Scalable Multi-core Model Checking: Technology & Applications of Brute Force
Part IV: Biology

Jaco van de Pol
30, 31 October 2014

VTSA 2014, Luxembourg
Table of Contents

1. Modeling Signaling Networks in Cell Biology
2. ANIMO: Interactive Modeling and Analysis
3. In Silico Experiment: Osteoarthritis
Kinase pathways: spreading the Phosphor token

- Biochemical equilibrium reactions:
 - $E + S + ATP \iff ES + ATP \rightarrow ESP + ADP \iff E + SP + ADP$
- Simplify to one interaction (here activation): $E \rightarrow S$
Complex network dynamics

- Node interactions:
 - activation
 - inhibition

- Crosstalk and Feedback

- Ultimate questions:
 - understand & control
 - key to finding a cure of “system” diseases
 - cancer, diabetes, arthritis
How to model signaling networks?

Mathematical models (ODE) [Gillespie '77]

\[
\frac{dA}{dt} = k_1 \cdot B - k_2 \cdot C - k_3 \cdot A
\]

- A, B, C are molecule concentrations
- k_1, k_2, k_3 are kinetic parameters
- Precise, strong tools (simulation, stability)
- Difficult, too many parameters are unknown

Boolean networks [Kauffman'69]

\[B \land \neg C \implies A \]

- Easy to handle, biologically relevant
- No timing, no concentrations at all
- So how to execute this?
Simplified version of Timed Automata

Basic modeling ideas

- Discretized activity levels
- Clocks constrained by upperbound and lowerbound
- Activation/Deactivation is communicated over channels
Using Networks of Timed Automata

Modeling Assumptions

- Every reactant is modeled by a Timed Automaton.
- It maintains a discrete activation level: \(\frac{active}{active + inactive} \).
- Clocks trigger when the activation level goes up or down.
- Activation/Inhibition: broadcast communication between automata.

Time \(T \) depends on activation levels: \(L[r_1][r_2] \) and \(U[r_1][r_2] \).
Table of Contents

1. Modeling Signaling Networks in Cell Biology

2. ANIMO: Interactive Modeling and Analysis

3. In Silico Experiment: Osteoarthritis
ANIMO is a Cytoscape plugin, running UPPAAL in the background.
ANIMO workflow

Draw topology, initial conditions, and investigate the behaviour.
Node colors/edges show activation level; view as graphs, heatmap.
Model Validation by Wet-Lab Experiments

Phosphorylation of proteins in human chondrocytes: Time series under three experimental conditions.
Validation by Wet-Lab Experiments

<table>
<thead>
<tr>
<th></th>
<th>IL-1β</th>
<th>Wnt 3a</th>
<th>IL-1β + Wnt 3a</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cytoscape Desktop

- **Network 0**
 - **Results Panel**
 - **ANIMO Results**
 - **Change title**
 - **Reset to here**
 - **Difference with...**
 - **Save simulation data...**
 - **Close**

Legend

- **Activity**
 - Max
 - Min

- **Protein category**
 - Cytokine
 - Receptor
 - Kinase
 - Phosphatase
 - Transcription factor
 - Other

Graph

- **IL-1β**
- **Wnt**
- **FZD**
- **Inh IL-1β sig**
- **Inh Wnt sig**
- **IL-1β R**

Axes

- **Protein activity (a. u.)**
- **Time (min)**

Colors

- **ERK**
- **ERK data**
- **JNK1**
- **JNK1 data**
- **p38**
- **p38 data**
Table of Contents

1. Modeling Signaling Networks in Cell Biology
2. ANIMO: Interactive Modeling and Analysis
3. In Silico Experiment: Osteoarthritis
Osteoarthritis

- Mesenchymal stem cells can differentiate to
 - either Osteoblasts (bone)
 - or Chondrocytes (cartilage)

- Osteoarthritis: articular cartilage dries, wears out, forms bone

- Pain in “bone-to-bone” joints

- 60% of the population (> 65 years) will show symptoms

- Characterized by transcription factors: SOX9 or RUNX2
Development of Chondrocyte (cell fate)

- Mesenchymal Stem Cell
- Condensed Mesenchymal Stem Cell
- Chondrocyte
- Proliferating chondrocyte
- Hypertrophic chondrocyte
- RUNX2 activation?
- RUNX2 active: DKK1, FRZB, GREM1
- SOX9 active:
- Articular cartilage
ECHO: the Executable Chondrocyte
Put ECHO in ANIMO

Starting point: Boolean Network

Size

- 7 inputs
- 123 nodes
- 354 links
- Sox9, Runx2 as output
Validation by simulating results from literature

Basic validation by simulation

- Exhaustive / Monte Carlo simulation with 3^7 input conditions
- Knock-out or overexpress individual nodes in the network

- There are only two stable states (SOX9 and RUNX2)
- WNT protein pushes SOX9 stable states to RUNX2
- DKK, FRZB and GREM stabilize healthy cartilage
In search for new knowledge: parameter sweeps
Multi-core Model Checking for Biological Applications?

Key questions (biological relevant answers)

- Which input combination/series causes a switch RUNX2 → SOX9
- Which interactions should be inhibited to prevent SOX9 → RUNX2
The Empirical Research Cycle/Spiral

produce

Experiments

update

Observations

build

Knowledge Theory

derive

Hypotheses

drive

Model
Literature on ANIMO

- Signalling ANIMO In Silico
- Literature on ANIMO

Signaling Networks in Biology

- Stefano Schivo, Jetse Scholma, B. Wanders, R. Urquidi, P. van der Vet, M. Karperien, R. Langerak, J. van de Pol, J.N. Post, *(BIBE’12, J-BHI’14)*

 Modelling biological pathway dynamics with Timed Automata

- Jetse Scholma, Stefano Schivo, R. Urquidi, J. van de Pol, M. Karperien, J. Post, *(GENE 533 (2013))*

 Biological networks 101: computational modeling for molecular biologists

- Stefano Schivo, Jetse Scholma, Marcel Karperien, Janine N. Post, Jaco van de Pol, Rom Langerak, *(SynCoP 2014)*

 Setting Parameters for Biological Models With ANIMO