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Back to the big picture
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Why fault-tolerant (FT) distributed algorithms

faults not in the control of system designer

bit-flips in memory

power outage

disconnection from the network

intruders take control over some computers

distributed algorithms intended to make
systems more reliable even in the presence of
faults

replicate processes

exchange messages

do coordinated computation

goal: keep replicated processes in “good state” 1
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Fault-tolerant distributed algorithms

n

?
?

?
t f

n processes communicate by messages

all processes know that at most t of them might be faulty

f are actually faulty, e.g., Byzantine

resilience condition, e.g., n > 3t ∧ t ≥ f ≥ 0

no masquerading: the processes know the origin of incoming messages
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Distributed algorithms: computational model and faults

In previous parts, we considered algorithms operating
in the classic model by [Fischer, Lynch, Paterson’85]

Environment:

Asynchronous processes (interleaving semantics)

Reliable asynchronous message passing (non-blocking send and receive)

Faults:

crashes and clean crashes,

omission faults,

symmetric faults,

Byzantine faults
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Threshold-based fault-tolerant distributed algorithms

The parameters (n, t, f ) are fixed in each run

Main loop with the body executed atomically

Processes are anonymous (no identifiers)

Receiving messages, counting them and comparing to thresholds, e.g.,
if received <ECHO> from t + 1 distinct processes

then ...

Sending messages to all processes, e.g.,

send <ECHO> to all

Igor Konnov 9/80



Case studies: asynchronous threshold-based FTDAs

Folklore reliable broadcast (FRB) [Chandra, Toueg’96]

6 counters

Consistent broadcast (STRB) [Srikanth, Toueg’87]

7 counters

Byzantine agreement (ABA) [Bracha, Toueg’85]

case 1: 37 counters, case 2: 61 counters

Condition-based consensus (CBC)
[Mostefaoui, Nourgaya, Parvedy, Raynal’03]

case 1: 71 counters, case 2: 115 counters

Non-blocking atomic commitment (NBAC and NBACC)
[Raynal’97], [Guerraoui’02]

case 1: 77 counters, case 2: 109 counters
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Part V: Outline

1 Yet another abstract model: threshold automata

2 Counter systems with acceleration

3 Parameterized reachability

4 Bounded model checking and its completeness

5 Parameterized bounded model checking and its completeness

6 Main result:
diameter of accelerated counter systems (of threshold automata)
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Threshold automata
and

parameterized reachability
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Threshold automata (TA)

Every correct process follows the control flow graph (L,E ):

`1 `2 `3 `4

true

x ≥ n − f , y++

x++ y ≥ t

Processes move from one location to another along the edges labeled with:

Threshold conditions:
Comparison of a shared variable to linear combinations of parameters,

e.g., x ≥ t + 1.
Conjunction of comparisons,

e.g., x ≥ t + 1 ∧ x < n − t.

Updates:

Increment shared variables (or do nothing),
e.g., x++.

The case studies lead us to the natural restriction on the cycles:
Restriction: the edges in cycles do not change the shared variables.
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Intuition: threshold automata and threshold-based DAs?

`1 `2 `3 `4

true

x ≥ n − f , y++

x++ y ≥ t

send <x> to all
if received <y> from

at least t distinct processes

Crash faults:

run n processes,

. . . `i `c crashed here
nfaulty < f , nfaulty++

Byzantine faults:

run n − f processes,
count messages modulo Byzantine processes, e.g., x ≥ (t + 1)− f

Warning:

Preliminary abstraction is needed as described in Parts II, III.
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Refresher: control flow automata and their abstraction

In Parts II, III, we encoded the loop body as a CFA:

receive messages

compute using

messages and local variables

(description in English

with basic control flow
if-then-else)

send messages

at
om

ic

qI

q0

q1

q2

q3

sv = V1

¬(sv = V1) inc nsnt

sv := SE

q4

q5

q6

q7

q8
qF

rcvd := z where (rcvd ≤ z ∧ z ≤ nsnt + f )

¬(t + 1 ≤ rcvd)

t + 1 ≤ rcvd

sv = V0

¬(sv = V0)

inc nsnt

n − t ≤ rcvd

¬(n − t ≤ rcvd)

sv := SE

sv := AC

qI

q0

q1

q2

q3

sv = V1

¬(sv = V1) inc nsnt

sv := SE

q4

q5

q6

q7

q8
qF

[
rcvd = I0 ∧ nsnt = I0 ∧ (rcvd ′ = I0 ∨ rcvd ′ = I1)

]
∨ . . .

¬(t + 1 ≤ rcvd)

rcvd = It+1 ∨ rcvd = In−t

sv = V0

¬(sv = V0)[
nsnt = I1 ∧ (nsnt ′ = I1 ∨ nsnt ′ = It+1)

]
∨ . . .

n − t ≤ rcvd

¬(n − t ≤ rcvd)

sv := SE

sv := AC
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Intuition: from CFA to TA

How to construct TA from CFA?

Apply parametric interval abstraction
only to the local variables, e.g., rcvd

Shared variables, e.g., nsnt, are still
unbounded

Enumerate all symbolic paths in CFA

Use SMT to find all satisfying
assignments of local variables

Each of them gives a TA rule

`2

(sv → V0 , rcvd → It+1)

`4 (sv → AC , rcvd → In−t)

nsnt + f ≥ n − t, nsnt ′ = nsnt + 1

`3

(sv → V0 , rcvd → I1)

nsnt + f ≥ n − t, nsnt ′ = nsnt + 1

qI

q0

q1

q2

q8

q1

q2

q8

q3

sv 6= V1

sv = V1

nsnt ′ = nsnt + 1

sv := SE

sv = V1

nsnt ′ = nsnt + 1

sv := SE

q4

q5

q6

q7

qF

(
nsnt + f ≥ t + 1 ∧ rcvd ′ = In−t

)
∨ . . .

rcvd ′ = I0 ∨ rcvd ′ = I1rcvd ′ = I0 ∨ rcvd ′ = I1

rcvd ′ = It+1 ∨ rcvd ′ = In−t

sv = V0

nsnt ′ = nsnt + 1

rcvd ′ = In−t

sv ′ = AC

rcvd ′ 6= In−t

sv ′ = SE

sv 6= V0

rcvd ′ 6= In−t

sv ′ = SE

sv 6= V0
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Threshold Automaton of ST87 (after PIA data abstraction)

We automatically summarize
process code from Part III:

7 locations, 15 rules
(+ self-loops)

Guards:

black edges: true

blue edges: nsnt + f ≥ 1

green edges:
nsnt + f ≥ t + 1

red edges: nsnt + f ≥ n − t

Actions increment nsnt iff:
sv ∈ {v0, v1} to
sv ′ ∈ {sent, accept}

sv = sent
nrcvd = I1

sv = v1
nrcvd = I0

sv = sent
nrcvd = I0

sv = v0
nrcvd = I1

sv = sent
nrcvd = I2

sv = v0
nrcvd = I0

sv = accept
nrcvd = I3
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System of N processes

Having a threshold automaton P, fix:

~p are parameters satisfying the resilience condition RC (~p),

N(~p) is a size function.

e.g., ~p = (n, t, f ) and N(~p) = n − f and RC : n > 3t ∧ t ≥ f ≥ 0.

and define a parallel composition P(~p)N(~p)

(as a transition system with standard interleaving semantics).

However, we have a parameterized family of finite-state systems:

{P(~p)N(~p) | RC (~p)}
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Counter system with acceleration!

Counter system is a transition system simulating every system P(~p)N(~p).

Configuration σ = (~κ, ~g , ~p):

κi counts processes at location `i with κ1 + · · ·+ κ|L| = N(~p),
gj is the value of the shared variable xj ,
~p are the values of the parameters.

`1 `2 `3 `4

x ≥ n − f , y++

true
x++ y ≥ t

one transition (interleaving):

σ σ′

x ≥ n − f
κ1 ≥ 1

κ1--

κ2++

y++

accelerated transition:
σ1 σ2 σ3 σ4

σ1 σ4×3
Igor Konnov 28/80



More formally: counter system

with acceleration!

Counter system is a transition system that simulates every system PN(~p).

Configuration σ = (~κ, ~g , ~p):

κi counts processes at location `i ,

κ1 + · · ·+ κ|L| = N(~p),

gj is the value of the shared variable xj ,

~p are the values of the parameters.

Transition from σ = (~κ, ~g , ~p) to σ′ = (~κ′, ~g ′, ~p):

with factor δ ≥ 1:

there is an edge from ` to `′ labeled with condition ϕ and update vector ~u:

update counters: κ` ≥ 1

δ

and κ′` = κ` − 1

δ

and κ′`′ = κ`′ + 1

δ

check threshold condition: ~g |= ϕ

and ~g + (δ − 1) · ~u |= ϕ

update shared variables: ~g ′ = ~g + ~u

δ · ~u

the other counters κj stay unchanged
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Reachability and parameterized reachability

Reachability (fixed parameters):

Fix the parameters, e.g., n = 4, t = 1, f = 1, N = n − f = 3.

Fix configurations σ and σ′ of PN .

Question: is σ′ reachable from σ in PN?

Parameterized reachability:

Fix properties S and S ′ on configurations,
e.g., S : κ1 = N(~p) and S ′ : κ4 6= 0.

Question: are there parameter values ~p and configurations σ, σ′ of PN(~p):

parameters ~p satisfy the resilience condition RC (~p),

σ |= S and σ′ |= S ′,

σ′ is reachable from σ in PN(~p).
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Parameterized reachability: Example

`1 `2 `3 `4

true

x ≥ n − f , y++

x++ y ≥ t

Resilience condition 1: n > t ≥ f and t > 0.

Is `4 reachable, if all processes start at `1? YES

κ1 = 3
κ2 = 0
κ3 = 0
κ4 = 0

x = 0
y = 0

κ1 = 1
κ2 = 2
κ3 = 0
κ4 = 0

x = 0
y = 0

κ1 = 1
κ2 = 0
κ3 = 2
κ4 = 0

x = 2
y = 0

κ1 = 0
κ2 = 1
κ3 = 2
κ4 = 0

x = 2
y = 1

κ1 = 0
κ2 = 1
κ3 = 1
κ4 = 1

x = 2
y = 1
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Parameterized reachability: Example 2

`1 `2 `3 `4

true

x ≥ n − f , y++

x++ y ≥ t

Resilience condition 2: n > t > f and t > 0.

Is `4 reachable, if all processes start at `1? NO

κ1 = n
κ2 = 0
κ3 = 0
κ4 = 0

x = 0
y = 0

κ1 = f
κ2 = n − f
κ3 = 0
κ4 = 0

x = 0
y = 0

κ1 = f
κ2 = 0
κ3 = n − f
κ4 = 0

x = n − f
y = 0

κ1 = 0
κ2 = 0
κ3 = n
κ4 = 0

x = n − f
y = f

×(n − f )
×(n − f )

×f
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Parameterized
&

bounded model checking
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Bounded Model Checking

Model checking without BDDs [Biere, Cimatti, Clarke’99]

Encode as a boolean formula:

the transition relation T (x , x ′),

the set of initial states I (x),

the set of bad states B(x).

Given a bound k,
construct a model checking problem for paths of length k:

fk ≡ I (~x0) ∧ T (~x0,~x1) ∧ T (~x1,~x2) · · · ∧ T (~xk−1,~xk) ∧ B(~xk)

Check fk with a SAT solver.

Tools that implement BMC: NuSMV, CBMC, and many other.

Igor Konnov 36/80



Bounded Model Checking

Model checking without BDDs [Biere, Cimatti, Clarke’99]

Encode as a boolean formula:

the transition relation T (x , x ′),

the set of initial states I (x),

the set of bad states B(x).

Given a bound k,
construct a model checking problem for paths of length k:

fk ≡ I (~x0) ∧ T (~x0,~x1) ∧ T (~x1,~x2) · · · ∧ T (~xk−1,~xk) ∧ B(~xk)

Check fk with a SAT solver.

Tools that implement BMC: NuSMV, CBMC, and many other.

Igor Konnov 37/80



Bounded Model Checking

Model checking without BDDs [Biere, Cimatti, Clarke’99]

Encode as a boolean formula:

the transition relation T (x , x ′),

the set of initial states I (x),

the set of bad states B(x).

Given a bound k,
construct a model checking problem for paths of length k:

fk ≡ I (~x0) ∧ T (~x0,~x1) ∧ T (~x1,~x2) · · · ∧ T (~xk−1,~xk) ∧ B(~xk)

Check fk with a SAT solver.

Tools that implement BMC: NuSMV, CBMC, and many other.
Igor Konnov 38/80



Diameter of a system

Consider configurations σ and σ′
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Diameter of a system

Consider configurations σ and σ′

if σ′ is reachable from σ

then distance dist(σ, σ′) is the
length of the shortest path from
σ to σ′

Consider distances between
all pairs of states

The diameter is the longest distance
among all pairs of states

σ′

σ
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Complete bounded model checking (reachability)

Bounded model checking explores executions up to a given length k .

To make it complete for reachability properties,

set k to the diameter of the transition system [Biere, Cimatti, Clarke’99]

If we know the diameter d of the accelerated counter system,

then for every combination of the parameters ~p,

diameter of unaccelerated PN(~p) ≤ d · N(~p)

Diameter is the greatest distance between any pair of configurations.
Distance between two configurations is the length of the shortest path.
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Diameter of a fixed-size system

Fix the parameters, e.g., n = 4, t = 1, f = 1.

All variables are bounded, the state set is finite.

The diameter is bounded by the number of states.

n = 4
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Complete parameterized bounded model checking

Use counter abstraction to get a finite system A.

Counters κi are mapped to a finite domain D̂, e.g.,

{0, 1,∞} by [Pnueli, Xu, Zuck’02].

Domain of parametric intervals extracted from thresholds,
e.g., {[0, 1), [1, t + 1), [t + 1, n − t), [n − t,∞)}, see [FMCAD’13].

0 1 t + 1 n − t above
· · ·

++
++ ++ ++++ ++

If we know the diameter d of the accelerated counter system, then

diam(A) ≤ d · (|D̂| − 1)

Warning: completeness may require abstraction refinement
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The diameter
of

the accelerated system?
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Partial orders on TA rules

The control flow defines a partial order.

Fix a total order �lin
P ⊆ E × E on the edges (rules):

`1 `2 `3 `4

true

x ≥ n − f , y++

x++ y ≥ t
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Partial orders on TA rules (cont.)

Define a partial order �U⊆ E × E on the edges (rules):

r1 ≺U r2 iff there is
a vector of shared variables ~g ∈ N|Γ|0 and parameter values p ∈ PRC with:

(~g ,p) |= r1.ϕ

(~g ,p) 6|= r2.ϕ

(~g + r1.~u,p) |= r2.ϕ

`1 `2 `3 `4

true

x ≥ n − f , y++

x++ y ≥ t

unlocks

unlocks

We can check the conditions with SMT
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Partial orders on TA rules (cont.)

Define a partial order �L⊆ E × E on the edges (rules):

r1 ≺L r2 iff there is
a vector of shared variables ~g ∈ N|Γ|0 and parameter values p ∈ PRC with:

(~g ,p) |= r1.ϕ

(~g ,p) |= r2.ϕ

(~g + r1.~u,p) 6|= r2.ϕ

`1 `2 `3 `4

true

nfaulty < f , nfaulty++

nfaulty < f ,
y++

y ≥ t

locks

unlocks
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Our main result

Fix a threshold automaton TA and a size function N.

Theorem

For each ~p with RC (~p), the diameter of an accelerated counter system is
independent of parameters and is less than or equal to |E | · (|C|+ 1) + |C|:

|E | is the number of edges in TA (self-loops excluded).

|C| is the number of edge conditions in TA that can be unlocked
(locked) by an edge appearing later (resp. earlier) in the control flow,
or by a parallel edge.

In our example:

|E | = 4, |C| = 1.

Thus, d ≤ 9.

`1 `2 `3 `4

true

x ≥ n − f , y++

x++ y ≥ t

unlocks

unlocks (but appears earlier)
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Proof idea
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Central idea

For each run that connects two configurations
we construct a short run by:

swapping transitions,

and accelerating them

Shared variables are only incremented.

Valuation of each comparison changes at most once along every execution.

`1 `2 `3 `4

true

x ≥ n − f , y++

x++ y ≥ t

E.g., once x ≥ n − f and y ≥ t hold true, they will remain true.
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Milestones

`1 `2 `3 `4

true

x ≥ n − f , y++

x++ y ≥ t

Consider an execution for n = 3, t = 1, f = 1:

true true
x++ x++

x ≥ n − f , y++
y ≥ t

t1 t2 t3 t4 t5 t6

Transition t5 is a milestone (and t6 is not):

its condition is unlocked by t4, i.e., t4 ≺U t5

the rule of t5 precedes the edge of t4 in the control flow,
i.e., t5 ≺+

P t4

Observation: a milestone cannot be swapped with any other transition.
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Milestones formally

true true
x++ x++

x ≥ n − f , y++
y ≥ t

t1 t2 t3 t4 t5 t6

Transition t5 is a left milestone.

Definition (Left Milestone)

Given a configuration σ and a sequence of rules τ = τ ′ · t · τ ′′ applicable
to σ, the transition t is a left milestone for σ and τ , if

1 there is a transition t ′ in τ ′ satisfying t ′ 6≺+
P t ∧ t ′ ≺U t,

2 t.ϕ≤ is locked in σ, and

3 for all t ′ in τ ′, t ′.ϕ≤ 6= t.ϕ≤.

(t.ϕ≤ is a conjunction of conditions like x ≥ a0 · n + a1 · t))

(A right milestone is defined similarly w.r.t. ≺L.)
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Sorting the transitions (with acyclic control flow)

`1 `2 `3 `4

true

x ≥ n − f , y++

x++ y ≥ t

Sort the transitions between the milestones:

true

true
x++
true

x++

x++
x ≥ n − f , y++

y ≥ t

t1

t2 t3t3 t2

t4 t5 t6

Accelerate adjacent transitions of the same type:

true
x++

x ≥ n − f , y++
y ≥ t

×2 ×2 ×1
t ′1 t ′2 t ′5 t ′6
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How long is an accelerated execution?

The number of milestones is bounded with |C|:
the number of edge conditions that can be unlocked (locked) by an edge
appearing later (resp. earlier) in the control flow, or by a parallel edge.

The length of each segment (sorted and accelerated) is bounded with |E |:
the number of edges in the threshold automaton

The length of an accelerated execution is bounded with:

|E |︸︷︷︸
length of each segment

× (|C|+ 1)︸ ︷︷ ︸
number of segments

+ |C|︸︷︷︸
number of milestones

So is the diameter of the accelerated counter system.
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Evaluation
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Case studies: asynchronous threshold-based FTDAs

Toy example (Toy) [we made it up]

5 locations, 8 rules

Folklore reliable broadcast (FRB) [Chandra, Toueg’96]

6 locations, 15 rules

Consistent broadcast (STRB) [Srikanth, Toueg’87]

7 locations, 21 rule

Byzantine agreement (ABA) [Bracha, Toueg’85]

case 1: 37 counters, 202 rules; case 2: 61 locations, 425 rules

Condition-based consensus (CBC)
[Mostefaoui, Nourgaya, Parvedy, Raynal’03]

case 1: 71 counter, 408 rules; case 2: 115 counters and 991 rule

Non-blocking atomic commitment (NBAC and NBACC)
[Raynal’97], [Guerraoui’02]

case 1: 77 counters, 1356 rules; case 2: 109 counters, 1831 rule
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Implementation

We encode the distributed algorithms in parameteric Promela

Our tool ByMC implements counter abstraction/refinement loop

NuSMV does bounded model checking of the counter abstraction:

either with MiniSAT,

or Plingeling (multicore SAT solver)

Everything is available at:
[

http://forsyte.at/software/bymc
]
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Can we reach the bound with NuSMV?

0 2,000 4,000 6,000 8,000

Toy example

Folklore RB

Consistent RB

ABA case 1

ABA case 2

CBC case 1

CBC case 2

27

10

90

1,758

6,620

612

8,720

reached bound

completeness bound

Timeout in abstraction refinement: NBAC (13200) and NBACC (16500).
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Conclusions for Part V

Polynomial bound on the diameter of accelerated counter systems
(for threshold automata)

Our results allow us to use bounded model checking as a complete method
for reachability in systems of threshold automata of:

a fixed size,

a parameterized size

Bounds for liveness properties?

Better implementation?
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Our current work

Discrete
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Discrete
partially
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Discrete

asynchronous
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Continuous
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finite payload
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finite payload

Many inst./
unbounded

payload
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DHM12

ST87

AK00
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(failure detector)
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Future work: threshold guards + orthogonal features
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Fault-tolerant distributed algorithms: a big exciting world
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Thank you!

[
http://forsyte.at/software/bymc

]
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Dealing with cycles: the idea

Recall that cycles do not update shared variables.

Find strongly connected components in the control flow graph
and define equivalence classes of edges.

When sorting the segments,
preserve the relative order of transitions within the equivalence classes.

After sorting, remove the cycles.

The length of an acyclic accelerated execution is bounded as before.
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Explicit encoding of counter abstraction in Promela

/∗ number o f p r o c e s s e s in each l o c a l s t a t e ∗/
int k[16];

/∗ t h e number o f send−to−a l l ’ s ∗/
int nsnt = 0;

active [1] proctype CtrAbs () {

int pc = 0, nrcvd = 0;

int next_pc = 0, next_nrcvd = 0;

/∗ i n i t ∗/
loop: /∗ s e l e c t ∗/

/∗ r e c e i v e−compute−send from data a b s t r a c t i o n : ∗/
/∗ 1 . r e c e i v e ∗/
/∗ 2 . compute ∗/
/∗ 3 . send ∗/

/∗ upda te c oun t e r s ∗/
goto loop;

}
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Diameters of counter systems

Our bound on the diameter of an (accelerated) counter system of a
threshold automaton is |E | · (|C|+ 1) + |C|, or O(|E |2).

The number of conditions |C| is usually small, so we can bound the
diameter with O(|E |).
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Forklore Reliable Broadcast

crash faults,

regular model checking for FTDA
[Fisman, Kupferman, Lustig 2008],

our technique also works with
I0 = [0; 1) and I1 = [1;∞).

qI

q1

q2q3

q4

q5

qF

rcvd ≤ rcvd ′ ∧
rcvd ′ ≤ nsnt +
nsntf

sv = V1sv = V0

sv = AC

sv = CR

1 > rcvd ′

1 ≤ rcvd ′

sv ′ = CR

nsntf ′ =
nsntf + 1

sv ′ = AC

nsnt ′ =
nsnt + 1
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Running time in comparison to other tools?

0 2,000 4,000 6,000 8,000 10,000

Toy

FRB

STRB

ABA0

ABA1

CBC0

3

13

9

1,286

−1

5,934

1

13

4

15

33

−1

8

8

7

520

9,385

−1

NuSMV+plingeling

NuSMV-BDD

FAST
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The diameter and refinement

The diameter does not grow up in the course of refinement!
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Petri nets?
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