A Survey of Program Termination: Practical and Theoretical Challenges

Joël Ouaknine

Department of Computer Science, Oxford University

VTSA 2014
Luxembourg, October 2014
Consider the following order-5 recurrence:

\[u_{n+5} = -\frac{19}{25} u_{n+4} - \frac{114}{125} u_{n+3} + \frac{114}{125} u_{n+2} + \frac{19}{25} u_{n+1} + u_n \]
Consider the following order-5 recurrence:

\[u_{n+5} = -\frac{19}{25} u_{n+4} - \frac{114}{125} u_{n+3} + \frac{114}{125} u_{n+2} + \frac{19}{25} u_{n+1} + u_n \]

This is simple, with characteristic roots 1, \(\lambda_1, \overline{\lambda_1}, \lambda_2, \overline{\lambda_2} \), where

\[
\lambda_1 = \frac{-3 + 4i}{5} \quad \text{and} \quad \lambda_2 = \frac{-7 + 24i}{25}
\]
Consider the following order-5 recurrence:

\[u_{n+5} = -\frac{19}{25}u_{n+4} - \frac{114}{125}u_{n+3} + \frac{114}{125}u_{n+2} + \frac{19}{25}u_{n+1} + u_n \]

This is simple, with characteristic roots 1, \(\lambda_1, \overline{\lambda_1}, \lambda_2, \overline{\lambda_2}\), where

\[\lambda_1 = \frac{-3 + 4i}{5} \quad \text{and} \quad \lambda_2 = \frac{-7 + 24i}{25} \]

For suitably chosen initial values we have

\[u_n = \frac{33}{8} + \lambda_1^n + \overline{\lambda_1^n} + 2\lambda_2^n + 2\overline{\lambda_2^n} \]
\(\{ \lambda^n_1 : n \in \mathbb{N} \} \) and \(\{ \lambda^n_2 : n \in \mathbb{N} \} \) are both dense in \(\mathbb{T} \).
Orbits of Characteristic Roots

- \(\{\lambda_1^n : n \in \mathbb{N}\} \) and \(\{\lambda_2^n : n \in \mathbb{N}\} \) are both dense in \(\mathbb{T} \).

- \(\{(\lambda_1^n, \lambda_2^n) : n \in \mathbb{N}\} \) not dense in \(\mathbb{T}^2 \) due to relation \(\lambda_1^2\lambda_2 = 1 \).

Point \((-1, -1)\) does not lie on helix.
Orbits of Characteristic Roots

- \{\lambda^n_1 : n \in \mathbb{N}\} and \{\lambda^n_2 : n \in \mathbb{N}\} are both dense in \mathbb{T}.

- \{(\lambda^n_1, \lambda^n_2) : n \in \mathbb{N}\} not dense in \mathbb{T}^2 due to relation \lambda^2_1\lambda_2 = 1.

- \{(\lambda^n_1, \lambda^n_2) : n \in \mathbb{N}\} dense in helix \{ (z_1, z_2) \in \mathbb{T}^2 : z_1^2z_2 = 1 \}.
Orbits of Characteristic Roots

- \(\{\lambda_1^n : n \in \mathbb{N}\} \) and \(\{\lambda_2^n : n \in \mathbb{N}\} \) are both dense in \(\mathbb{T} \).

- \(\{(\lambda_1^n, \lambda_2^n) : n \in \mathbb{N}\} \) not dense in \(\mathbb{T}^2 \) due to relation \(\lambda_1^2 \lambda_2 = 1 \).

- \(\{(\lambda_1^n, \lambda_2^n) : n \in \mathbb{N}\} \) dense in helix \(\{ (z_1, z_2) \in \mathbb{T}^2 : z_1^2 z_2 = 1 \} \).

- Point \((-1, -1)\) does not lie on helix.
Critical Point! \((-\frac{1}{8} + \frac{\sqrt{63}i}{8}, -\frac{31}{32} + \frac{\sqrt{63}i}{32}) \)
Critical Point! \((-\frac{1}{8} + \frac{\sqrt{63}i}{8}, -\frac{31}{32} + \frac{\sqrt{63}i}{32})\)

For \((\lambda_1^n, \lambda_2^n)\) near this point,

\[
u_n := \frac{33}{8} + \lambda_1^n + \overline{\lambda_1^n} + 2\lambda_2^n + 2\overline{\lambda_2^n}
\]

is close to 0.
Example

- **Critical Point!** \((-\frac{1}{8} + \frac{\sqrt{63}i}{8}, -\frac{31}{32} + \frac{\sqrt{63}i}{32})\)

- For \((\lambda_1^n, \lambda_2^n)\) near this point,

\[
u_n := \frac{33}{8} + \lambda_1^n + \overline{\lambda_1^n} + 2\lambda_2^n + 2\overline{\lambda_2^n}\]

is close to 0.

- \(\langle u_n \rangle\) is ultimately positive—just.
● **Critical Point!** \((-\frac{1}{8} + \frac{\sqrt{63}i}{8}, -\frac{31}{32} + \frac{\sqrt{63}i}{32}\)\)

● For \((\lambda_1^n, \lambda_2^n)\) near this point,

\[
u_n := \frac{33}{8} + \lambda_1^n + \overline{\lambda_1^n} + 2\lambda_2^n + 2\overline{\lambda_2^n}
\]

is close to 0.

● \(\langle u_n \rangle\) is ultimately positive—just.

● But what about \(u_n - \frac{1}{2^n}\)?