] o=t Lx[0]
y[n] e y[0] + 2x[0] — 57 X[0]
z[n] c-fme  27(Z[0] — 2y[0] — 2x[0])—
s x[0] + 2y[0] + 4x[0]




Algebraic Dependencies

z:=0,y:=1, x:=1/2;

while]. ..,
Z:=2%xZ—-2%xy —X;
y=y+x
X :=x/2]

n>0,
X
y
V4
0

a=2"pb=2""

C—tinte By X[O]

Ccne y[0] + 2 x X[0] — 2 % b x x[0]

C—finite a*(2[0] 72*}/[0] 72*X[0])*
2% b x[0] + 2 y[0] + 4 * x[0]

Alg.Dep. axb-—1



Algebraic Dependencies and Variable Elimination

z:=0; y:=1; x:=1/2, =20 a=2.b=27"

while]. .. x o=fne b x[0]

72::2*2—2*y—x; y o y[0] 4 2 x[0] — 2 % b x x[0]
Y=y +x; z  C—finite a * (Z[O] — 2% y[o] — 2% X[O])—
X::x/2]’ 2 % b x[0] + 2 x y[0] + 4 * x[0]

o

Moo g% b — 1

P-solvable Loop

Polynomial Invariant (GB):

(2x+y—2x[0]-y[0] = 0) A (y?—ysz-+2+2+x[0]+2+y[0] -y (0] ~2+x[0]+2[0] = 0)



Algebraic Dependencies and Variable Elimination

z:=0;y:=1, x:=1/2 n=0,

while]. . ., X
Z:=2%Z—-2%y—X, y
y=y+x z
X :=x/2]

o

a=2"p=2""

C— finite
C—finite

C—finite

Alg.Dep.

b * x[0]

y[0] + 2 * x[0] — 2 « b x x[0]
ax* (z[0] —2x* y[0] — 2 = x[0])—
2% bx x[0] + 2 x y[0] + 4 * x[0]
axb—1

P-solvable Loop

Polynomial Invariant (GB):

(2xx+y—-2=0) A 2xz—yxz+y*—1=0)



Further Examples.

, [:=0; f:=1,9:=1
k:=0;j:=1 m:=1; =0 '
while m < n do e g g
Ki=k+1; Ji=j+ 2 m=m+] end while

end while



Further Examples.

(1) Integer square root: (2) Fibonacci numbers

, [:=0; f:=1,9:=1
k:=0;j:=1 m:=1; F=u '
while m < n do e g
Ki=k+1; Ji=j+ 2 m=m+] end while

end while



Further Examples.

(1) Integer square root: (2) Fibonacci numbers

k:=0;j:=1, m:=1; I:h:.|0;'f::C:;g;:1
ki=k+1,j:=j+2, m=m+j duhie +9 9:=
end while end while

Invariant: Invariant:

4 g4 3 3 2, 2 _
2k+1=jndm=(j+1)> f*4+g*+2fxg°—2fxg—fxg°—1 =0



Outline

Polynomial Invariants for Loops with Conditionals



Overview of Our Method - Further Considerations

» Loops with assignments and with conditional branches.

Structural constraints on assignments with polynomial rhs.
+ Summation algorithms (Gosper’s, C-finite)
Tests are ignored — non-deterministic programs:

if[p then Sy else Sy] — if]. . .then S; else S;] — Si|S2
while[cond, S] — while[...,S] — S*
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Overview of Our Method - Further Considerations

» Loops with assignments and with/without conditional branches.

Structural constraints on assignments with polynomial rhs.
+ Summation algorithms (Gosper’s, C-finite)
Tests are ignored — non-deterministic programs:

ﬂ[b then S; dﬁ Sz] — ﬂ[ . thﬂ Si w 32] — 81‘32
while[b, S] — while][...,S] — S*
while[...,if[..., Si];...;if[..., Sl — (Si]...|SK)*

» Automated Loop Invariant Generation by Algebraic Techniques
Over the Rationals for P-solvable loops:

{PX)=0 A X=X} (Si]...IS)" {p(X)=0}
» Polynomial invariant ideal represented by Grobner bases;

» Implementation: ALIGATOR — programs working on numbers.



RECAP — P-solvable Loop S* with Assignments Only

Values of loop variables X = {x1,...,xn} at loop iteration n € N:
X1 [n] = Q1(n7 0?,,0157)
S"=S:...:8 )
ntimes xm[n] = qm(n, 9?7 . ,9_2)

with algebraic dependencies:

A=1(n07,...,00) = (r|r(n67,...,00) =0, Vne N) QK[n,67,...,07



RECAP — P-solvable Loop S* with Assignments Only

Values of loop variables X = {x1,...,xn} at loop iteration n € N:
xi[n = aqi(n07,...,07)
S"=S8:....;S: : ,
N——
ntimes xm[n] = qm(n, 947, . ,92’)

with algebraic dependencies:

A=1(n07,...,00) = (r|r(n67,...,00) =0, Vne N) <K[n, 0]

Examples.

o I(n,2"7,4") = ((2")? — 4"
I(n,2",277) = ((2") « (27") = 1)
I(n,2",3") =0
(n,

1+f \/5"):<(1+\/5")2*(17\/3")271>

e I(n 5

geeey



RECAP — P-solvable Loop S* with Assignments Only

Values of loop variables X = {x1,...,xn} at loop iteration n € N:
xi[n = aqi(n07,...,07)
S"=S8:....;S: ,
N——
ntimes xm[n] = qm(n, 9477 . ,9;’)

with algebraic dependencies:

A=1(n07,...,00) = (r|r(n67,...,00)=0, Yne N) QK[n,07,...,0

Polynomial Invariant Ideal: I, = I(x1,...,Xm) = (Xi — qi) + ANK][X1, ..., Xm]

{PX)=0 A X=X} S {p(X)=0}
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P-solvable Loops with Conditionals (Sq| ... |Sk)*

P-solvable loop (Si]. .. |Sk)* <= P-solvable inner loops S;

Polynomial Invariant Ideal: I, = I(x,..., Xm)

{p(X) =0 A X=X} (Si|...[S)" {p(X) =0}



P-solvable Loops with Conditionals (Sq| ... |Sk)*

P-solvable loop (Si]. .. |Sk)* <= P-solvable inner loops S;
(Sil...|Sk)™ is equivalent to (S5 * - - - x Sg)*
Polynomial Invariant Ideal: I, = I(xi,. .., Xm)

{p(X) =0 A X=X} (Sf*---xS¢)" {p(X)=0}



P-solvable Loops with Conditionals (Sq| ... |Sk)*

P-solvable loop (Si]. .. |Sk)* <= P-solvable inner loops S;

Polynomial Invariant Ideal: I, = I(xi,..., Xm)

{p(X) =0 N X=X} (S*---xSc)" {p(X)=0}

First algorithmic attempt:

(S - % S)” = Sfx--x S «— S8k
N———— N————— ——
arbitrary MANY iterations ONE iteration loop sequence

I, S Ph=Nk I
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P-solvable Loops with Conditionals (Sq| ... |Sk)*

P-solvable loop (Si]. .. |Sk)* <= P-solvable inner loops S;

Polynomial Invariant Ideal: I, = I(xi,..., Xm)

{p(X) =0 N X=X} (S*---xSc)" {p(X)=0}

Idea of the algorithm:

(St x--- % Sk)" — o (ST EeexSE) ST o~ SPxe--x S

— N— N———

arbitrary MANY iterations TWO iterations ONE iteration
I, < S Ph=Nha S Ph=Nk

Termination? Not guaranteed for arbitrary ideals!



P-solvable Loops with Conditionals (Sq| ... |Sk)*

P-solvable loop (Si]. .. |Sk)* <= P-solvable inner loops S;

Polynomial Invariant Ideal: I, = I(xi,..., Xm)

{p(X) =0 N X=X} (S*---xSc)" {p(X)=0}

Idea of the algorithm:

(St x--- % Sk)" — o (ST EeexSE) ST o~ SPxe--x S

— N— N———

arbitrary MANY iterations TWO iterations ONE iteration
I, < S Ph=Nhka S Ph=Nk

Termination? Always terminates!



P-solvable Loops with Conditionals (Sq| ... |Sk)*

Program Algorithm
while] ..., =k, L =Perm[1,... k]
Pl= (N Ik
I ={PI{P(X) =0 A X=X} S i- i Sp {p) =0} }, (w, ..., w) € Ly
if[..., S1]; repeat
: PI' = PI
k
I_/+1= U L/OS,', [=1+1
i=1
if[..., Sk]] PI= (N
I = {p\{p()():o/\x:xo}s;,1;...;sv*l,l;{p(X):O} bo(wy, o, w) € L
until Pl = PI' = 1.,
Idea of the algorithm:
(St x--- % Sk)" — o (ST EeexSE) ST o SPxe--x S
N———— [ ——— N————
arbitrary MANY iterations TWO iterations ONE iteration
I, < S Ph=Nhka S Ph=Nk

Termination? Always terminates!



Proof of Termination - Example

Initial values: a=x, b=y, p=1,9g=0,r=0, s=1

Loop: a=a-bp=p—-qr=r—s | b:=b—aq:=q-p;s:=s—r

Sy Sp



Proof of Termination - Example

Initial values: a=x, b=y, p=1,9g=0,r=0, s=1

Loop: a=a-bp=p—-qr=r—s | b:=b—aq:=q-p;s:=s—r

Sy Sy
Step 0: Pl = (18 polynomials)

P(a.b.p.q.r,5) =0 5::5; _
{/\(a,b,p,q,r,s)—(x,y,1,o,o,1) sis;  P@bpars) =0



Proof of Termination - Example

Initial values: a=x, b=y, p=1,9g=0,r=0, s=1

Loop: a=a-bp=p—-qr=r—s | b:=b—aq:=q-p;s:=s—r

Sy Sy
Step 0: Pl = (18 polynomials)

P(a,b,p,q,r,s) =0 S
AN

ab.p.a.rs) =(xy1001) [ ss (F@bpgrs=0}

Step1: Ph =(b—qgx —sy,br—as+x,qr —ps+1,px+ry —a,bp—aq—y)

Si: 83 57
P(a,b,p,q,r,s) =0 S51:83: 85 _
{/\ (abp.qrs)=(xy1,001) [ s (@bpans=0

AR



Proof of Termination - Example

Initial values: a=x, b=y, p=1,9g=0,r=0, s=1

Loop: a=a-bp=p—-qr=r—s | b:=b—aq:=q-p;s:=s—r

Sy Sp
Step 0: Pl = (18 polynomials)

P(a,b,p,q,r,s)=0 Si;S; B
{/\ (abp.q.r.s)=(xy.1.001) [ s (F@bparns)=0

Step1: Ph =(b—qgx —sy,br—as+x,qr —ps+1,px+ry —a,bp—aq—y)

51,85, 87
P(a,b,p,q,r,s)=0 51,835 _
{/\ (abp.qrs)=(xy1,001) [ s (@bpans=0
AR

Step 2: PL=(b—qgx —sy,br—as+x,qr —ps+1,px+ry —a,bp—aq—y)

Pl = Pk = I,



Proof of Termination - Example

Initial values: a=x, b=y, p=1,9g=0,r=0, s=1

Loop: a=a-bp=p—-qr=r—s | b:=b—aq:=q-p;s:=s—r

Sy Sy
Step 0: Pl = (18 polynomials)

P(a,b,p,q,r,s)=0 Si;S; B
{/\ (abp.q.r.s)=(xy.1.001) [ s (F@bparns)=0

Step1: Ph =(b—qgx —sy,br—as+x,qr —ps+1,px+ry —a,bp—aq—y)

51,85, 87
P(a,b.p,q.r,5) =0 51551 ; _
{/\(a,b,p,q,r,s)=(x,y,1,o,o,1) siisis  P@DPane)=0)
AR

Step 2: PL=(b—qgx —sy,br—as+x,qr —ps+1,px+ry —a,bp—aq—y)
Pl = Pl = I,

P(a,b,p,q,r,s) =0 . B
{/\ ( ,b,p,q,f,S)Z(X,y,1,0,0,1) (S1|SZ) {P(aabap7q7f75)—0}



Proof of Termination - Example
Initial values: a=x, b=y, p=1,9g=0,r=0, s=1

Loop: a=a-bp=p—-qr=r—s | b:=b—aq:=q-p;s:=s—r

Sy Sp

Step 0: Pl = (18 polynomials) =
(s—1,b—qgx —y,br—a+x,qr —p+1,px+ry —a, bp—aq —y)
n (p—1 b—qx —sy,br —as+x,qr —s+1,x+ry —a,b—aq—y,asy —ab+ bx — xy)
Dimension: 4
Step1: Ph =(b—qgx —sy,br—as+x,qr —ps+1,px+ry —a,bp—aq—y)

Dimension: 3

Step 2: PL=(b—qgx —sy,br—as+x,qr —ps+1,px+ry —a,bp—aq—y)

Pl = Pk = I,

Dimension: 3



Proof of Termination
Properties of the algorithm:

> [, C---C Ph=NIlki1 C Plh=Ik

> if Pl, = Pl, 1 then I, = Pl, (TERMINATION CRITERIA)
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Assume Pl = lks1 & Plo =) k.

Termination Proof.
1. Ixy1, I are prime ideals;

2. The minimal prime ideal decomposition:
I = (ﬂ u,) ARX] and  ls = (ﬂ W,/) NR[X]
r r

with
> U, W, are prime ideals;
» Us & Upand Wy € W, forany a## band & # b';
» (Vr')(3r) dim W, < dim U,.
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Proof of Termination
Assume Pl = k1 & Pl =)l Then:

> le1 & I for some k-loop sequence;
» dim W, < dim U, for some r, r’.

Termination Proof.
1. Ixy1, I are prime ideals;

2. The minimal prime ideal decomposition:
I = (ﬂ u,) ARX] and  ls = (ﬂ W,/) NR[X]
r r

with
> U, W, are prime ideals;
» Us & Upand Wy € W, forany a## band & # b';
» (Vr')(3r) dim W,, < dim U,.

3. Dimension is finite. It cannot infinitely decrease.

(3n) Pl = ﬂ lktn = m Iktn1 = Playa



Outline

Examples



Extended Euclid’s Algorithm for GCD|x, y]

Program Polynomial Invariants
a=x; b=y,
p:=1;,r:=0;
qg:=0; s:=1,
hil b
w[(a¢ ), y=bp—ag
ifla> b X =as—br
then a:= a— b; 1=ps—qr
p=p—q B
r=r—s a=px+ry
b=qgx+ sy

else b:=b— g;
q=q—-p
s:=s5—1]]




Related Work

Work Invariant Restrictions | Loop Restrictions | Complete
MQOS, 2006 yes no no*
SSM, 2004 yes no no*
RCK, 2007a yes no no*

tool: Inv

RCK, 2007b no yes* yes

tool: Solvable

LK, 2008/09 no yes yes
tool: Aligator




Some Experimental ReSUIS wsowabe moxom ana i rorore

Timing | #lters |  Polys
. - Aligator 0.55 s 1 1
Binary Division | i ahle | 1785 | 3 1
Inv 1.77 s 5 1

Timing | flters | # Polys
s Aligator 9.02s 2 5
Euclid’s Alg. Solvable | 3.05s | 5 5
Inv 4.13s 8 1

Timing | flters | # Polys
, Aligator 0.24 s 1 1
Fermats Alg. | soivable | 1.73s | 4 1
Inv 295s 8 1

Timing | flters | f Polys
Aligator 1.23s 2 1
LCM-GCD Solvable | 201s | 5 1
Inv 432s 9 1

Timing | flters | f Polys
. Aligator 0.63 s 1 1
Binary Product | i onie | 1745 | 4 1
Inv 2.79s 8 1

Timing | #lters | f Polys
Aligator 0.19s 1 2
Square Root Solvable | 1.34s 2 2
Inv 217s 6 2

Timing | #lters | f Polys
) Aligator 0.63 s 1 3
Wensley’s Alg. Solvable | 1.95s 4 3
Inv 3.53s 8 3




Outline

Conclusions



Conclusions

» Correct and complete algorithm: finds all polynomial invariants;

» Implementation: ALIGATOR

1. Solving recurrences; }Symbolic Summation
2. Computing algebraic dependencies;

3. Eliminating non-program variables; } Grobner basis

4. |Intersecting ideals;

» ALIGATOR successfully tried on many examples;
Less time/iteration needed than other tools.

http://mtc.epfl.ch/software-tools/Aligator/



End of Session 2

Slides for session 2 ended here ...
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