Symbolic Computation and Theorem Proving in Program Analysis

Laura Kovács

Chalmers

Outline

Part 1: Weakest Precondition for Program Analysis and Verification

Part 2: Polynomial Invariant Generation (TACAS'08, LPAR'10)

Part 3: Quantified Invariant Generation (FASE'09, MICAI'11)

Part 4: Invariants, Interpolants and Symbol Elimination (CADE'09, POPL'12, APLAS'12)

Assertion Synthesis — Example: Array Partition

Program

```
a := 0; b := 0; c := 0;
\underline{\text{while}} \ (a < N) \ \underline{\text{do}}
\underline{\text{if}} \ A[a] \ge 0
\underline{\text{then}} \ B[b] := A[a]; \ b := b + 1
\underline{\text{else}} \ C[c] := A[a]; \ c := c + 1;
a := a + 1;
end while
```

Loop Assertions

a = b + c

$$a \ge 0 \land b \ge 0 \land c \ge 0$$

 $a \le N \lor N \le 0$
 $(\forall p)(p \ge b \Longrightarrow B[p] = B_0[p])$
 $(\forall p)(0 \le p < b \Longrightarrow B[p] \ge 0 \land (\exists i)(0 \le i < a \land A[a] = B[p]))$

Assertion Synthesis — Example: Array Partition

Program

```
a := 0; \ b := 0; \ c := 0;
\underline{\text{while}} \ (a < N) \ \underline{\text{do}}
\underline{\text{if}} \ A[a] \ge 0
\underline{\text{then}} \ B[b] := A[a]; \ b := b+1
\underline{\text{else}} \ C[c] := A[a]; \ c := c+1;
a := a+1;
end while
```

Loop Assertions

a = b + c

Polynomial Equalities and Inequalities, Quantified FO properties

$$a \ge 0 \land b \ge 0 \land c \ge 0$$

 $a \le N \lor N \le 0$

$$(\forall p)(p \ge b \implies B[p] = B_0[p])$$

 $(\forall p)(0 \le p < b \implies$
 $B[p] \ge 0 \land$
 $(\exists i)(0 \le i < a \land A[a] = B[p]))$

Our Approach

Loop

Assertions

Our Approach

Assertions

Our Approach: SYMBOL ELIMINATION

Our Approach: SYMBOL ELIMINATION

Part 2: Polynomial Invariant Generation

Symbol Elimination by Gröbner Basis Computation

Outline

Overview of the Method

Algebraic Techniques for Invariant Generation

Polynomial Invariants for Loops with Assignments Only

Polynomial Invariants for Loops with Conditionals

Examples

Conclusions

```
quo := 0; rem := x;

\underline{while} \ y \le rem \underline{do} \quad rem := rem - y; quo := quo + 1 \quad \underline{end \ while}

Introduce LOOP COUNTER n \quad (n \ge 0) \quad \rightarrow \quad nth iteration of the loop
```

```
System of Recurrences System of Closed Forms Loop body quo[n+1] = quo[n] + 1 \longrightarrow CF_{quo}(n, quo[0]) \qquad quo := quo + 1; quo[n] = quo[0] + n rem[n+1] = rem[n] - y \longrightarrow CF_{rem}(n, rem[0]) \qquad rem := rem - y; rem[n] = rem[0] - n * y
```

```
quo := 0; rem := x;
\underline{while} \ y \le rem \underline{do} \quad rem := rem - y; \ quo := quo + 1 \quad \underline{end \ while}
Introduce LOOP COUNTER n \quad (n \ge 0) \quad \rightarrow \quad nth iteration of the loop
quo \quad \rightarrow \quad quo[n]
rem \quad \rightarrow \quad rem[n]
```

System of Recurrences System of Closed Forms Loop body
$$quo[n+1] = quo[n] + 1 \longrightarrow CF_{quo}(n, quo[0]) \qquad quo := quo + 1;$$

$$quo[n] = quo[0] + n$$

$$rem[n+1] = rem[n] - y \longrightarrow CF_{rem}(n, rem[0]) \qquad rem := rem - y;$$

$$rem[n] = rem[0] - n * y$$

```
quo := 0; rem := x;
\underline{while} \ y \le rem \ \underline{do} \quad rem := rem - y; \ quo := quo + 1 \quad \underline{end \ while}
Introduce LOOP COUNTER n \quad (n \ge 0) \quad \rightarrow \quad nth iteration of the loop quo \quad \rightarrow \quad quo[n] \quad rem \quad \rightarrow \quad rem[n]
```

```
System of Recurrences System of Closed Forms Loop body quo[n+1] = quo[n] + 1 \rightarrow CF_{quo}(n, quo[0]) \qquad quo := quo + 1; quo[n] = quo[0] + n rem[n+1] = rem[n] - y \rightarrow CF_{rem}(n, rem[0]) \qquad rem := rem - y; rem[n] = rem[0] - n * y
```

```
quo := 0; rem := x;
        while y < rem do rem := rem - y; quo := quo + 1 end while
      Introduce LOOP COUNTER n (n \ge 0) \rightarrow nth iteration of the loop
                                       quo \rightarrow quo[n]
                                       rem \rightarrow rem[n]
quo[n+1] depends algebraically upon quo[n].
quo[n+1] = quo[n] + 1  \rightarrow CF_{quo}(n, quo[0])
                                               quo := quo + 1;
```

quo[0] quo[1]

```
quo := 0; rem := x;
        while y < rem do rem := rem - y; quo := quo + 1 end while
      Introduce LOOP COUNTER n (n \ge 0) \rightarrow nth iteration of the loop
                                       quo \rightarrow quo[n]
                                       rem \rightarrow rem[n]
quo[n+1] depends algebraically upon quo[n].
quo[n+1] = quo[n] + 1  \rightarrow CF_{quo}(n, quo[0])
                                              quo := quo + 1;
```

```
quo := 0; rem := x;
        while y < rem do rem := rem - y; quo := quo + 1 end while
      Introduce LOOP COUNTER n (n \ge 0) \rightarrow nth iteration of the loop
                                       quo \rightarrow quo[n]
                                       rem \rightarrow rem[n]
rem[n+1] depends algebraically upon rem[n+1].
```

System of Recurrences System of Closed Forms Loop body
$$quo[n+1] = quo[n] + 1 \qquad \rightarrow CF_{quo}(n,quo[0]) \qquad quo := quo + 1;$$

$$quo[n] = quo[0] + n$$

$$rem[n+1] = rem[n] - y \qquad \rightarrow CF_{rem}(n,rem[0]) \qquad rem := rem - y;$$

$$rem[n] = rem[0] - n * y$$

```
quo[1] quo[2] ...
quo[0]
rem[0] rem[1]
```

```
quo := 0; rem := x;
       while y < rem do rem := rem - y; quo := quo + 1 end while
     Introduce LOOP COUNTER n (n \ge 0) \rightarrow nth iteration of the loop
                                 quo \rightarrow quo[n]
                                 rem \rightarrow rem[n]
rem[n+1] depends algebraically upon rem[n+1].
quo := quo + 1;
rem[n+1] = rem[n] - y \rightarrow CF_{rem}(n, rem[0])   rem := rem - y;
           quo[0]
                  quo[1] quo[2] ...
           rem[0] rem[1] rem[2] ...
```

```
quo := 0; rem := x;
\underline{\text{while }} y \leq rem \underline{\text{do}} \quad rem := rem - y; \ quo := quo + 1 \quad \underline{\text{end while}}
Introduce LOOP COUNTER n \quad (n \geq 0) \quad \rightarrow \quad nth iteration of the loop quo \quad \rightarrow \quad quo[n] \quad rem \quad \rightarrow \quad rem[n]
```

```
System of Recurrences System of Closed Forms Loop body quo[n+1] = quo[n] + 1 \rightarrow CF_{quo}(n, quo[0]) \qquad quo := quo + 1; quo[n] = quo[0] + n rem[n+1] = rem[n] - y \rightarrow CF_{rem}(n, rem[0]) \qquad rem := rem - y; rem[n] = rem[0] - n * y
```

```
quo := 0; rem := x;
\underline{\text{while }} y \leq rem \underline{\text{do}} \quad rem := rem - y; \ quo := quo + 1 \quad \underline{\text{end while}}
Introduce LOOP COUNTER n \quad (n \geq 0) \quad \rightarrow \quad nth iteration of the loop quo \quad \rightarrow \quad quo[n] \quad rem \quad \rightarrow \quad rem[n]
```

```
System of Recurrences System of Closed Forms Loop body quo[n+1] = quo[n] + 1 \rightarrow CF_{quo}(n, quo[0]) \qquad quo := quo + 1; quo[n] = quo[0] + n rem[n+1] = rem[n] - y \rightarrow CF_{rem}(n, rem[0]) \qquad rem := rem - y; rem[n] = rem[0] - n * y
```

```
quo[0] quo[1] quo[2] ... quo[n-1] quo[n] ... rem[0] rem[1] rem[2] ... rem[n-1] rem[n] ...
```

```
quo := 0; rem := x;
\underline{\text{while }} y \leq rem \underline{\text{do}} \quad rem := rem - y; \ quo := quo + 1 \quad \underline{\text{end while}}
Introduce LOOP COUNTER n \quad (n \geq 0) \quad \rightarrow \quad nth iteration of the loop quo \quad \rightarrow \quad quo[n] \quad rem \quad \rightarrow \quad rem[n]
```

```
System of Recurrences System of Closed Forms Loop body quo[n+1] = quo[n] + 1 \rightarrow CF_{quo}(n, quo[0]) \qquad quo := quo + 1; quo[n] = quo[0] + n rem[n+1] = rem[n] - y \rightarrow CF_{rem}(n, rem[0]) \qquad rem := rem - y; rem[n] = rem[0] - n * y
```

```
quo[0] quo[1] quo[2] ... quo[n-1] quo[n] ... rem[0] rem[1] rem[2] ... rem[n-1] rem[n] ...
```

```
quo := 0; rem := x;
\underline{\text{while }} y \leq rem \underline{\text{do}} \quad rem := rem - y; \ quo := quo + 1 \quad \underline{\text{end while}}
Introduce LOOP COUNTER n \quad (n \geq 0) \quad \rightarrow \quad nth iteration of the loop quo \quad \rightarrow \quad quo[n] \quad rem \quad \rightarrow \quad rem[n]
```

```
System of Recurrences System of Closed Forms Loop body quo[n+1] = quo[n] + 1 \rightarrow CF_{quo}(n, quo[0]) \qquad quo := quo + 1; quo[n] = quo[0] + n rem[n+1] = rem[n] - y \rightarrow CF_{rem}(n, rem[0]) \qquad rem := rem - y; rem[n] = rem[0] - n * y quo[0] \quad quo[1] \quad quo[2] \quad \dots \quad quo[n-1] \quad quo[n] \quad \dots
```

rem[0] rem[1] rem[2] ... rem[n-1] rem[n] ...

$$quo := 0$$
; $rem := x$;
 $\underline{while} \ y \le rem \underline{do} \quad rem := rem - y$; $quo := quo + 1 \quad \underline{end \ while}$

- Express state from (n + 1)th iteration in terms of nth iteration → recurrence relations of variables;
- Solve recurrence relations → closed forms of variables: functions of iteration counter n
 ↑ methods from symbolic summation;
- 3. Eliminate *n*
- 4. Result: set of invariants

Polynomial ideal \rightarrow Finite basis $\rho_1 = 0, \rho_2 = 0 \rightarrow \rho_1 + \rho_2 = 0, \quad \rho_1 \cdot q = 0, \forall q.$

$$n \ge 0$$

$$\begin{cases} rem[n+1] = rem[n] - y \\ quo[n+1] = quo[n] + 1 \end{cases}$$

$$\begin{cases} rem[n] = rem[0] - n * y \\ quo[n] = quo[0] + n \end{cases}$$

$$rem = rem[0] - (quo - quo[0]) * y$$

$$rem = x - quo * y$$

$$quo := 0$$
; $rem := x$;
 $\underline{while} \ y \le rem \ \underline{do} \quad rem := rem - y$; $quo := quo + 1 \quad \underline{end \ while}$

- Express state from (n + 1)th iteration in terms of nth iteration → recurrence relations of variables;
- Solve recurrence relations → closed forms of variables: functions of iteration counter n
 ↑ methods from symbolic summation;
- 3. Eliminate *n* and (optionally) initial value substitution;
- 4. Result: set of invariants

Polynomial ideal \rightarrow Finite basis $p_1 = 0, p_2 = 0 \rightarrow p_1 + p_2 = 0, p_1 \cdot q = 0, \forall q.$

$$n \ge 0$$

$$\begin{cases} rem[n+1] = rem[n] - y \\ quo[n+1] = quo[n] + 1 \end{cases}$$

$$\begin{cases} rem[n] = rem[0] - n * y \\ quo[n] = quo[0] + n \end{cases}$$

$$rem = rem[0] - (quo - quo[0]) * y$$

$$rem = x - quo * y$$

$$quo := 0$$
; $rem := x$;
 $\underline{while} \ y \le rem \ \underline{do} \quad rem := rem - y$; $quo := quo + 1 \quad \underline{end \ while}$

- Express state from (n + 1)th iteration in terms of nth iteration → recurrence relations of variables;
- Solve recurrence relations → closed forms of variables: functions of iteration counter n
 ↑ methods from symbolic summation;
- 3. Eliminate *n* and (optionally) initial value substitution:
- 4. Result: set of invariants

Polynomial ideal
$$\rightarrow$$
 Finite basis $\rho_1 = 0, \rho_2 = 0 \rightarrow \rho_1 + \rho_2 = 0, \quad \rho_1 \cdot q = 0, \forall q$

$$n \ge 0$$

$$\begin{cases} rem[n+1] = rem[n] - y \\ quo[n+1] = quo[n] + 1 \end{cases}$$

$$\begin{cases} rem[n] = rem[0] - n * y \\ quo[n] = quo[0] + n \end{cases}$$

$$rem = rem[0] - (quo - quo[0]) * y$$

$$rem = x - quo * y \rightarrow Poly Invariant$$

$$quo := 0$$
; $rem := x$;
 $\underline{while} \ y \le rem \ \underline{do} \quad rem := rem - y$; $quo := quo + 1 \quad \underline{end \ while}$

n > 0

- Express state from (n + 1)th iteration in terms of nth iteration → recurrence relations of variables;
- Solve recurrence relations → closed forms of variables: functions of iteration counter n
 ↑ methods from symbolic summation;
- 3. Eliminate *n* and (optionally) initial value substitution;
- 4. Result: set of invariants

Polynomial ideal \rightarrow Finite basis $\rho_1 = 0, \rho_2 = 0 \rightarrow \rho_1 + \rho_2 = 0, \quad \rho_1 \cdot q = 0, \forall q.$ Grainner basis

$$\begin{cases} rem[n+1] &= rem[n] - y \\ quo[n+1] &= quo[n] + 1 \end{cases}$$
$$\begin{cases} rem[n] &= rem[0] - n * y \\ quo[n] &= quo[0] + n \end{cases}$$

$$rem = rem[0] - (quo - quo[0]) * y$$

$$rem = x - quo * y \rightarrow Poly Invariant$$

$$quo := 0$$
; $rem := x$;
 $\underline{while} \ y \le rem \ \underline{do} \quad rem := rem - y$; $quo := quo + 1 \quad \underline{end \ while}$

n > 0

- Express state from (n + 1)th iteration in terms of nth iteration → recurrence relations of variables;
- Solve recurrence relations → closed forms of variables: functions of iteration counter n
 ↑ methods from symbolic summation;
- 3. Eliminate *n* and (optionally) initial value substitution;
- 4. Result: set of invariants

Polynomial ideal
$$\rightarrow$$
 Finite basis $p_1 = 0, p_2 = 0 \rightarrow p_1 + p_2 = 0, p_1 \cdot q = 0, \forall q.$

Grobner basis

$$\begin{cases} rem[n+1] &= rem[n] - y \\ quo[n+1] &= quo[n] + 1 \end{cases}$$

$$\begin{cases} rem[n] &= rem[0] - n * y \\ quo[n] &= quo[0] + n \end{cases}$$

$$rem = rem[0] - (quo - quo[0]) * y$$

$$rem = x - quo * y \rightarrow Poly Invariant$$

$$quo := 0$$
; $rem := x$;
 $\underline{while} \ y \le rem \underline{do} \quad rem := rem - y$; $quo := quo + 1 \quad \underline{end \ while}$

n > 0

- Express state from (n + 1)th iteration in terms of nth iteration → recurrence relations of variables;
- Solve recurrence relations → closed forms of variables: functions of iteration counter n
 ↑ methods from symbolic summation;
- 3. Eliminate *n* and (optionally) initial value substitution;
- 4. Result: set of invariants

Polynomial ideal
$$\rightarrow$$
 Finite basis $p_1 = 0, p_2 = 0 \rightarrow p_1 + p_2 = 0, p_1 \cdot q = 0, \forall q.$

Gröbner basis

$$\begin{cases} rem[n] &= rem[0] - n * y \\ quo[n] &= quo[0] + n \end{cases}$$
$$rem = rem[0] - (quo - quo[0]) * y$$

 $\begin{cases} rem[n+1] = rem[n] - y \\ quo[n+1] = quo[n] + 1 \end{cases}$

$$rem = x - quo * y \rightarrow Poly Invariant$$

Overview of Our Method

$$x := 1; \ y := 0;$$

while $[\dots, \ x := 2 * x; \ y := \frac{1}{2} * y + 1]$

- Express state from $(n + 1)^{n}$ iteration in terms of n^{n} iteration \rightarrow recurrence relations of variables:
- Solve recurrence relations

 counter n

 counter n

 counter n
 - Identify polynomial/algebraic dependencies among approximate in m
- Eliminate mand variables standing for algebraically related exponentials in man elimination by Grosses forces.
- Result: Polynomial ideal -> Carilmer basis

4 D > 4 B > 4 B > 4 B > B 9 9 9

$$x := 1; \ y := 0;$$

while $[\dots, x := 2 * x; \ y := \frac{1}{2} * y + 1]$

- 1. Express state from $(n+1)^{th}$ iteration in terms of n^{th} iteration \rightarrow recurrence relations of variables;
- Solve recurrence relations → closed forms of variables: functions of iteration counter n
 ↑ methods from symbolic summation:
- 3. Identify polynomial/algebraic dependencies among exponentials in *n*;
- Eliminate n and variables standing for algebraically related exponentials in n → elimination by Gröbner bases;
- Result: Polynomial ideal→ Gröbner basis

$$p_1 = 0, p_2 = 0 \rightarrow p_1 + p_2 = 0, \quad p_1 \cdot a = 0, \forall a.$$

$$n \ge 0, a = 2^n, b = 2^{-n}$$

$$\begin{cases} x[n+1] = 2 * x[n] \\ y[n+1] = \frac{1}{2} * y[n] + 1 \end{cases}$$

$$\begin{cases} x[n] = 2^n * x[0] \\ y[n] = \frac{1}{2^n} * y[0] - \frac{2}{2^n} + 2 \end{cases}$$

$$\begin{cases} x = a * x[0] \\ y = b * y[0] - 2 * b + 2 \\ 0 = a * b - 1 \end{cases}$$

$$x * y - 2 * x + 2 = 0$$

$$x := 1; \ y := 0;$$

while $[\dots, x := 2 * x; \ y := \frac{1}{2} * y + 1]$

- Express state from (n + 1)th iteration in terms of nth iteration → recurrence relations of variables;
- Solve recurrence relations → closed forms of variables: functions of iteration counter n
 ↑ methods from symbolic summation;
- Identify polynomial/algebraic dependencies among exponentials in n;
- Eliminate n and variables standing for algebraically related exponentials in n → elimination by Gröbner bases;
- Result: Polynomial ideal→ Gröbner basis

$$p_1 = 0, p_2 = 0 \rightarrow p_1 + p_2 = 0, \quad p_1 \cdot q = 0, \forall q.$$

$$n \ge 0, a = 2^n, b = 2^{-n}$$

$$\begin{cases} x[n+1] = 2 * x[n] \\ y[n+1] = \frac{1}{2} * y[n] + 1 \end{cases}$$

$$\begin{cases} x[n] = 2^n * x[0] \\ y[n] = \frac{1}{2^n} * y[0] - \frac{2}{2^n} + 2 \end{cases}$$

$$\begin{cases} x = a * x[0] \\ y = b * y[0] - 2 * b + 2 \\ 0 = a * b - 1 \end{cases}$$

$$x * y - 2 * x + 2 = 0$$

$$x := 1; \ y := 0;$$

while $[\dots, \ x := 2 * x; \ y := \frac{1}{2} * y + 1]$

- Express state from (n + 1)th iteration in terms of nth iteration → recurrence relations of variables;
- Solve recurrence relations → closed forms of variables: functions of iteration counter n
 ↑ methods from symbolic summation;
- 3. Identify polynomial/algebraic dependencies among exponentials in *n*;
- Eliminate n and variables standing for algebraically related exponentials in n → elimination by Gröbner bases;
- Result: Polynomial ideal→ Gröbner basis

$$n \ge 0$$
, $a = 2^n$, $b = 2^{-n}$

$$\begin{cases} x[n+1] = 2 * x[n] \\ y[n+1] = \frac{1}{2} * y[n] + 1 \end{cases}$$

$$\begin{cases} x[n] = 2^n * x[0] \\ y[n] = \frac{1}{2^n} * y[0] - \frac{2}{2^n} + 2 \end{cases}$$

$$\begin{cases} x = a * x[0] \\ y = b * y[0] - 2 * b + 2 \\ 0 = a * b - 1 \end{cases}$$

$$x * y - 2 * x + 2 = 0$$

$$x := 1; \ y := 0;$$

while $[\dots, \ x := 2 * x; \ y := \frac{1}{2} * y + 1]$

- Express state from (n + 1)th iteration in terms of nth iteration → recurrence relations of variables;
- Solve recurrence relations → closed forms of variables: functions of iteration counter n ↑ methods from symbolic summation;
- 3. Identify polynomial/algebraic dependencies among exponentials in *n*;
- Eliminate n and variables standing for algebraically related exponentials in n → elimination by Gröbner bases;
- 5. Result: Polynomial ideal→ Gröbner basis

$$n \ge 0, a = 2^n, b = 2^{-n}$$

$$\begin{cases} x[n+1] = 2 * x[n] \\ y[n+1] = \frac{1}{n} * y[n] + 1 \end{cases}$$

$$\begin{cases} x[n] = 2^n * x[0] \\ y[n] = \frac{1}{2^n} * y[0] - \frac{2}{2^n} + 2 \end{cases}$$

$$\begin{cases} x = a * x[0] \\ y = b * y[0] - 2 * b + 2 \\ 0 = a * b - 1 \end{cases}$$

$$x*y-2*x+2=0$$

Overview of the Method

$$x := 1; \ y := 0;$$

while $[\dots, x := 2 * x; \ y := \frac{1}{2} * y + 1]$

- Express state from (n + 1)th iteration in terms of nth iteration → recurrence relations of variables;
- Solve recurrence relations → closed forms of variables: functions of iteration counter n
 ↑ methods from symbolic summation;
- 3. Identify polynomial/algebraic dependencies among exponentials in *n*;
- Eliminate n and variables standing for algebraically related exponentials in n → elimination by Gröbner bases;
- 5. Result: Polynomial ideal→ Gröbner basis

$$\rho_1 = 0, \, \rho_2 = 0 \rightarrow \rho_1 + \rho_2 = 0, \quad \rho_1 \cdot q = 0, \, \forall q.$$

$$n \ge 0$$
, $a = 2^n$, $b = 2^{-n}$

$$\begin{cases} x[n+1] = 2 * x[n] \\ y[n+1] = \frac{1}{2} * y[n] + 1 \end{cases}$$

$$\begin{cases} x[n] = 2^n * x[0] \\ y[n] = \frac{1}{2^n} * y[0] - \frac{2}{2^n} + 2 \end{cases}$$

$$\begin{cases} x = a * x[0] \\ y = b * y[0] - 2 * b + 2 \\ 0 = a * b - 1 \end{cases}$$

$$x*y-2*x+2=0$$

Overview of Our Method

Overview of Our Method

Loops with assignments and with conditional branches.

Structural constraints on assignments with polynomial rhs

— Summation algorithms (Gosper's, C-finite)

Tests are ignored \rightarrow (basic) non-deterministic programs; while cond do S end while \rightarrow while \dots do S do \longrightarrow S^*

Automated Loop Invariant Generation by Algebraic Techniques Over the Rationals:

polynomial invariant generation by symbolic summation and polynomial algebra algorithms

▶ Loops with assignments and with conditional branches.

Structural constraints on assignments with polynomial rhs.

← Summation algorithms (Gosper's, C-finite)

```
Tests are ignored \rightarrow (basic) non-deterministic programs;

while cond do S end while \rightarrow while ... do S do \rightarrow S*
```

Automated Loop Invariant Generation by Algebraic Techniques Over the Rationals:

```
polynomial invariant generation by symbolic summation and polynomial algebra algorithms — P-solvable loops;
```

```
\{p(X) = 0 \land X = X_0\} \quad S^* \quad \{p(X) = 0\}
```

Loops with assignments and with conditional branches.

Structural constraints on assignments with polynomial rhs.

← Summation algorithms (Gosper's, C-finite)

Tests are ignored \rightarrow (basic) non-deterministic programs; while cond do S end while \rightarrow while \dots do S do \longrightarrow S^*

Automated Loop Invariant Generation by Algebraic Techniques Over the Rationals:

polynomial invariant generation by symbolic summation and polynomial algebra algorithms — P-solvable loops;

 $\{p(X) = 0 \land X = X_0\} \ S^* \ \{p(X) = 0\}$

Loops with assignments and with conditional branches.

Structural constraints on assignments with polynomial rhs.

← Summation algorithms (Gosper's, C-finite)

Tests are ignored \rightarrow (basic) non-deterministic programs; while cond do S end while \rightarrow while ... do S do \rightarrow S*

Automated Loop Invariant Generation by Algebraic Techniques Over the Rationals:

polynomial invariant generation by symbolic summation and polynomial algebra algorithms \leftarrow P-solvable loops;

$$\{p(X) = 0 \land X = X_0\} \quad S^* \quad \{p(X) = 0\}$$

Loops with assignments and with conditional branches.

Structural constraints on assignments with polynomial rhs.

← Summation algorithms (Gosper's, C-finite)

Tests are ignored \rightarrow (basic) non-deterministic programs; while cond do S end while \rightarrow while ... do S do \rightarrow S*

Automated Loop Invariant Generation by Algebraic Techniques Over the Rationals:

polynomial invariant generation by symbolic summation and polynomial algebra algorithms \leftarrow P-solvable loops;

$$\{p(X) = 0 \land X = X_0\} \quad S^* \quad \{p(X) = 0\}$$

► Implementation: ALIGATOR → programs working on numbers.

http://mtc.epfl.ch/software-tools/Aligator

Outline

Overview of the Method

Algebraic Techniques for Invariant Generation

Polynomial Invariants for Loops with Assignments Only

Polynomial Invariants for Loops with Conditionals

Examples

Conclusions

→ linear recurrences with constant coefficients:

$$x[n+r] = a_0x[n] + \ldots + a_{r-1}x[n+r-1],$$

where

- ▶ $r \in \mathbb{N}$ is the recurrence *order*;
- ▶ $a_0, ..., a_{r-1} \in \mathbb{K}$, with $a_0 \neq 0$.

→ linear recurrences with constant coefficients:

$$x[n+r] = a_0x[n] + \ldots + a_{r-1}x[n+r-1],$$

Examples.

- Fibonacci: x[n+2] = x[n+1] + x[n], x[0] = 0, x[1] = 1
- ► Tribonacci: x[n+3] = x[n+2] + x[n+1] + x[n], x[0] = 0, x[1] = x[2] = 1

→ linear recurrences with constant coefficients:

$$x[n+r] = a_0x[n] + \ldots + a_{r-1}x[n+r-1],$$

CHARACTERISTIC POLYNOMIAL c(y) of x[n] is:

$$c(y) = y^r - a_0 - a_1 y - \cdots - a_{r-1} y^{r-1}$$

- o distinct roots: $\theta_1,\ldots,\theta_s\in\bar{\mathbb{K}}$ with multiplicity $e_i\geq 1$.
- \rightarrow CLOSED FORM OF x[n]: Linear combination of:

$$\begin{cases} \theta_{1}^{n}, & n\theta_{1}^{n}, & n(n-1)\theta_{1}^{n}, & \dots & n(n-1)\cdots(n-e_{1}+1)\theta_{1}^{n} \\ \theta_{2}^{n}, & n\theta_{2}^{n}, & n(n-1)\theta_{2}^{n} & \dots & n(n-1)\cdots(n-e_{2}+1)\theta_{2}^{n} \\ \dots & \dots & \dots \\ \theta_{s}^{n}, & n\theta_{s}^{n}, & n(n-1)\theta_{s}^{n} & \dots & n(n-1)\cdots(n-e_{s}+1)\theta_{s}^{n} \end{cases}$$

By regrouping

$$x[n] = q(n, \theta_1^n, \cdots, \theta_s^n)$$

→ linear recurrences with constant coefficients:

$$x[n+r] = a_0x[n] + \ldots + a_{r-1}x[n+r-1],$$

CHARACTERISTIC POLYNOMIAL c(y) of x[n] is:

$$c(y) = y^r - a_0 - a_1 y - \cdots - a_{r-1} y^{r-1}$$

- ightarrow distinct roots: $\theta_1, \dots, \theta_s \in \overline{\mathbb{K}}$ with multiplicity $e_i \geq 1$.
- \rightarrow CLOSED FORM OF x[n]: Linear combination of:

$$\begin{cases} \theta_{1}^{n}, & n\theta_{1}^{n}, & n(n-1)\theta_{1}^{n}, & \dots & n(n-1)\cdots(n-e_{1}+1)\theta_{1}^{n} \\ \theta_{2}^{n}, & n\theta_{2}^{n}, & n(n-1)\theta_{2}^{n} & \dots & n(n-1)\cdots(n-e_{2}+1)\theta_{2}^{n} \\ \dots & \dots & \dots \\ \theta_{s}^{n}, & n\theta_{s}^{n}, & n(n-1)\theta_{s}^{n} & \dots & n(n-1)\cdots(n-e_{s}+1)\theta_{s}^{n} \end{cases}$$

By regrouping

$$x[n] = q(n, \theta_1^n, \cdots, \theta_s^n)$$

→ linear recurrences with constant coefficients:

$$x[n+r] = a_0x[n] + \ldots + a_{r-1}x[n+r-1],$$

CHARACTERISTIC POLYNOMIAL c(y) of x[n] is:

$$c(y) = y^r - a_0 - a_1 y - \cdots - a_{r-1} y^{r-1}$$

- \rightarrow distinct roots: $\theta_1, \dots, \theta_s \in \overline{\mathbb{K}}$ with multiplicity $e_i \geq 1$.
- \rightarrow CLOSED FORM OF x[n]: Linear combination of:

$$\begin{cases} \theta_{1}^{n}, & n\theta_{1}^{n}, & n(n-1)\theta_{1}^{n}, & \dots & n(n-1)\cdots(n-e_{1}+1)\theta_{1}^{n} \\ \theta_{2}^{n}, & n\theta_{2}^{n}, & n(n-1)\theta_{2}^{n} & \dots & n(n-1)\cdots(n-e_{2}+1)\theta_{2}^{n} \\ \dots & \dots & \dots \\ \theta_{s}^{n}, & n\theta_{s}^{n}, & n(n-1)\theta_{s}^{n} & \dots & n(n-1)\cdots(n-e_{s}+1)\theta_{s}^{n} \end{cases}$$

By regrouping:

$$x[n] = q(n, \theta_1^n, \cdots, \theta_s^n)$$

Example

Given
$$x[n+2] = 3x[n+1] - 2x[n]$$
 with $x[0] = 0$, $x[1] = 1$.

1. Characteristic polynomial

$$y^2 - 3y + 2 = 0$$
 \rightarrow Roots: $\theta_1 = 1$, $\theta_2 = 2$ with $e_1 = e_2 = 1$

Closed form of x[n]:

$$x[n] = \alpha 1^n + \beta 2^n$$

3. Closed form of x[n]

$$x[n] = 2^n - 1$$

Example

Given
$$x[n+2] = 3x[n+1] - 2x[n]$$
 with $x[0] = 0, x[1] = 1$.

1. Characteristic polynomial:

$$y^2 - 3y + 2 = 0$$
 \rightarrow Roots: $\theta_1 = 1$, $\theta_2 = 2$ with $e_1 = e_2 = 1$

Closed form of x[n]:

$$x[n] = \alpha 1^n + \beta 2^n$$

- $\int_{0}^{\infty} 0 = x[0] = \alpha + \beta$
- $(1 = x[1] = \alpha + 2\beta$
- 3. Closed form of x[n]

$$x[n] = 2^n - 1$$

Example

Given
$$x[n+2] = 3x[n+1] - 2x[n]$$
 with $x[0] = 0$, $x[1] = 1$.

1. Characteristic polynomial:

$$y^2 - 3y + 2 = 0$$
 \rightarrow Roots: $\theta_1 = 1, \ \theta_2 = 2$ with $e_1 = e_2 = 1$

2. Closed form of x[n]:

$$x[n] = \alpha 1^n + \beta 2^n$$

$$\begin{cases}
0 = x[0] = \alpha + \beta \\
1 = x[1] = \alpha + 2\beta
\end{cases} \rightarrow \alpha = -1, \beta = 1$$

3. Closed form of x[n]

$$x[n] = 2^n - 1$$

Example

Given
$$x[n+2] = 3x[n+1] - 2x[n]$$
 with $x[0] = 0$, $x[1] = 1$.

1. Characteristic polynomial:

$$y^2 - 3y + 2 = 0$$
 \rightarrow Roots: $\theta_1 = 1, \ \theta_2 = 2$ with $e_1 = e_2 = 1$

2. Closed form of x[n]:

$$x[n] = \alpha 1^n + \beta 2^n$$

$$\begin{cases} 0 = x[0] = \alpha + \beta \\ 1 = x[1] = \alpha + 2\beta \end{cases} \rightarrow \alpha = -1, \beta = 1$$

3. Closed form of x[n]

$$x[n] = 2^n - 1$$

Example

Given
$$x[n+2] = 3x[n+1] - 2x[n]$$
 with $x[0] = 0$, $x[1] = 1$.

1. Characteristic polynomial:

$$y^2 - 3y + 2 = 0$$
 \rightarrow Roots: $\theta_1 = 1, \ \theta_2 = 2$ with $e_1 = e_2 = 1$

2. Closed form of x[n]:

$$x[n] = \alpha 1^n + \beta 2^n$$

$$\left\{ \begin{array}{ll} 0 = & x[0] = & \alpha + \beta \\ 1 = & x[1] = & \alpha + 2\beta \end{array} \right. \rightarrow \quad \alpha = -1, \ \beta = 1$$

3. Closed form of x[n]:

$$x[n] = 2^n - 1$$

Example

Given
$$x[n+2] = 3x[n+1] - 2x[n]$$
 with $x[0] = 0$, $x[1] = 1$.

1. Characteristic polynomial:

$$y^2 - 3y + 2 = 0$$
 \rightarrow Roots: $\theta_1 = 1, \ \theta_2 = 2$ with $e_1 = e_2 = 1$

2. Closed form of x[n]:

$$x[n] = \alpha 1^n + \beta 2^n$$

$$\begin{cases} 0 = x[0] = \alpha + \beta \\ 1 = x[1] = \alpha + 2\beta \end{cases} \rightarrow \alpha = -1, \beta = 1$$

3. Closed form of x[n]:

$$x[n] = 2^n - 1$$

Program Assignments and C-finite Recurrences

$$x := \alpha x + h \longrightarrow x[n+1] = \alpha x[n] + h(n)$$
with $h(n) = n^{d_1}\theta_1 + \dots + n^{d_s}\theta_s^n$

Example

$$x[n+1] = x[n] + 1 \rightarrow x[n+2] - 2x[n+1] + x[n] = 0$$

$$x[n+1] = 2x[n] + 4$$
 \rightarrow $x[n+2] - 3x[n+1] + 2x[n] = 0$

 $\downarrow P_x = P_h \cdot (S - \alpha), \quad \text{where } P_h = (S - \theta_1)^{d_1 + 1} \cdots (S - \theta_s)^{d_s + 1} = 0$ $P_h \cdot h = 0$

$$x[n+r] = a_{n+r-1}x[n+r-1] + \cdots + a_nx[n],$$
 with $r \ge 1$

Program Assignments and C-finite Recurrences

$$x := \alpha x + h \longrightarrow x[n+1] = \alpha x[n] + h(n)$$

with $h(n) = n^{d_1}\theta_1 + \dots + n^{d_s}\theta_s^n$

Example

$$x[n+1] = x[n] + 1 \rightarrow x[n+2] - 2x[n+1] + x[n] = 0$$

$$x[n+1] = 2x[n] + 4$$
 \rightarrow $x[n+2] - 3x[n+1] + 2x[n] = 0$

 $P_x = P_h \cdot (S - \alpha), \quad \text{where } P_h = (S - \theta_1)^{\phi_1 + 1} \cdots (S - \theta_s)^{\phi_s + 1}$ $P_s \cdot x = 0 \qquad \qquad P_h \cdot h = 0$

$$x[n+r] = a_{n+r-1}x[n+r-1] + \cdots + a_nx[n],$$
 with $r \ge 1$

Program Assignments and C-finite Recurrences

$$x := \alpha x + h \longrightarrow x[n+1] = \alpha x[n] + h(n)$$

with $h(n) = n^{d_1}\theta_1 + \dots + n^{d_s}\theta_s^n$

Example

$$x[n+1] = x[n] + 1 \rightarrow x[n+2] - 2x[n+1] + x[n] = 0$$

$$x[n+1] = 2x[n] + 4 \rightarrow x[n+2] - 3x[n+1] + 2x[n] = 0$$

$$\psi P_{x} = P_{h} \cdot (S - \alpha), \quad \text{where } P_{h} = (S - \theta_{1})^{d_{1}+1} \cdot \cdot \cdot (S - \theta_{s})^{d_{s}+1} \\
P_{x} \cdot x = 0 \qquad \qquad P_{h} \cdot h = 0$$

$$x[n+r] = a_{n+r-1}x[n+r-1] + \cdots + a_nx[n],$$
 with $r \ge 1$

Let $\theta_1,\ldots,\theta_s\in \bar{\mathbb{K}}$, and their exponential sequences $\theta_1^n,\ldots,\theta_s^n\in \bar{\mathbb{K}}$.

An algebraic dependency of these sequences is a polynomial p:

$$p(\theta_1^n,\ldots,\theta_s^n)=0, \quad (\forall n\geq 0).$$

$$\rightarrow$$
 ideal: $I(\theta_1^n, \dots, \theta_s^n) = I(n, \theta_1^n, \dots, \theta_s^n)$.

Example.

▶ The algebraic dependency among the exponential sequences of $\theta_1 = 2$ and $\theta_2 = \frac{1}{2}$ is:

$$\theta_1^n * \theta_2^n - 1 = 0;$$

▶ The algebraic dependency among the exponential sequences of $\theta_{+} = \frac{1+\sqrt{3}}{2}$ and $\theta_{-} = \frac{1+\sqrt{3}}{2}$ is:

$$(\theta_1^n)^2 * (\theta_2^n)^2 - 1 = 0;$$

. There is no algebraic dependency among the exponential equations of $\dot{q}_1=2$ and $\dot{q}_2=3$.

Let $\theta_1,\ldots,\theta_s\in \bar{\mathbb{K}}$, and their exponential sequences $\theta_1^n,\ldots,\theta_s^n\in \bar{\mathbb{K}}$.

An algebraic dependency of these sequences is a polynomial p:

$$p(\theta_1^n,\ldots,\theta_s^n)=0, \quad (\forall n\geq 0).$$

$$\rightarrow$$
 ideal: $I(\theta_1^n, \dots, \theta_s^n) = I(n, \theta_1^n, \dots, \theta_s^n)$.

Example.

► The algebraic dependency among the exponential sequences of $\theta_1 = 2$ and $\theta_2 = \frac{1}{2}$ is:

$$\theta_1^n * \theta_2^n - 1 = 0;$$

▶ The algebraic dependency among the exponential sequences of $\theta_1 = \frac{1+\sqrt{5}}{2}$ and $\theta_2 = \frac{1-\sqrt{5}}{2}$ is:

$$(\theta_1^n)^2 * (\theta_2^n)^2 - 1 = 0$$

► There is no algebraic dependency among the exponential sequences of $\theta_1 = 2$ and $\theta_2 = 3$.

Let $\theta_1, \dots, \theta_s \in \bar{\mathbb{K}}$, and their exponential sequences $\theta_1^n, \dots, \theta_s^n \in \bar{\mathbb{K}}$.

An algebraic dependency of these sequences is a polynomial p:

$$p(\theta_1^n,\ldots,\theta_s^n)=0, \quad (\forall n\geq 0).$$

$$\rightarrow$$
 ideal: $I(\theta_1^n, \dots, \theta_s^n) = I(n, \theta_1^n, \dots, \theta_s^n)$.

Example.

▶ The algebraic dependency among the exponential sequences of $\theta_1 = 2$ and $\theta_2 = \frac{1}{2}$ is:

$$\theta_1^n * \theta_2^n - 1 = 0;$$

► The algebraic dependency among the exponential sequences of $\theta_1 = \frac{1+\sqrt{5}}{2}$ and $\theta_2 = \frac{1-\sqrt{5}}{2}$ is:

$$(\theta_1^n)^2 * (\theta_2^n)^2 - 1 = 0;$$

There is no algebraic dependency among the exponential sequences of $\theta_1 = 2$ and $\theta_2 = 3$.

Let $\theta_1,\ldots,\theta_s\in \bar{\mathbb{K}}$, and their exponential sequences $\theta_1^n,\ldots,\theta_s^n\in \bar{\mathbb{K}}$.

An algebraic dependency of these sequences is a polynomial p:

$$p(\theta_1^n,\ldots,\theta_s^n)=0, \quad (\forall n\geq 0).$$

$$\rightarrow$$
 ideal: $I(\theta_1^n, \dots, \theta_s^n) = I(n, \theta_1^n, \dots, \theta_s^n)$.

Example.

▶ The algebraic dependency among the exponential sequences of $\theta_1 = 2$ and $\theta_2 = \frac{1}{2}$ is:

$$\theta_1^n * \theta_2^n - 1 = 0;$$

► The algebraic dependency among the exponential sequences of $\theta_1 = \frac{1+\sqrt{5}}{2}$ and $\theta_2 = \frac{1-\sqrt{5}}{2}$ is:

$$(\theta_1^n)^2 * (\theta_2^n)^2 - 1 = 0;$$

▶ There is no algebraic dependency among the exponential sequences of $\theta_1 = 2$ and $\theta_2 = 3$.

Outline

Overview of the Method

Algebraic Techniques for Invariant Generation

Polynomial Invariants for Loops with Assignments Only

Polynomial Invariants for Loops with Conditionals

Examples

Conclusions

Invariant Generation Algorithm

Invariant Generation Algorithm

P-solvable Loops: while ... do S end while

The closed forms of the loop variables $X = \{x_1, \dots, x_m\}$:

$$\mathsf{CF}(S^n, E_S, X, X_0) : \begin{cases} x_1[n] &= q_1(n, \theta_1^n, \dots, \theta_s^n) \\ &\vdots \\ x_m[n] &= q_m(n, \theta_1^n, \dots, \theta_s^n) \end{cases},$$

with algebraic dependencies $A = I(n, \theta_1^n, \dots, \theta_s^n)$.

Notations:

- 1. $n \in \mathbb{N}$ is the loop counter and S^n denotes $\underbrace{S; \dots; S}_{n \text{ times}}$
- x_i[n] is the value of x_i at iteration n.
 X₀ are the initial values of loop variables before Sⁿ;
- 3. $q_1, \ldots, q_m \in \bar{\mathbb{K}}[n, \theta_1^n, \ldots, \theta_s^n];$
- 4. $\theta_1, \ldots, \theta_s \in \overline{\mathbb{K}}, E_S = \{\theta_1^n, \ldots, \theta_s^n\}.$

P-solvable Loops: while ... do S end while

The closed forms of the loop variables $X = \{x_1, \dots, x_m\}$:

$$\mathsf{CF}(S^n, E_S, X, X_0) : \quad \left\{ \begin{array}{lcl} x_1[n] & = & q_1(n, \theta_1^n, \dots, \theta_s^n) \\ & \vdots & & \\ x_m[n] & = & q_m(n, \theta_1^n, \dots, \theta_s^n) \end{array} \right. ,$$

with algebraic dependencies $A = I(n, \theta_1^n, \dots, \theta_s^n)$.

Polynomial Invariant Ideal:
$$I(x_1, ..., x_m)$$
.
$$I(x_1, ..., x_m) \stackrel{\text{GB}}{=} \langle x_i - q_i(n, \theta_1^n, ..., \theta_s^n) \rangle + A \cap \mathbb{K}[x_1, ..., x_m]$$

$$\{p(X) = 0 \land X = X_0\} \quad S^* \quad \{p(X) = 0\}$$

$$z := 0; \ y := 1; \ x := 1/2;$$
while ... do
 $z := 2 * z - 2 * y - x;$
 $y := y + x;$
 $x := x/2$
end while

$$z := 0; \ y := 1; \ x := 1/2;$$
while ... do
 $z := 2 * z - 2 * y - x;$
 $y := y + x;$
 $x := x/2$
end while

$$x[n]$$
 $x[n+1]$

$$z := 0; \ y := 1; \ x := 1/2;$$
while ... do
 $z := 2 * z - 2 * y - x;$
 $y := y + x;$
 $x := x/2$
end while

$$x[n]$$
 $x[n+1]$ $x[n+2]$...

$$z := 0; \ y := 1; \ x := 1/2;$$
while ... do
 $z := 2 * z - 2 * y - x;$
 $y := y + x;$
 $x := x/2$
end while

```
x[n] x[n+1] x[n+2] ...

y[n] y[n+1]
```

Invariant Generation for Loops with Assignments Only

Example. [K. Zuse, 1993]

$$z := 0; \ y := 1; \ x := 1/2;$$
while ... do
 $z := 2 * z - 2 * y - x;$
 $y := y + x;$
 $x := x/2$
end while

```
x[n] x[n+1] x[n+2] ...

y[n] y[n+1] y[n+2] ...
```

Invariant Generation for Loops with Assignments Only

Example. [K. Zuse, 1993]

```
z := 0; \ y := 1; \ x := 1/2;
while ... do
z := 2 * z - 2 * y - x;
y := y + x;
x := x/2
end while
```

```
x[n] x[n+1] x[n+2] ...

y[n] y[n+1] y[n+2] ...

z[n] z[n+1]
```

Invariant Generation for Loops with Assignments Only

Example. [K. Zuse, 1993]

```
z := 0; \ y := 1; \ x := 1/2;
while ... do
z := 2 * z - 2 * y - x;
y := y + x;
x := x/2
end while
```

```
x[n] x[n+1] x[n+2] ...

y[n] y[n+1] y[n+2] ...

z[n] z[n+1] z[n+2] ...
```

Extracting and Solving Recurrences

$$z := 0; y := 1; x := 1/2$$
while ... do
 $z := 2 * z - 2 * y - x;$
 $y := y + x;$
 $x := x/2$
end while

$$z := 0; \ y := 1; \ x := 1/2;$$
while ... do
$$z := 2 * z - 2 * y - x;$$

$$y := y + x;$$

$$x = 0; \ y := 1/2;$$

$$x[n+1] = x[n]/2$$

$$y[n+1] = y[n] + x[n]$$

$$z[n] = 2 * z[n] - 2 * y[n] - x[n]$$

$$\begin{cases} x[n] & \text{c-finite} & \frac{1}{2^n}x[0] \\ y[n] & \text{c-finite} & y[0] + 2x[0] - \frac{1}{2^{n-1}}x[0] \\ z[n] & \text{c-finite} & 2^n(z[0] - 2y[0] - 2x[0]) - \frac{1}{2^{n-1}}x[0] + 2y[0] + 4x[0] \end{cases}$$

Extracting and Solving Recurrences

$$z := 0; y := 1; x := 1/2$$
while ... do
 $z := 2 * z - 2 * y - x;$
 $y := y + x;$
 $x := x/2$
end while

$$z := 0; \ y := 1; \ x := 1/2;$$
while ... do
$$z := 2 * z - 2 * y - x;$$

$$y := y + x;$$

$$z := 0; \ y := 1/2;$$

$$x[n+1] = x[n]/2$$

$$y[n+1] = y[n] + x[n]$$

$$z[n] = 2 * z[n] - 2 * y[n] - x[n]$$

$$\begin{cases} x[n] & C = \lim_{z \to \infty} x[0] \\ y[n] & C = \lim_{z \to \infty} x[0] + 2x[0] - \frac{1}{2^{n-1}}x[0] \\ z[n] & C = \lim_{z \to \infty} 2^n(z[0] - 2y[0] - 2x[0]) - \frac{1}{2^{n-1}}x[0] + 2y[0] + 4x[0] \end{cases}$$

Algebraic Dependencies and Variable Elimination

$$z := 0; y := 1; x := 1/2;$$

while [...,
 $z := 2 * z - 2 * y - x;$
 $y := y + x;$
 $x := x/2$]

$$\begin{array}{ll} z = 0; \ y := 1; \ x := 1/2; & n \ge 0, \quad a = 2^n, b = 2^{-n} \\ \frac{|e|}{z} \ldots, & \left\{ \begin{array}{ll} x & c-finite & b * x[0] \\ y & c-finite & y[0] + 2 * x[0] - 2 * b * x[0] \\ z & c-finite & a * (z[0] - 2 * y[0] - 2 * x[0]) - \\ z & c-finite & a * (z[0] - 2 * y[0] + 2 * x[0]) - \\ 0 & Alg.\underline{p}ep. & a * b - 1 \end{array} \right.$$

Algebraic Dependencies and Variable Elimination

$$\begin{split} z &:= 0; \ y := 1; \ x := 1/2; \\ &\underbrace{\text{while}[\dots,} \\ z &:= 2*z - 2*y - x; \\ y &:= y + x; \\ x &:= x/2 \,] \end{split} \qquad \begin{cases} x & \text{$c = \frac{1}{2}$n, $b = 2^{-n}$} \\ x & \text{$c = \frac{1}{2}$ninte} & b*x[0] \\ y & \text{$c = \frac{1}{2}$ninte} & y[0] + 2*x[0] - 2*b*x[0] \\ z & \text{$c = \frac{1}{2}$ninte} & a*(z[0] - 2*y[0] - 2*x[0]) - \\ & 2*b*x[0] + 2*y[0] + 4*x[0] \\ 0 & \text{$Alg = \frac{1}{2}$ep.} & a*b - 1 \end{cases}$$

P-solvable Loop

Polynomial Invariant (GB):

$$(2x+y-2x[0]-y[0]=0) \wedge (y^2-y*z+2*z*x[0]+z*y[0]-y[0]^2-2*x[0]*z[0]=0)$$

Algebraic Dependencies and Variable Elimination

$$\begin{split} z &:= 0; \ y := 1; \ x := 1/2; \\ &\underbrace{\text{while}[\dots,} \\ z &:= 2*z - 2*y - x; \\ y &:= y + x; \\ x &:= x/2 \,] \end{split} \qquad \begin{cases} x & \text{$c = \frac{1}{2}$n, $b = 2^{-n}$} \\ x & \text{$c = \frac{1}{2}$ninte} & b*x[0] \\ y & \text{$c = \frac{1}{2}$ninte} & y[0] + 2*x[0] - 2*b*x[0] \\ z & \text{$c = \frac{1}{2}$ninte} & a*(z[0] - 2*y[0] - 2*x[0]) - \\ & 2*b*x[0] + 2*y[0] + 4*x[0] \\ 0 & \text{$Alg = \frac{1}{2}$ep.} & a*b - 1 \end{cases}$$

P-solvable Loop

Polynomial Invariant (GB):

$$(2*x+y-2=0) \land (2*z-y*z+y^2-1=0)$$

Further Examples.

```
k := 0; j := 1; m := 1;

<u>while</u> m \le n \underline{do}

k := k + 1; j := j + 2; m := m + j

end while
```

$$\begin{split} i &:= 0; \ f := 1; g := 1 \\ \underline{\text{while}} \ i &< n \, \underline{\text{do}} \\ t &:= f; \ f := f + g; \ g := t \\ \underline{\text{end while}} \end{split}$$

Further Examples.

(1) Integer square root:

```
k := 0; j := 1; m := 1;

while m \le n do

k := k + 1; j := j + 2; m := m + j

end while
```

(2) Fibonacci numbers

```
i := 0; f := 1; g := 1

<u>while</u> i < n \text{ do}

t := f; f := f + g; g := t

<u>end while</u>
```

Further Examples.

(1) Integer square root:

$$\begin{array}{l} k := 0; \; j := 1; \; m := 1; \\ \underline{\text{while}} \; m \leq n \, \underline{\text{do}} \\ k := k + 1; \; j := j + 2; \; m := m + j \\ \text{end while} \end{array}$$

Invariant:

$$2k + 1 = j \wedge 4m = (j + 1)^2$$

(2) Fibonacci numbers

$$i := 0; f := 1; g := 1$$

while $i < n \text{ do}$
 $t := f; f := f + g; g := t$
end while

Invariant:

$$f^4 + g^4 + 2f * g^3 - 2f^3 * g - f^2 * g^2 - 1 = 0$$

Outline

Overview of the Method

Algebraic Techniques for Invariant Generation

Polynomial Invariants for Loops with Assignments Only

Polynomial Invariants for Loops with Conditionals

Examples

Conclusions

▶ Loops with assignments and with conditional branches.

Structural constraints on assignments with polynomial rhs.

 \leftarrow Summation algorithms (Gosper's, C-finite)

Tests are ignored \rightarrow non-deterministic programs:

```
\begin{array}{l} \underline{\text{if}}[b \ \underline{\text{then}} \ S_1 \ \underline{\text{else}} \ S_2] \to \underline{\text{if}}[\dots \underline{\text{then}} \ S_1 \ \underline{\text{else}} \ S_2] \to S_1 | S_2 \\ \underline{\text{while}}[cond, S] \to \underline{\text{while}}[\dots, S] \to S^* \\ \underline{\text{while}}[\dots, \underline{\text{if}}[\dots, S_1]; \dots; \underline{\text{if}}[\dots, S_k]] \to (S_1 | \dots | S_k)^* \end{array}
```

Automated Loop Invariant Generation by Algebraic Techniques Over the Rationals for P-solvable loops:

```
\{p(X) = 0 \land X = X_0\} \ (S_1 | \dots | S_k)^* \ \{p(X) = 0\}
```

▶ Polynomial invariant ideal represented by Gröbner bases;

▶ Loops with assignments and with conditional branches.

Structural constraints on assignments with polynomial rhs.

← Summation algorithms (Gosper's, C-finite)

Tests are ignored \rightarrow non-deterministic programs:

$$\begin{array}{l} \underline{\text{if}}[b \ \underline{\text{then}} \ S_1 \ \underline{\text{else}} \ S_2] \to \underline{\text{if}}[\dots \underline{\text{then}} \ S_1 \ \underline{\text{else}} \ S_2] \longrightarrow S_1 | S_2 \\ \underline{\text{while}}[cond, S] \to \underline{\text{while}}[\dots, S] \longrightarrow S^* \\ \underline{\text{while}}[\dots, \underline{\text{if}}[\dots, S_1]; \dots; \underline{\text{if}}[\dots, S_k]] \longrightarrow (S_1 | \dots | S_k)^* \end{array}$$

Automated Loop Invariant Generation by Algebraic Techniques Over the Rationals for P-solvable loops:

$$\{p(X) = 0 \land X = X_0\} \quad (S_1 | \dots | S_k)^* \quad \{p(X) = 0\}$$

Polynomial invariant ideal represented by Gröbner bases;

▶ Loops with assignments and with conditional branches.

Structural constraints on assignments with polynomial rhs.

← Summation algorithms (Gosper's, C-finite)

Tests are ignored \rightarrow non-deterministic programs:

$$\begin{array}{l} \underline{\text{if}}[b \ \underline{\text{then}} \ S_1 \ \underline{\text{else}} \ S_2] \to \underline{\text{if}}[\dots \underline{\text{then}} \ S_1 \ \underline{\text{else}} \ S_2] \longrightarrow S_1 | S_2 \\ \underline{\text{while}}[cond, S] \to \underline{\text{while}}[\dots, S] \longrightarrow S^* \\ \underline{\text{while}}[\dots, \underline{\text{if}}[\dots, S_1]; \dots; \underline{\text{if}}[\dots, S_k]] \longrightarrow (S_1 | \dots | S_k)^* \end{array}$$

Automated Loop Invariant Generation by Algebraic Techniques Over the Rationals for P-solvable loops:

$$\{p(X) = 0 \land X = X_0\} \quad (S_1 | \dots | S_k)^* \quad \{p(X) = 0\}$$

▶ Polynomial invariant ideal represented by Gröbner bases;

► Loops with assignments and with/without conditional branches.

Structural constraints on assignments with polynomial rhs.

← Summation algorithms (Gosper's, C-finite)

Tests are ignored \rightarrow non-deterministic programs:

$$\begin{array}{l} \underline{\text{if}}[b \ \underline{\text{then}} \ S_1 \ \underline{\text{else}} \ S_2] \to \underline{\text{if}}[\dots \underline{\text{then}} \ S_1 \ \underline{\text{else}} \ S_2] \longrightarrow S_1 | S_2 \\ \underline{\text{while}}[b,S] \to \underline{\text{while}}[\dots,S] \longrightarrow S^* \\ \underline{\text{while}}[\dots,\underline{\text{if}}[\dots,S_1];\dots;\underline{\text{if}}[\dots,S_k]] \longrightarrow (S_1 | \dots | S_k)^* \end{array}$$

Automated Loop Invariant Generation by Algebraic Techniques Over the Rationals for P-solvable loops:

$$\{p(X) = 0 \land X = X_0\} \quad (S_1 | \dots | S_k)^* \quad \{p(X) = 0\}$$

- Polynomial invariant ideal represented by Gröbner bases;
- ▶ Implementation: ALIGATOR → programs working on numbers.

RECAP — P-solvable Loop S* with Assignments Only

Values of loop variables $X = \{x_1, \dots, x_m\}$ at loop iteration $n \in \mathbb{N}$:

$$S^{n} \equiv \underbrace{S; \dots; S}_{n \text{ times}} : \begin{cases} x_{1}[n] = q_{1}(n, \theta_{1}^{n}, \dots, \theta_{s}^{n}) \\ \vdots \\ x_{m}[n] = q_{m}(n, \theta_{1}^{n}, \dots, \theta_{s}^{n}) \end{cases},$$

with algebraic dependencies:

$$A = I(n, \theta_1^n, \dots, \theta_s^n) = \langle r \mid r(n, \theta_1^n, \dots, \theta_s^n) = 0, \ \forall n \in \mathbb{N} \rangle \leq \overline{\mathbb{K}}[n, \theta_1^n, \dots, \theta_s^n]$$

RECAP — P-solvable Loop S* with Assignments Only

Values of loop variables $X = \{x_1, \dots, x_m\}$ at loop iteration $n \in \mathbb{N}$:

$$S^{n} \equiv \underbrace{S; \dots; S}_{n \text{ times}} : \begin{cases} x_{1}[n] = q_{1}(n, \theta_{1}^{n}, \dots, \theta_{s}^{n}) \\ \vdots \\ x_{m}[n] = q_{m}(n, \theta_{1}^{n}, \dots, \theta_{s}^{n}) \end{cases},$$

with algebraic dependencies:

$$A = \mathit{I}(n, \theta_1^n, \dots, \theta_s^n) = \langle r \mid r(n, \theta_1^n, \dots, \theta_s^n) = 0, \ \forall n \in \mathbb{N} \rangle \leq \mathbb{\bar{K}}[n, \theta_1^n, \dots, \theta_s^n]$$

Examples.

- $I(n, 2^n, 4^n) = \langle (2^n)^2 4^n \rangle$
- $I(n, 2^n, 2^{-n}) = \langle (2^n) * (2^{-n}) 1 \rangle$
- $I(n, 2^n, 3^n) = \emptyset$
- $\bullet \ I(n, \frac{1+\sqrt{5}}{2}^n, \frac{1-\sqrt{5}}{2}^n) = \langle \left(\frac{1+\sqrt{5}}{2}^n\right)^2 * \left(\frac{1-\sqrt{5}}{2}^n\right)^2 1 \rangle$

RECAP — P-solvable Loop S* with Assignments Only

Values of loop variables $X = \{x_1, \dots, x_m\}$ at loop iteration $n \in \mathbb{N}$:

$$S^{n} \equiv \underbrace{S; \dots; S}_{n \text{ times}} : \begin{cases} x_{1}[n] &= q_{1}(n, \theta_{1}^{n}, \dots, \theta_{s}^{n}) \\ \vdots & \vdots \\ x_{m}[n] &= q_{m}(n, \theta_{1}^{n}, \dots, \theta_{s}^{n}) \end{cases},$$

with algebraic dependencies:

$$A = I(n, \theta_1^n, \dots, \theta_s^n) = \langle r \mid r(n, \theta_1^n, \dots, \theta_s^n) = 0, \ \forall n \in \mathbb{N} \rangle \leq \overline{\mathbb{K}}[n, \theta_1^n, \dots, \theta_s^n]$$

Polynomial Invariant Ideal:
$$I_* = I(x_1, \dots, x_m) = \langle x_i - q_i \rangle + A \cap \mathbb{K}[x_1, \dots, x_m]$$

$$\{p(X) = 0 \ \land \ X = X_0\} \quad S^* \quad \{p(X) = 0\}$$

P-solvable loop $(S_1 | \dots | S_k)^* \iff$ P-solvable inner loops S_i^*

 $(S_1|\ldots|S_k)^*$ is equivalent to $(S_1^**\cdots*S_k^*)^*$

Polynomial Invariant Ideal: $I_* = I(x_1, ..., x_m)$

P-solvable loop $(S_1 | \dots | S_k)^* \iff$ P-solvable inner loops S_i^*

 $(S_1|\ldots|S_k)^*$ is equivalent to $(S_1^**\cdots*S_k^*)^*$

Polynomial Invariant Ideal: $I_* = I(x_1, \dots, x_m)$

$$\{p(X) = 0 \land X = X_0\} \quad (S_1 | \dots | S_k)^* \quad \{p(X) = 0\}$$

P-solvable loop $(S_1 | \dots | S_k)^* \iff$ P-solvable inner loops S_i^*

$$(S_1|\ldots|S_k)^*$$
 is equivalent to $(S_1^**\cdots*S_k^*)^*$

Polynomial Invariant Ideal: $I_* = I(x_1, ..., x_m)$

$$\{p(X) = 0 \land X = X_0\} \quad (S_1^* * \cdots * S_k^*)^* \quad \{p(X) = 0\}$$

P-solvable loop $(S_1 | \dots | S_k)^* \iff$ P-solvable inner loops S_i^*

$$(S_1|\ldots|S_k)^*$$
 is equivalent to $(S_1^**\cdots*S_k^*)^*$

Polynomial Invariant Ideal: $I_* = I(x_1, ..., x_m)$

$$\{p(X) = 0 \land X = X_0\} \quad (S_1^* * \cdots * S_k^*)^* \quad \{p(X) = 0\}$$

First algorithmic attempt:

$$\underbrace{(S_1^* * \cdots * S_k^*)^*}_{\text{arbitrary MANY iterations}} \leftarrow \underbrace{S_1^* * \cdots * S_k^*}_{\text{ONE iteration}} \leftarrow \underbrace{S_1^*; \ldots; S_k^*}_{\text{loop sequence}}$$

$$I_* \qquad \subseteq Pl_0 = \bigcap I_k \qquad I_k$$

P-solvable loop $(S_1 | \dots | S_k)^* \iff$ P-solvable inner loops S_i^*

$$(S_1|\ldots|S_k)^*$$
 is equivalent to $(S_1^**\cdots*S_k^*)^*$

Polynomial Invariant Ideal: $I_* = I(x_1, ..., x_m)$

$$\{p(X) = 0 \land X = X_0\} \quad (S_1^* * \cdots * S_k^*)^* \quad \{p(X) = 0\}$$

$$\underbrace{(S_1^* * \cdots * S_k^*)^*}_{\text{arbitrary MANY iterations}} \leftarrow \cdots \leftarrow \underbrace{(S_1^* * \cdots * S_k^*); S_i^*}_{\text{TWO iterations}} \leftarrow \underbrace{S_1^* * \cdots * S_k^*}_{\text{ONE iteration}}$$

$$\subseteq \cdots \subseteq Pl_1 = \bigcap l_{k+1} \subseteq Pl_0 = \bigcap l_k$$

P-solvable loop $(S_1 | \dots | S_k)^* \iff$ P-solvable inner loops S_i^*

 $(S_1|\ldots|S_k)^*$ is equivalent to $(S_1^**\cdots*S_k^*)^*$

Polynomial Invariant Ideal: $I_* = I(x_1, ..., x_m)$

$$\{p(X) = 0 \land X = X_0\} \quad (S_1^* * \cdots * S_k^*)^* \quad \{p(X) = 0\}$$

$$\underbrace{(S_1^* * \cdots * S_k^*)^*}_{\text{arbitrary MANY iterations}} \leftarrow \cdots \leftarrow \underbrace{(S_1^* * \cdots * S_k^*); S_i^*}_{\text{TWO iterations}} \leftarrow \underbrace{S_1^* * \cdots * S_k^*}_{\text{ONE iteration}}$$

$$\subseteq \cdots \subseteq Pl_1 = \bigcap l_{k+1} \subseteq Pl_0 = \bigcap l_k$$

P-solvable loop $(S_1 | \dots | S_k)^* \iff$ P-solvable inner loops S_i^*

$$(S_1|\ldots|S_k)^*$$
 is equivalent to $(S_1^**\cdots*S_k^*)^*$

Polynomial Invariant Ideal: $I_* = I(x_1, ..., x_m)$

$$\{p(X) = 0 \land X = X_0\} \quad (S_1^* * \cdots * S_k^*)^* \quad \{p(X) = 0\}$$

$$\underbrace{(S_1^* * \cdots * S_k^*)^*}_{\text{arbitrary MANY iterations}} \leftarrow \cdots \leftarrow \underbrace{(S_1^* * \cdots * S_k^*); S_i^*}_{\text{TWO iterations}} \leftarrow \underbrace{S_1^* * \cdots * S_k^*}_{\text{ONE iteration}}$$

$$\subseteq \cdots \subseteq Pl_1 = \bigcap I_{k+1} \subseteq Pl_0 = \bigcap I_k$$


```
Program
                                                 Algorithm
<u>while</u>[...,
                                                I = k, \quad L_I = \text{Perm}[1, \dots, k]
                                                              I_{I} = \{ p \mid \{ p(X) = 0 \land X = X_{0} \} S_{W_{1}}^{*}; \dots; S_{W_{I}}^{*} \{ p(X) = 0 \} \}, (w_{1}, \dots, w_{I}) \in L_{I}
                                                 repeat
                                                   PI' = PI
L_{l+1} = \bigcup L_l \circ S_i, \quad l = l+1

\underbrace{\mathbf{if}[\ldots, S_k]}_{I_I} = \bigcap_{I_I} I_I \\
I_I = \{ p \mid \{ p(X) = 0 \land X = X_0 \} S_{\mathbf{w}_1}^* ; \ldots ; S_{\mathbf{w}_l}^* ; \{ p(X) = 0 \} \}, (\mathbf{w}_1, \ldots, \mathbf{w}_l) \in L_I

                                                 until PI = PI' = I_*
```

$$\underbrace{(S_1^* * \cdots * S_k^*)^*}_{\text{arbitrary MANY iterations}} \leftarrow \cdots \leftarrow \underbrace{(S_1^* * \cdots * S_k^*); S_i^*}_{\text{TWO iterations}} \leftarrow \underbrace{S_1^* * \cdots * S_k^*}_{\text{ONE iteration}}$$

$$\subseteq \cdots \subseteq Pl_1 = \bigcap l_{k+1} \subseteq Pl_0 = \bigcap l_k$$

Initial values:
$$a = x$$
, $b = y$, $p = 1$, $q = 0$, $r = 0$, $s = 1$

Loop:
$$\underline{a := a - b; p := p - q; r := r - s}$$
 | $\underline{b := b - a; q := q - p; s := s - r}$

Step 0: $Pl_0 = \langle 18 \text{ polynomials} \rangle$

Step 1:
$$PI_1 = \langle b - qx - sy, br - as + x, qr - ps + 1, px + ry - a, bp - aq - y \rangle$$

Step 2:
$$Pl_2 = \langle b - qx - sy, br - as + x, qr - ps + 1, px + ry - a, bp - aq - y \rangle$$

Initial values:
$$a = x$$
, $b = y$, $p = 1$, $q = 0$, $r = 0$, $s = 1$

Loop:
$$\underline{a := a - b; p := p - q; r := r - s}$$
 | $\underline{b := b - a; q := q - p; s := s - r}$

Step 0:
$$Pl_0 = \langle 18 \text{ polynomials} \rangle =$$

$$\left\{ \bigwedge \begin{array}{l} P(a,b,p,q,r,s) = 0 \\ (a,b,p,q,r,s) = (x,y,1,0,0,1) \end{array} \right\} \quad \begin{array}{l} S_1^*; S_2^* \\ S_2^*; S_1^* \end{array} \quad \{ P(a,b,p,q,r,s) = 0 \}$$

Step 1:
$$PI_1 = \langle b - qx - sy, br - as + x, qr - ps + 1, px + ry - a, bp - aq - y \rangle$$

Step 2:
$$Pl_2 = \langle b - qx - sy, br - as + x, qr - ps + 1, px + ry - a, bp - aq - y \rangle$$

 $Pl_1 = Pl_2 = l_*$

Initial values:
$$a = x, b = y, p = 1, q = 0, r = 0, s = 1$$

Loop:
$$\underbrace{a := a - b; p := p - q; r := r - s}_{S} \mid \underbrace{b := b - a; q := q - p; s := s - r}_{S}$$

Step 1:
$$PI_1 = \langle b - qx - sy, br - as + x, qr - ps + 1, px + ry - a, bp - aq - y \rangle$$

$$\left\{ \bigwedge P(a, b, p, q, r, s) = 0 \\ (a, b, p, q, r, s) = (x, y, 1, 0, 0, 1) \right\} \begin{cases} S_1^*; S_2^*; S_1^* \\ S_1^*; S_2^*; S_2^* \\ S_2^*; S_1^*; S_2^* \\ S_2^*; S_1^*; S_1^* \end{cases} \{ P(a, b, p, q, r, s) = 0 \}$$

Step 2:
$$Pl_2 = \langle b - qx - sy, br - as + x, qr - ps + 1, px + ry - a, bp - aq - y \rangle$$

$$PI_1 = PI_2 = I_*$$

Initial values:
$$a = x$$
, $b = y$, $p = 1$, $q = 0$, $r = 0$, $s = 1$

Loop:
$$\underline{a := a - b; p := p - q; r := r - s}$$
 | $\underline{b := b - a; q := q - p; s := s - r}$

Step 0:
$$Pl_0 = \langle 18 \text{ polynomials} \rangle =$$

$$\left\{ \bigwedge \begin{array}{l} P(a,b,p,q,r,s) = 0 \\ (a,b,p,q,r,s) = (x,y,1,0,0,1) \end{array} \right\} \quad \begin{array}{l} S_1^*; S_2^* \\ S_2^*; S_1^* \end{array} \quad \{ P(a,b,p,q,r,s) = 0 \}$$

Step 1:
$$PI_1 = \langle b - qx - sy, br - as + x, qr - ps + 1, px + ry - a, bp - aq - y \rangle$$

$$\left\{ \bigwedge \begin{array}{l} P(a,b,p,q,r,s) = 0 \\ (a,b,p,q,r,s) = (x,y,1,0,0,1) \end{array} \right\} \begin{array}{l} S_1^*; \; S_2^*; \; S_1^* \\ S_1^*; \; S_2^*; \; S_2^* \\ S_2^*; \; S_1^*; \; S_2^* \\ S_2^*; \; S_1^*; \; S_1^* \end{array} \quad \{ P(a,b,p,q,r,s) = 0 \}$$

Step 2:
$$PI_2 = \langle b - qx - sy, br - as + x, qr - ps + 1, px + ry - a, bp - aq - y \rangle$$

$$PI_1 = PI_2 = I_*$$

Initial values: a = x, b = y, p = 1, q = 0, r = 0, s = 1

Loop:
$$a := a - b; p := p - q; r := r - s$$
 | $b := b - a; q := q - p; s := s - r$

Step 0:
$$Pl_0 = \langle 18 \text{ polynomials} \rangle =$$

$$\left\{ \bigwedge \begin{array}{l} P(a,b,p,q,r,s) = 0 \\ (a,b,p,q,r,s) = (x,y,1,0,0,1) \end{array} \right\} \quad \begin{array}{l} S_1^*; S_2^* \\ S_2^*; S_1^* \end{array} \quad \{ P(a,b,p,q,r,s) = 0 \}$$

Step 1:
$$PI_1 = \langle b - qx - sy, br - as + x, qr - ps + 1, px + ry - a, bp - aq - y \rangle$$

Step 2:
$$Pl_2 = \langle b - qx - sy, br - as + x, qr - ps + 1, px + ry - a, bp - aq - y \rangle$$

$$Pl_1 = Pl_2 = l_*$$

$$\left\{ \bigwedge \begin{array}{l} P(a,b,p,q,r,s) = 0 \\ (a,b,p,q,r,s) = (x,y,1,0,0,1) \end{array} \right\} \quad (S_1|S_2)^* \quad \{P(a,b,p,q,r,s) = 0\} \\ \text{(S_1|S_2)}^* \quad \{P(a,b,p,q,r,s) = 0\} \\ \text{(P(a,b,p,q,r,s)}^* \quad \{P(a,b,p,q,r,s) = 0\} \\ \text{(P(a,b,p,q,$$

Initial values:
$$a = x$$
, $b = y$, $p = 1$, $q = 0$, $r = 0$, $s = 1$

Loop:
$$\underline{a := a - b; p := p - q; r := r - s}$$
 | $\underline{b := b - a; q := q - p; s := s - r}$

Step 0:
$$PI_0 = \langle 18 \text{ polynomials} \rangle = \langle s - 1, b - qx - y, br - a + x, qr - p + 1, px + ry - a, bp - aq - y \rangle$$

 $\langle s - 1, b - qx - sy, br - as + x, qr - s + 1, x + ry - a, b - aq - y, asy - ab + bx - xy \rangle$

Dimension: 4

Step 1:
$$Pl_1 = \langle b - qx - sy, br - as + x, qr - ps + 1, px + ry - a, bp - aq - y \rangle$$

Dimension: 3

Step 2:
$$Pl_2 = \langle b - qx - sy, br - as + x, qr - ps + 1, px + ry - a, bp - aq - y \rangle$$

$$PI_1 = PI_2 = I_*$$

Dimension: 3

Properties of the algorithm:

$$I_* \subseteq \cdots \subseteq PI_1 = \bigcap I_{k+1} \subseteq PI_0 = \bigcap I_k$$

• if $PI_n = PI_{n+1}$ then $I_* = PI_n$ (TERMINATION CRITERIA)

Assume $PI_1 = \bigcap I_{k+1} \subsetneq PI_0 = \bigcap I_k$. Then:

- ▶ $I_{k+1} \subseteq I_k$ for some k-loop sequence;
- ▶ dim $W_{r'}$ < dim U_r for some r, r'.

Termination Proof.

- 1. I_{k+1} , I_k are prime ideals;
- 2. The minimal prime ideal decomposition:

$$J_k = \left(\bigcap_r U_r\right) \cap \mathbb{K}[X]$$
 and $J_{k+1} = \left(\bigcap_r W_{rr}\right) \cap \mathbb{K}[X]$

- with
 - *U_r*, *W_{r'}* are prime ideals;
 - $\triangleright U_a \not\subseteq U_b$ and $W_{a'} \not\subseteq W_{b'}$ for any $a \neq b$ and $a' \neq b'$;
 - \blacktriangleright $(\forall r')(\exists r)$ dim $W_{r'} \leq \dim U_{r}$.
- Dimension is finite. It cannot infinitely decreases.

Assume $PI_1 = \bigcap I_{k+1} \subsetneq PI_0 = \bigcap I_k$. Then:

- ▶ $I_{k+1} \subseteq I_k$ for some k-loop sequence;
- ▶ dim $W_{r'}$ < dim U_r for some r, r'.

Termination Proof.

1. I_{k+1} , I_k are prime ideals;

$$pq \in I_k \implies p \in I_k \text{ or } q \in I_k$$

2. The minimal prime ideal decomposition:

$$I_k = \left(\bigcap_r U_r\right) \cap \bar{\mathbb{K}}[X]$$
 and $I_{k+1} = \left(\bigcap_{r'} W_{r'}\right) \cap \bar{\mathbb{K}}[X]$

- *U_r*, *W_{r'}* are prime ideals;
- $ightharpoonup U_a \nsubseteq U_b$ and $W_{a'} \nsubseteq W_{b'}$ for any $a \neq b$ and $a' \neq b'$;
- $(\forall r')(\exists r) \ \dim W_{r'} \leq \dim U_r$
- 3. Dimension is finite. It cannot infinitely decrease.

$$(\exists n) \ PI_n = () \ I_{k+n+1} = PI_{n+1}$$

Assume
$$PI_1 = \bigcap I_{k+1} \subsetneq PI_0 = \bigcap I_k$$
. Then:

- ▶ $I_{k+1} \subseteq I_k$ for some k-loop sequence;
- ▶ dim $W_{r'}$ < dim U_r for some r, r'.

Termination Proof.

1. I_{k+1} , I_k are prime ideals;

$$pq \in I_k \implies p \in I_k \text{ or } q \in I_k$$

2. The minimal prime ideal decomposition:

$$I_k = \left(\bigcap_r U_r\right) \cap \bar{\mathbb{K}}[X]$$
 and $I_{k+1} = \left(\bigcap_{r'} W_{r'}\right) \cap \bar{\mathbb{K}}[X]$

- $ightharpoonup U_r$, $W_{r'}$ are prime ideals;
- ▶ $U_a \nsubseteq U_b$ and $W_{a'} \nsubseteq W_{b'}$ for any $a \neq b$ and $a' \neq b'$;
- $(\forall r')(\exists r) \dim W_{r'} \leq \dim U_r$.
- Dimension is finite. It cannot infinitely decrease.

$$(\exists n) \ PI_n = () \ I_{k+n} = () \ I_{k+n+1} = PI_{n+1}$$

Assume $PI_1 = \bigcap I_{k+1} \subsetneq PI_0 = \bigcap I_k$. Then:

- ▶ $l_{k+1} \subseteq l_k$ for some k-loop sequence;
- ▶ $\dim W_{r'} < \dim U_r$ for some r, r'.

Termination Proof.

1. I_{k+1} , I_k are prime ideals;

 $pq \in I_k \implies p \in I_k \text{ or } q \in I_k$

2. The minimal prime ideal decomposition:

$$I_k = \left(\bigcap_r U_r\right) \cap \bar{\mathbb{K}}[X]$$
 and $I_{k+1} = \left(\bigcap_{r'} W_{r'}\right) \cap \bar{\mathbb{K}}[X]$

- $ightharpoonup U_r$, $W_{r'}$ are prime ideals;
- ▶ $U_a \nsubseteq U_b$ and $W_{a'} \nsubseteq W_{b'}$ for any $a \neq b$ and $a' \neq b'$;
- ▶ $(\forall r')(\exists r) \dim W_{r'} \leq \dim U_r$.
- 3. Dimension is finite. It cannot infinitely decrease.

$$(\exists n) \ Pl_n = \bigcap l_{k+n} = \bigcap l_{k+n+1} = Pl_{n+1}$$

Assume $PI_1 = \bigcap I_{k+1} \subsetneq PI_0 = \bigcap I_k$. Then:

- ▶ $l_{k+1} \subseteq l_k$ for some k-loop sequence;
- ▶ $\dim W_{r'} < \dim U_r$ for some r, r'.

Termination Proof.

1. I_{k+1} , I_k are prime ideals;

$$pq \in I_k \implies p \in I_k \text{ or } q \in I_k$$

2. The minimal prime ideal decomposition:

$$I_k = \left(\bigcap_r U_r\right) \cap \bar{\mathbb{K}}[X]$$
 and $I_{k+1} = \left(\bigcap_{r'} W_{r'}\right) \cap \bar{\mathbb{K}}[X]$

- $ightharpoonup U_r$, $W_{r'}$ are prime ideals;
- ▶ $U_a \nsubseteq U_b$ and $W_{a'} \nsubseteq W_{b'}$ for any $a \neq b$ and $a' \neq b'$;
- ▶ $(\forall r')(\exists r) \dim W_{r'} \leq \dim U_r$.
- 3. Dimension is finite. It cannot infinitely decrease.

$$(\exists n) \ Pl_n = \bigcap l_{k+n} = \bigcap l_{k+n+1} = \underbrace{Pl_{n+1}}_{\forall \ \square \ \triangleright \ d} = \underbrace{\vdash \ \square \ }_{\forall \ \square \ \triangleright \ d} = \underbrace{\vdash \ \square \ }_{\forall \ \square \ \triangleright \ d} = \underbrace{\vdash \ \square \ }_{\forall \ \square \ \triangleright \ d} = \underbrace{\vdash \ \square \ \square \ }_{\forall \ \square \ \square \ \square \ \square} = \underbrace{\vdash \ \square \ \square \ \square \ \square \ \square \ \square}_{\forall \ \square \ \square \ \square} = \underbrace{\vdash \ \square \ \square \ \square \ \square \ \square}_{\forall \ \square \ \square \ \square} = \underbrace{\vdash \ \square \ \square \ \square \ \square \ \square}_{\forall \ \square \ \square} = \underbrace{\vdash \ \square \ \square \ \square}_{\forall \ \square \ \square} = \underbrace{\vdash \ \square \ \square \ \square}_{(\square \ \square \ \square \ \square} = \underbrace{\vdash \ \square \ \square \ \square}_{(\square \ \square \ \square \ \square} = \underbrace{\vdash \ \square \ \square \ \square}_{(\square \ \square \ \square \ \square} = \underbrace{\vdash \ \square \ \square}_{(\square \ \square \ \square} = \underbrace{\vdash \ \square \ \square}_{(\square \ \square \ \square} = \underbrace{\vdash \ \square \ \square}_{(\square \ \square \ \square} = \underbrace{\vdash \ \square}_{(\square \ \square} = \underbrace{\square \ \square}_{(\square \ \square} = \underbrace{\vdash \ \square}_{(\square \ \square} = \underbrace{\vdash \ \square}_{(\square \ \square} = \underbrace{\vdash \ \square}_{(\square \ \square}$$

Outline

Overview of the Method

Algebraic Techniques for Invariant Generation

Polynomial Invariants for Loops with Assignments Only

Polynomial Invariants for Loops with Conditionals

Examples

Conclusions

Extended Euclid's Algorithm for GCD[x, y]

Program

$$a := x; b := y;$$

 $p := 1; r := 0;$
 $q := 0; s := 1;$
while $[(a \ne b),]$
if $[a > b]$
then $a := a - b;$
 $p := p - q;$
 $r := r - s$
else $b := b - a;$
 $q := q - p;$
 $s := s - r]$

Polynomial Invariants

$$y = bp - aq$$

$$x = as - br$$

$$1 = ps - qr$$

$$a = px + ry$$

$$b = qx + sy$$

Related Work

Work	Invariant Restrictions	Loop Restrictions	Complete
MOS, 2006	yes	no	no*
SSM, 2004	yes	no	no*
RCK, 2007a	yes	no	no*
RCK, 2007b	no	yes*	yes
LK, 2008/09 tool: Aligator	no	yes	yes

Some Experimental Results wrt Solvable [RCK07b] and Inv [RCK07a]

		Timing	# Iters	# Polys
Binary Division	Aligator	0.55 s	1	1
Dilially Division	Solvable	1.78 s	3	1
	Inv	1.77 s	5	1
		Timing	# Iters	# Polys
Euclid's Alg.	Aligator	9.02 s	2	5
Eucliu's Alg.	Solvable	3.05 s	5	5
	Inv	4.13 s	8	1
		Timing	# Iters	# Polys
Fermat's Alg.	Aligator	0.24 s	1	1
remats Alg.	Solvable	1.73 s	4	1
	Inv	2.95 s	8	1
		Timing	# Iters	# Polys
LCM-GCD	Aligator	1.23 s	2	1
LCIVI-GCD	Solvable	2.01 s	5	1
	Inv	4.32 s	9	1
		Timing	# Iters	# Polys
Binary Product	Aligator	0.63 s	1	1
billary Floudct	Solvable	1.74 s	4	1
	Inv	2.79 s	8	1
		Timing	# Iters	# Polys
Square Root	Aligator	0.19 s	1	2
Square noor	Solvable	1.34 s	2	2
	Inv	2.17 s	6	2
		Timing	# Iters	# Polys
Wensley's Alg.	Aligator	0.63 s	1	3
wensiey S Alg.	Solvable	1.95 s	4	3
	Inv	3.53 s	8	3

Outline

Overview of the Method

Algebraic Techniques for Invariant Generation

Polynomial Invariants for Loops with Assignments Only

Polynomial Invariants for Loops with Conditionals

Examples

Conclusions

Conclusions

- Correct and complete algorithm: finds all polynomial invariants;
- Implementation: ALIGATOR

```
    Solving recurrences;
    Computing algebraic dependencies;
    Eliminating non-program variables;
    Intersecting ideals;
```

ALIGATOR successfully tried on many examples;
 Less time/iteration needed than other tools.

```
http://mtc.epfl.ch/software-tools/Aligator/
```


End of Session 2

Slides for session 2 ended here ...