
VTSA summer school 2015

Exploiting SMT for Verification 
of Infinite-State Systems

Alberto Griggio
Fondazione Bruno Kessler – Trento, Italy



Agenda

Part 1: Introduction to SMT

Part 2: Interpolation in SMT and in Verification

Part 3: SMT-based Verification with IC3



VTSA summer school 2015

Exploiting SMT for Verification 
of Infinite-State Systems

1. Introduction to SMT

Alberto Griggio
Fondazione Bruno Kessler – Trento, Italy

Some material courtesy of R. Sebastiani



Outline

Introduction

CDCL-based SAT solvers

The DPLL(T) architecture

Some relevant T-solvers

Combination of theories



Boolean Satisfiability (SAT)

 Given a formula      in propositional logic, with predicates (aka 
variables)                     , find an assignment to the variables 

that makes the formula true, or prove that none exists



Boolean Satisfiability (SAT)

 Given a formula      in propositional logic, with predicates (aka 
variables)                     , find an assignment to the variables 

that makes the formula true, or prove that none exists

 Example

SAT, with solution (model)



The SMT problem

 Satisfiability Modulo Theories

 Given a (quantifier-free) FOL formula and a (decidable) 
combination of theories                         , is there an assignment
to the free variables                     that makes the formula true?

 Example:



The SMT problem

 Satisfiability Modulo Theories

 Given a (quantifier-free) FOL formula and a (decidable) 
combination of theories                         , is there an assignment
to the free variables                     that makes the formula true?

 Example:

Linear Integer 
Arithmetic (LIA)



The SMT problem

 Satisfiability Modulo Theories

 Given a (quantifier-free) FOL formula and a (decidable) 
combination of theories                         , is there an assignment
to the free variables                     that makes the formula true?

 Example:

Linear Integer 
Arithmetic (LIA)

Equality (EUF)



The SMT problem

 Satisfiability Modulo Theories

 Given a (quantifier-free) FOL formula and a (decidable) 
combination of theories                         , is there an assignment
to the free variables                     that makes the formula true?

 Example:

Linear Integer 
Arithmetic (LIA)

Equality (EUF) Arrays (A)



The SMT problem

 Satisfiability Modulo Theories

 Given a (quantifier-free) FOL formula and a (decidable) 
combination of theories                         , is there an assignment
to the free variables                     that makes the formula true?

 Example:



SMT: some history

The “early days”

 The Simplify theorem prover [Detlefs, Nelson, Saxe]

 The grandfather of SMT solvers

 Efficient decision procedures

 Equality logic + extensions (Congruence Closure)

 Linear arithmetic (Simplex)

 Theory combination (Nelson-Oppen method)

 Quantifiers (E-matching with triggers)

 Inefficient boolean search



SMT: some history - 2

The SAT breakthrough

 late '90s - early 2000: major progress in SAT solvers

 CDCL paradigm: Conflict-Driven Clause-Learning DPLL

 Grasp, (z)Chaff, Berkmin, MiniSat, ...

 combine strengths of model search and proof search 
in a single procedure

 Model search: efficient BCP and variable selection heuristics

 Proof search: conflict analysis, non-chronological backtracking, 
clause learning

 Smart ideas + clever engineering “tricks”



SMT: some history - 3

From SAT to SMT

 exploit advances in SAT solving for richer logics

 Boolean combinations of constraints over (combinations of) 
background theories

 The Eager approach (a.k.a. “bit-blasting”)

 Encode an SMT formula into propositional logic

 Solve with an off-the-shelf efficient SAT solver

 Pioneered by UCLID

 Still the dominant approach for bit-vector arithmetic



SMT: some history - 4

The Lazy approach and DPLL(T) (2002 – 2004)

 (non-trivial) combination of SAT (CDCL) and T-solvers

 SAT-solver enumerates models of boolean skeleton of formula

 Theory solvers check consistency in the theory

 Most popular approach (e.g. Barcelogic, CVC4, MathSAT, 
SMTInterpol, Yices, Z3, VeriT, ...)

 Yices 1.0 (2006)

 The first efficient “general-purpose” SMT solver

 Z3 1.0 (2008)

 > 1600 citations, most influential tool paper at TACAS



Some notation and definitions

 Signature    , functions                  and predicates

 Variables                  , quantifier-free formulas

 Structure                   , 

 Assignment

 Evaluation

     is satisfiable in         iff                     (        is a model of    ) 

     is valid in     (            ) iff satisfiable for all    (    is a model)

 A theory T is a set of    -structures

                                                                    



Some notation and definitions

 Signature    , functions                  and predicates

 Variables                  , quantifier-free formulas

 Structure                   , 

 Assignment

 Evaluation

     is satisfiable in         iff                     (        is a model of    ) 

     is valid in     (            ) iff satisfiable for all    (    is a model)

 A theory T is a set of    -structures

 Example:

                                                                    
is unsatisfiable

is satisfiable is a model



Outline

Introduction

CDCL-based SAT solvers

The DPLL(T) architecture

Some relevant T-solvers

Combination of theories



CDCL-based SAT solvers

 Conflict-Driven Clause-Learning paradigm

 Architecture of modern SAT solvers (e.g. Minisat, Lingeling, ...)

 The “DPLL” part of DPLL(T)

 Combine efficient model search and conflict analysis

 Model search

 Stack-based representation of partial truth assignment (trail), 
extended by performing deductions and decisions
 When all variables are assigned, retur SAT with trail as model

 Conflict analysis

 When a conflict is detected, apply boolean resolution to 
generate a new implied clause that contradicts the trail
 learn the blocking clause and use it for non-chronological backtracking
 when the empty clause is derived, return UNSAT



  

The CDCL algorithm for SAT

CDCL(F)
  A = [], decision_level = 0
while (true)
  if (deduce(F, A))
     if (!all_assigned(F, A))
       lit = decide(F, A)
       decision_level++
       A = A + (lit, -)
     else return SAT
  else
    lvl, cls = analyze(F, A)
    if (lvl < 0) return UNSAT
    else
       backtrack(F, A, lvl)
       learn(cls)
       decision_level = lvl



  

The CDCL algorithm for SAT

CDCL(F)
  A = [], decision_level = 0
while (true)
  if (deduce(F, A))
     if (!all_assigned(F, A))
       lit = decide(F, A)
       decision_level++
       A = A + (lit, -)
     else return SAT
  else
    lvl, cls = analyze(F, A)
    if (lvl < 0) return UNSAT
    else
       backtrack(F, A, lvl)
       learn(cls)
       decision_level = lvl

Conflict
Analysis

Model
Search

Trail of 
assignments
(lit, reason)



  

CDCL: model search

 Explore search space by adding elements to the trail

 Trail encodes a set of partial assignments

 deductions using unit propagation

 If a clause has one unassigned literal and all the others set to 
false, propagate the value of the missing one

 All literals assigned by unit propagation have an associated 
reason clause in the trail

 The unit clause that forced the assignment to the literal

:A;B;C 7! f¾ j ¾(A) = ? ^ ¾(B) = ¾(C) = >g

Trail:
Clause:

:A;B;C
A _ :B _ :D :A;B;C;:D

¾



  

CDCL: model search

 if a clause has all literals assigned to false, deduce returns 
false and marks the clause as conflicting

 otherwise, if no more deduction is possible, decide picks an 
unassigned literal to add to the trail

 No reason is attached to the literal in this case

 Decisions partition the trail into decision levels

 When all literals are assigned, SAT is returned

 The trail is a model for the input CNF



  

Example

Input clauses Trail



  

Example

Input clauses Trail

Decide



  

Example

Input clauses Trail

Deduce



  

Example

Input clauses Trail



  

Example

Input clauses Trail

Decide



  

Example

Input clauses Trail

Deduce



  

Example

Input clauses Trail

Deduce



  

Example

Input clauses Trail

Deduce



  

Example

Input clauses Trail

Deduce



  

Example

Input clauses Trail



  

Example

Input clauses Trail

Conflict!



  

CDCL: conflict analysis

 Goal: backtrack from inconsistent assignment, and avoid 
repeating the same mistake in the future

 Naive approach: collect all decisions in the trail, and learn a 
blocking clause implying that at least one of them must be 
flipped

 Proof-based approach: exploit the information in the trail to 
generate an explanation for the conflict

 Generate a new lemma, using boolean resolution, that blocks the 
current assignment and all those sharing the same reason for 
inconsistency

 Resolution rule



  

CDCL: conflict analysis

 Goal: backtrack from inconsistent assignment, and avoid 
repeating the same mistake in the future

 Naive approach: collect all decisions in the trail, and learn a 
blocking clause implying that at least one of them must be 
flipped

 Proof-based approach: exploit the information in the trail to 
generate an explanation for the conflict

 Generate a new lemma, using boolean resolution, that blocks the 
current assignment and all those sharing the same reason for 
inconsistency

 Resolution rule Antecedents

ResolventPivot Variable



  

 Example - “1st UIP” learning strategy

Input clauses Trail



  

Input clauses TrailInput clausesInput clauses

 Example - “1st UIP” learning strategy



  

 Example - “1st UIP” learning strategy

Input clauses Trail



  

 Example - “1st UIP” learning strategy

Input clauses Trail



  

 Example - “1st UIP” learning strategy

Input clauses Trail



  

 Example - “1st UIP” learning strategy

Input clauses Trail

Reached
level limit



  

Example – “decision” learning strategy

Input clauses Trail



  

Example – “decision” learning strategy

Input clauses Trail



Outline

Introduction

CDCL-based SAT solvers

The DPLL(T) architecture

Some relevant T-solvers

Combination of theories



The lazy approach to SMT

 

 Deciding the satisfiability of     modulo      can be reduced
to deciding    -satisfiability of conjunctions (sets) of 
constraints

 Can exploit efficient decision procedures for sets of constraints, 
existing for many important theories

 Naive approach: convert     to an equivalent      in disjunctive 
normal form (DNF), and check each conjunction separately

 Main idea of lazy SMT: use an efficient SAT solver to 
enumerate conjuncts without computing the DNF explicitly



A basic approach

 Offline lazy SMT

F = CNF_bool(  )
while true:

res, M = check_SAT(F)
if res == true:

M' = to_T(M)
res = check_T(M')
if res == true:

return SAT
else:

F += !M
else:

return UNSAT



A basic approach

 Offline lazy SMT

F = CNF_bool(  )
while true:

res, M = check_SAT(F)
if res == true:

M' = to_T(M)
res = check_T(M')
if res == true:

return SAT
else:

F += !M
else:

return UNSAT

Boolean 
reasoning



A basic approach

 Offline lazy SMT

F = CNF_bool(  )
while true:

res, M = check_SAT(F)
if res == true:

M' = to_T(M)
res = check_T(M')
if res == true:

return SAT
else:

F += !M
else:

return UNSAT

Boolean 
reasoning

Theory
reasoning



A basic approach

 Offline lazy SMT

F = CNF_bool(  )
while true:

res, M = check_SAT(F)
if res == true:

M' = to_T(M)
res = check_T(M')
if res == true:

return SAT
else:

F += !M
else:

return UNSAT

Boolean 
reasoning

Theory
reasoning

Block bad solutions



Example



Example



Example

UNSAT → add        and continue



DPLL(T)

 Online approach to lazy SMT

 Tight integration between a CDCL-like SAT solver (“DPLL”) 
and the decision procedure for T (“T-solver”), based on:

 T-driven backjumping and learning

 Early pruning

 T-solver incrementality

 T-propagation

 Filtering of assignments to check

 Creation of new T-atoms and T-lemmas “on-demand”

 ...



T-backjumping and T-learning

 When unsat, T-solver can produce reason for inconsistency

 T-conflict set: inconsistent subset of the input constraints

 T-conflict clause given as input to the CDCL conflict analysis

 Drives non-chronological backtracking (backjumping)

 Can be learned by the SAT solver

 The less redundant the T-conflict set, the more search is 
saved

 Ideally, should be minimal (irredundant)

 Removing any element makes the set consistent
 But for some theories might be expensive to achieve

 Trade-off between size and cost



Example



Example

T-conflict set



Example

Conflict analysis:



Example

Conflict analysis:



Early pruning

 Invoke T-solver on intermediate assignments, during the 
CDCL search

 If unsat is returned, can backtrack immediately

 Advantage: can drastically prune the search tree

 Drawback: possibly many useless (expensive) T-solver calls

SAT 

SAT 

SAT 

SAT 

SAT 

SAT 

SAT 

SAT SAT 

SAT SAT 

SAT 

SAT 

SAT 

UNSAT 

UNSAT 

UNSAT UNSAT 

UNSAT 

UNSAT 

UNSAT 

UNSATUNSAT 

UNSATUNSAT 

UNSAT 

UNSAT 

UNSAT 

UNSAT UNSAT 

WITH EARLY−PRUNING

WITHOUT EARLY−PRUNING
T−solver calls



Early pruning

 Different strategies to call T-solver

 Eagerly, every time a new atom is assigned

 After every round of BCP

 Heuristically, based on some statistics (e.g. effectivenes, …)

 No need of a conclusive answer during early pruning calls

 Can apply approximate checks

 Trade effectiveness for efficiency

 Example: on linear integer arithmetic, solve only the real 
relaxation during early pruning calls



Example



Example

SAT



Example

SAT



Example

UNSAT

T-conflict = 



T-solver incrementality

 With early pruning, T-solvers invoked very frequently on 
similar problems

 Stack of constraints (the assignment stack of CDCL) 
incrementally updated

 Incrementality: when a new constraint is added, no need to 
redo all the computation “from scratch”

 Backtrackability: support cheap (stack-based) removal of 
constraints without “resetting” the internal state

 Crucial for efficiency

 Distinguishing feature for effective integration in DPLL(T)



T-propagation

 T-solvers might support deduction of unassigned constraints

 If early pruning check on M returns sat, T-solver might also return 
a set D of unsassigned atoms such that                  for all

 T-propagation: add each such l to the CDCL stack

 As if BCP was applied to the (T-valid) clause                (T-reason)

 But do not compute the T-reason clause explicitly yet

 Lazy explanation: compute T-reason clause only if needed 
during conflict analysis

 Like T-conflicts, the less redundant the better



Example



Example



Example



Example



Example



Example

Conflict analysis → 
compute 

T-reason for   



Example



Example

     not involved in
conflict analysis → 

 no need to compute 
T-reason   



Filtering of assignments

 Remove unnecessary literals from current assignment M

 Irrelevant literals:                                    (    arbitary, not CNF)

 Ghost literals:    occurs only in clauses satisfied by

 Pure literals:                and    occurs only positively in   
 Note: this is not the pure-literal rule of SAT!

 Pros:

 reduce effort for T-solver

 increases the chances of finding a solution

 Cons:

 may weaken the effect of early pruning (esp. with T-propagation)

 may introduce overhead in SAT search

 Typically used for expensive theories



Example



Example

Ghost!



Example

SAT



T-atoms and T-lemmas on demand

 Some T-solvers might need to perform internal case splits to 
decide satisfiability

 Example: linear integer arithmetic

 Splitting on-demand: use the SAT solver for case splits

 Encode splits as T-valid clauses (T-lemmas) with fresh T-atoms

 Generated on-the-fly during search, when needed

 Benefits: reuse the efficient SAT search

 simplify the implementation
 exploit advanced search-space exploration techniques 

(backjumping, learning, restarts, ...)
 Potential drawback: “pollute” the SAT search



T-atoms and T-lemmas on demand

 T-solver can now return unknown also for complete checks

 In this case, it must also produce one or more T-lemmas

 SAT solver learns the lemmas and continues searching

 eventually, T-solver can decide sat/unsat

 Termination issues

 If SAT solver drops lemmas, might get into an infinite loop

 similar to the Boolean case (and the “basic” SMT case), similar 
solution (e.g. monotonically increase # of kept lemmas)

 T-solver can generate an infinite number of new T-atoms!

 For several theories (e.g. linear integer arithmetic, arrays) 
enough to draw new T-atoms from a finite set 
(dependent on the input problem)



T-solver interface example

class TheorySolver {

    bool tell_atom(Var boolatom, Expr tatom);

    void new_decision_level();
    void backtrack(int level);

    void assume(Lit l);
    lbool check(bool approx);
    
    void get_conflict(LitList &out);
    
    Lit get_next_implied();
    bool get_explanation(Lit implied, LitList &out);

    bool get_lemma(LitList &out);

    Expr get_value(Expr term);
};



DPLL(T) example

def DPLL-T():
 while True:
    conflict = False
    if unit_propagation():
       res = T.check(!all_assigned())
       if res == False: conflict = True
       elif res == True: conflict = theory_propagation()
       elif learn_T_lemmas(): continue
       elif !all_assigned(): decide()
       else:
          build_model() 
          return SAT
    else: conflict = True
    if conflict:
       lvl, cls = conflict_analysis()
       if lvl < 0: return UNSAT
       else:
          backtrack(lvl)
          learn(cls)



DPLL(T) example

def DPLL-T():
 while True:
    conflict = False
    if unit_propagation():
       res = T.check(!all_assigned())
       if res == False: conflict = True
       elif res == True: conflict = theory_propagation()
       elif learn_T_lemmas(): continue
       elif !all_assigned(): decide()
       else:
          build_model() 
          return SAT
    else: conflict = True
    if conflict:
       lvl, cls = conflict_analysis()
       if lvl < 0: return UNSAT
       else:
          backtrack(lvl)
          learn(cls)

call T.assume(lit)

call T.get_next_implied()

call T.get_lemma()

call T.new_decision_level()
   T.assume(lit)

call T.get_value(e)

call T.get_conflict(c)
   T.get_explanation(l, e)

call T.backtrack(lvl)



An example lazy SMT architecture (MathSAT)

Preprocessor

DPLL  Engine

Model Generator Proof Engine

T-solver 1

T-solver n

Proofs

Truth assignment

T-lemmas

New atoms



Outline

Introduction

CDCL-based SAT solvers

The DPLL(T) architecture

Some relevant T-solvers

Combination of theories



Equality (EUF)

 Polynomial time O(n log n) congruence closure procedure

 Fully incremental and backtrackable (stack-based)

 Supports efficient T-propagation

 Exhaustive for positive equalities

 Incomplete for disequalities

 Lazy explanations and conflict generation

 Typically used as a “core” T-solver

 Supports efficient extensions, e.g.

 Integer offsets

 Bit-vector slicing and concatenation



Example



Example



Example



Example



Example



Example



Example



Example

get_conflict():



Example

get_conflict():



Example

get_conflict():



Example

get_conflict():



Example

get_conflict():



Example

get_conflict():



Example

get_conflict():



Example

get_conflict():



Example: redundant explanations



Example: redundant explanations



Example: redundant explanations



Example: redundant explanations



Example: redundant explanations



Example: redundant explanations

Here we connect the
equivalence classes of

But the representative for

might be 

and



Example: redundant explanations



Example: redundant explanations



Example: redundant explanations



Example: redundant explanations



 Constraints of the form

 Variant of simplex specifically designed for DPLL(T)

 Very efficient backtracking

 Incremental checks

 Cheap deduction of unassigned literals

 Minimal explanations generation

 Can handle efficiently also strict inequalities 

 Rewrite               to                     , treat    symbolically
 Worst-case exponential (although LRA is polynomial), 

but fast in practice

Linear Rational Arithmetic (LRA)



Simplex for DPLL(T)

Preprocessing:

Tableau of equations (fixed) + bounds (added/removed) 

Candidate solution      always consistent with the tableau

x
slack 1

x
slack 2

.

.

.
x

slack  i

.

.

.
x

slack n

-
l
2

.

.

.
l
i

.

.

.
l
n

u
1

+
.
.
.
u

i

.

.

.
u

n

 

x
slack 1 

=
x

slack 2 
=

.

.

.
x

slack  i 
=

.

.

.
x

slack n 
=

ai1x1 + ai2x2 + : : :+ aimxm

¯



Simplex for DPLL(T)

Preprocessing:

Tableau of equations (fixed) + bounds (added/removed)

Candidate solution      always consistent with the tableau

x
slack 1

x
slack 2

.

.

.
x

slack  i

.

.

.
x

slack n

-
l
2

.

.

.
l
i

.

.

.
l
n

u
1

+
.
.
.
u

i

.

.

.
u

n

 

      x
j 
=

x
slack 2 

=
.
.
.

x
slack  i 

=
.
.
.

     x
h  

=

X

a0ij>0

a0ijxslack j +
X

a0
ik<0

a0ikxslack k

Pivoting steps to make   
  satisfy the bounds¯

¯



Simplex for DPLL(T)

Preprocessing:

Tableau of equations (fixed) + bounds (added/removed)

Candidate solution      always consistent with the tableau

x
slack 1

x
slack 2

.

.

.
x

slack  i

.

.

.
x

slack n

-
l
2

.

.

.
l
i

.

.

.
l
n

u
1

+
.
.
.
u

i

.

.

.
u

n

 

      x
j 
=

x
slack 2 

=
.
.
.

x
slack  i 

=
.
.
.

     x
h  

=

X

a0ij>0

a0ijxslack j +
X

a0
ik<0

a0ikxslack k

and for the others     can 
not change  conflict!

¯(xslack i) < li
¯

  l
i
      >      x

slack  i

¯



Simplex for DPLL(T)

Preprocessing:

Tableau of equations (fixed) + bounds (added/removed)

Candidate solution      always consistent with the tableau

x
slack 1

x
slack 2

.

.

.
x

slack  i

.

.

.
x

slack n

-
l
2

.

.

.
l
i

.

.

.
l
n

u
1

+
.
.
.
u

i

.

.

.
u

n

 

      x
j 
=

x
slack 2 

=
.
.
.

x
slack  i 

=
.
.
.

     x
h  

=

X

a0ij>0

a0ijxslack j +
X

a0
ik<0

a0ikxslack k

get_conflict():

for 

for

for xslack i

and for the others     can 
not change  conflict!

¯(xslack i) < li
¯

¯



Example



Example

 
 
tableau                                 bounds                   candidate solution    



Example

 
 
tableau                                 bounds                   candidate solution    

Find a bound violation



Example

 
 
tableau                                 bounds                   candidate solution    

Pick a variable for pivoting



Example

 
 
tableau                                 bounds                   candidate solution    

Pivot and update    



Example

 
 
tableau                                 bounds                   candidate solution    

Find a bound violation



Example

 
 
tableau                                 bounds                   candidate solution    

Pick a variable for pivoting



Example

 
 
tableau                                 bounds                   candidate solution    

Pivot and update    



Example

 
 
tableau                                 bounds                   candidate solution    

Find a bound violation



Example

 
 
tableau                                 bounds                   candidate solution    

Pick a variable for pivoting



Example

 
 
tableau                                 bounds                   candidate solution    

Pivot and update    



Example

 
 
tableau                                 bounds                   candidate solution    

Find a bound violation



Example

 
 
tableau                                 bounds                   candidate solution    

No suitable variable for pivoting!
Conflict



Example

 
 
tableau                                 bounds                   candidate solution    

Explanation:



Example

 
 
tableau                                 bounds                   candidate solution    

Explanation:



Example

 
 
tableau                                 bounds                   candidate solution    

Explanation:



Example

 
 
tableau                                 bounds                   candidate solution    

Explanation:



Linear Integer Arithmetic (LIA)

 NP-complete problem

 Popular approach: simplex + branch and bound

 Approximate checks solve only over the rationals

 In complete checks, force integrality of variables by adding either:

 Branch and bound lemmas
 Cutting plane lemmas

 Inequalities entailed by the current constraints, 
excluding only non-integer solutions

 Gomory cuts commonly used
 Using splitting on-demand

 Might also include other specialized sub-solvers for tractable 
fragments

 E.g. specialized equational reasoning



  

Layered architecture for LIA (MathSAT)

 Cooperation of several sub-modules organized as a layered 
hierarchy

DPLL

LIA-solver



  

Layered architecture for LIA (MathSAT)

 Cooperation of several sub-modules organized as a layered 
hierarchy

LRA-solver
(simplex)

DPLL

sat

conflict

LIA-conflict

1

LIA-model 1

LIA-solver



  

Layered architecture for LIA (MathSAT)

 Cooperation of several sub-modules organized as a layered 
hierarchy

Diophantine 
equations 

Handler

LRA-solver
(simplex)

DPLL

sat

No conflict
conflict

LIA-conflict

1
1

LIA-model 1

LIA-solver



  

Layered architecture for LIA (MathSAT)

 Cooperation of several sub-modules organized as a layered 
hierarchy

Diophantine 
equations 

Handler

LRA-solver
(simplex)

DPLL

sat

No conflict

No conflict

Eq elim + tightening

conflict

LIA-conflict

1

2

1 2

LIA-model 1

LIA-solver



  

Layered architecture for LIA (MathSAT)

 Cooperation of several sub-modules organized as a layered 
hierarchy

Diophantine 
equations 

Handler

Internal
Branch and Bound

LRA-solver
(simplex)

DPLL

sat

No conflict

No conflict

Eq elim + tightening

conflict conflict

No conflict

LIA-conflict

1

2

1 3 2

3 LIA-model 1

LIA-solver



  

Layered architecture for LIA (MathSAT)

 Cooperation of several sub-modules organized as a layered 
hierarchy

Diophantine 
equations 

Handler

Internal
Branch and Bound

LRA-solver
(simplex)

DPLL

sat

No conflict

No conflict

Eq elim + tightening

conflict conflict

No conflict

LIA-model

LIA-conflict

1

2

1 3 2

3

4
conflict

LIA-model 1

LIA-solver

4



  

Layered architecture for LIA (MathSAT)

 Cooperation of several sub-modules organized as a layered 
hierarchy

Diophantine 
equations 

Handler

Internal
Branch and Bound

LRA-solver
(simplex)

DPLL

sat

No conflict

No conflict

Eq elim + tightening

conflict conflict

No conflict

LIA-model

LIA-conflict

B&B lemma

1

2

1 3 2

3

4

5 Branch and Bound
Lemmas generator

conflict timeout

LIA-model 1

LIA-solver

4 5



  

The Diophantine equation handler

 Polynomial-time procedure for solving systems of equations in 
LA(Z) (Diophantine)

 Similar to the first part of the Omega test [Pug91]

 Extension of Gaussian elimination to integer constraints

 Given                                                 where           is the smallest:

 Rewrite into
where 

 Introduce a fresh var      and add the equation
                                                      to the system

 Substitute       with                                                     
in the other equations

 Return unsat when there is an equation
such that                                  does not divide

 Return sat when the system is in triangular form

jaikj
P
j aijxj + aikxk + ci

aik ¢ (xk +
P
j 6=k a

q
ijxj + c

q
i ) + (

P
j 6=k a

r
ijxj + c

r
i )

aij = aik ¢ aqij + arij
xt

xt = xk +
P

j 6=k a
q
ijxj + c

q
i

aikxt + (
P
j 6=k a

r
ijxj + c

r
i )xk

P
j ahjxj + ch



  

The Diophantine equation handler

 Features:

 Can generate T-lemmas when unsat is detected

 Can actually generate detailed proofs of unsatisfiability as 
linear combinations of the input constraints

 When sat is detected, the solution can be used to eliminate 
equalities

 Allows for performing tightening of inequalities, with which the 
simplex solver can discover more conflicts

 Can be performed incrementally with efficient backtracking



  

Tightening - Example

 Give E to the Diophantine equations handler

 Obtain (parametric) solution                                       , t fresh

 Substitute                  in I, obtaining 

 Tighten, obtaining

E :=

½
2x1 ¡ 5x3 = 0
x2 ¡ 3x4 = 0 I :=

½
¡2x1 ¡ x2 ¡ x3 · ¡7
2x1 + x2 + x3 · 8

S :=

8
<
:
x1 = 2x3 + t
x2 = 3x4
x3 = 2t

x1; x2; x3 I 0 :=

½
¡3x4 ¡ 12t · ¡7
3x4 + 12t · 8

I 00 :=

½
¡ 3
3
x4 ¡ 12

3
t · b¡ 7

3
c

3
3x4 +

12
3 t · b 83 c



  

Tightening - Example

 Give E to the Diophantine equations handler

 Obtain (parametric) solution                                       , t fresh

 Substitute                  in I, obtaining 

 Tighten, obtaining

 Give I'' to the LRA-solver         conflict

E :=

½
2x1 ¡ 5x3 = 0
x2 ¡ 3x4 = 0 I :=

½
¡2x1 ¡ x2 ¡ x3 · ¡7
2x1 + x2 + x3 · 8

S :=

8
<
:
x1 = 2x3 + t
x2 = 3x4
x3 = 2t

x1; x2; x3 I 0 :=

½
¡3x4 ¡ 12t · ¡7
3x4 + 12t · 8

I 00 :=

½
¡x4 ¡ 4t · ¡3
x4 + 4t · 2



  

Branch and Bound

 Given an LRA-model      for the current set of constraints S 

 If there is an integer variable     such that

 S is LIA-consistent iff either
or                                      is

 Branch and Bound idea: recursively solve subproblems 

until either a LIA-model is found or all of them are 
LA(Q)-inconsistent

 Implementation: a popular approach is to  use “splitting on-
demand”

 Create new clause (lemma)
and send it to DPLL, and continue searching

¹

z

S [ f(z · b¹(z)c)g
S [ f(z ¸ d¹(z)e)g

(z · b¹(z)c) _ (z ¸ d¹(z)e)

Si [ f(zj · b¹i(zj)c)g Si [ f(zj ¸ d¹i(zj)e)g



  

Branch and Bound with splitting on-demand

 Advantages:

 Ease of implementation

 No need to support case splits within the theory solver, can 
reuse DPLL

 Exploit “for free” all the search space pruning techniques of 
modern DPLL solvers

 Backjumping
 Learning
 …

 However, in our setting splitting on-demand has also some 
drawbacks



  

Splitting on-demand: drawbacks - 1

 Can not fully exploit equality elimination and tightening

 New variables introduced by the Diophantine equations handler 
and tightened inequalities are invisible to DPLL

 New variables can't be used in branch-and-bound lemmas
 Tighened inequalities are thrown away when returning to DPLL



  

Splitting on-demand: drawbacks - 1

 Can not fully exploit equality elimination and tightening

 New variables introduced by the Diophantine equations handler 
and tightened inequalities are invisible to DPLL

 New variables can't be used in branch-and-bound lemmas
 Tighened inequalities are thrown away when returning to DPLL

Example



  

Splitting on-demand: drawbacks - 1

 Can not fully exploit equality elimination and tightening

 New variables introduced by the Diophantine equations handler 
and tightened inequalities are invisible to DPLL

 New variables can't be used in branch-and-bound lemmas
 Tighened inequalities are thrown away when returning to DPLL

S0 :=

8
<
:
y · ¡1
2x+ 2y ¡ 3w ¸ 1
x+ w · 0

Example After substitution of z and tightening:



  

Splitting on-demand: drawbacks - 1

 Can not fully exploit equality elimination and tightening

 New variables introduced by the Diophantine equations handler 
and tightened inequalities are invisible to DPLL

 New variables can't be used in branch-and-bound lemmas
 Tighened inequalities are thrown away when returning to DPLL

Example After substitution of z and tightening:

If we branch on                 (i.e.            )
Then the simplex finds a LIA-model for

However, the model found for                       is not good in LA(Z) 

(x · b 35c)

S0 :=

8
<
:
y · ¡1
2x+ 2y ¡ 3w ¸ 1
x+ w · 0

(x · 0)



  

Splitting on-demand: drawbacks - 2

 Branch and bound lemmas might cease to be useful upon 
backtracking

 Branch and bound aimed at finding a LIA-model for the 
constraints in the current branch

 Splitting on-demand adds “global” lemmas

 They might “pollute” the search space
 Overhead in DPLL



  

Splitting on-demand: drawbacks - 3

 Non-chronological backtracking (backjumping) might hurt 
sometimes

 Example: Set of constraints S in the current DPLL 
branch

LA(Q)-model for S s.t. 

Branch and bound lemma:

Suppose the LA(Q)-model for 
is also a LA(Z)-model, but we branch on          
                      first

¹(xk) = qk 62 Z

S

(xk · bqkc) _ (xk ¸ dqke)

S [ f(xk ¸ dqke)g

(xk · bqkc)



  

Splitting on-demand: drawbacks - 3

 Non-chronological backtracking (backjumping) might hurt 
sometimes

 Example: 

¹(xk) = qk 62 Z

S

(xk · bqkc) _ (xk ¸ dqke)

S [ f(xk ¸ dqke)g

Set of constraints S in the current DPLL 
branch

LA(Q)-model for S s.t. 

Branch and bound lemma:

Suppose the LA(Q)-model for 
is also a LA(Z)-model, but we branch on          
                      first(xk · bqkc)

(xk · bqkc)



  

Splitting on-demand: drawbacks - 3

 Non-chronological backtracking (backjumping) might hurt 
sometimes

 Example: 

¹(xk) = qk 62 Z

S

(xk · bqkc) _ (xk ¸ dqke)

S [ f(xk ¸ dqke)g

(xk · bqkc)

(xk · bqkc) Conflict!

Set of constraints S in the current DPLL 
branch

LA(Q)-model for S s.t. 

Branch and bound lemma:

Suppose the LA(Q)-model for 
is also a LA(Z)-model, but we branch on          
                      first



  

Splitting on-demand: drawbacks - 3

 Non-chronological backtracking (backjumping) might hurt 
sometimes

 Example: 

¹(xk) = qk 62 Z

S

(xk · bqkc) _ (xk ¸ dqke)

S [ f(xk ¸ dqke)g

(xk · bqkc)

(xk · bqkc)
Backjumping after 

conflict analysis

Set of constraints S in the current DPLL 
branch

LA(Q)-model for S s.t. 

Branch and bound lemma:

Suppose the LA(Q)-model for 
is also a LA(Z)-model, but we branch on          
                      first



  

Splitting on-demand: drawbacks - 3

 Non-chronological backtracking (backjumping) might hurt 
sometimes

 Example: 

¹(xk) = qk 62 Z

(xk · bqkc) _ (xk ¸ dqke)

S [ f(xk ¸ dqke)g

(xk · bqkc)

After backjumping, might need to redo a lot of expensive computations 
(equality elimination, tightening) before finding S again

Set of constraints S in the current DPLL 
branch

LA(Q)-model for S s.t. 

Branch and bound lemma:

Suppose the LA(Q)-model for 
is also a LA(Z)-model, but we branch on          
                      first



  

Splitting on-demand: drawbacks - 4

 Difficult to use dedicated heuristics for exploring the branch-
and-bound search tree

 Several sophisticated heuristics developed in the ILP community, 
crucial for performance

 Might not be straightforward to integrate with those commonly 
used in DPLL



  

Internal branch and bound

 Possible solution (MathSAT): perform branch and bound 
search within the LIA-solver

 Start from the result of equality elimination + tightening

 Use dedicated heuristics for selecting the variables on which to 
branch

 Do not backjump past the starting point

 Remove redundant constraints before starting branch and bound
 E.g. by exploiting polarity of variables

 Only perform a bounded (small) number of case splits, and 
then revert to splitting on-demand

 Keep the benefits of splitting on-demand for hard problems



Bit-vectors (BV)

 Most solvers use an eager approach for BV, not DPLL(T)

 Heavy preprocessing based on rewriting rules + SAT encoding 
(“bit-blasting”)

 Example: 

 Alternative: lazy bit-blasting, compatible with DPLL(T)

 Use a second SAT solver as T-solver for BV

 bit-blast only BV-atoms, not the whole formula
 Boolean skeleton of the formula handled by the main SAT solver

 Easier integration with other T-solvers and DPLL(T)

 Can integrate additional specialized sub-solvers

 Eager still better performance-wise



Lazy bit-blasting: implementation

 For each BV-atom     occurring in the input formula, create a 
fresh Boolean “label” variable     , and bit-blast to SAT-BV 
the formula

 Exploit SAT solving under assumptions

 When the main solver generates the BV-assignment 

 Invoke SAT-BV with the assumptions

 If unsat, generate an unsat core of the assumptions 

 From its negation, generate a BV-lemma 
and send it to the main solver as a blocking clause, like in 
standard DPLL(T)

®
l®

(l® $ ®)

®1 : : : ®n

:®i _ : : : _ :®j



SAT solving under assumptions

Modern CDCL-based SAT solvers allow for solving a CNF 
formula      under assumptions on the values of some literals

 Logically equivalent to checking

 But                  are assumed only temporarily

 A limited but very useful form of incremental solving

 If     is unsat under the assumptions
we can ask the SAT solver to compute an unsatisfiable core of 
the assumptions

 A subset                                            
that is sufficient for proving unsatisfiability



SAT under assumptions - implementation

 Modify the branching heuristics of the CDCL solver to always 
pick the next unassigned literal from
before other literals

 The first n decision levels of the trail always correspond to the 
assumptions

 If an assumption literal is assigned to false, return unsat

 Can only happen by unit propagation at a level < n

 Unsat core: start conflict analysis from the falsified assumption 
literal      , and use the “decision” strategy to collect all the 
involved assumptions



Example

Input clauses TrailAssumptions



Example

Input clauses TrailAssumptions



Example

Input clauses TrailAssumptions



Example

Input clauses TrailAssumptions



Example

Input clauses TrailAssumptions



Example

Input clauses TrailAssumptions



Example

Input clauses TrailAssumptions



Example

Input clauses TrailAssumptions



Example

Input clauses TrailAssumptions



Example

Input clauses TrailAssumptions



Example

Input clauses TrailAssumptions



Example

Input clauses TrailAssumptions



Example

Input clauses TrailAssumptions



Example

Input clauses TrailAssumptions



Example

Input clauses TrailAssumptions



Example

Input clauses TrailAssumptions



Example

Input clauses TrailAssumptions



Example

Input clauses TrailAssumptions



Arrays (A)

 Read (rd) and write (wr) operations over arrays

 Equality over array variables (extensionality)

 Example: 

 Common approach: reduction to EUF via lazy axiom 
instantiation

 read-over-write:

 extensionality:

 Add lemmas on-demand by instantiating the quantified variables 
with terms occurring in the input formula

 Using smart “frugal” strategies: check candidate solution, 
instantiate only (potentially) violated axioms



Example

EUF solution (equivalence classes): 



Example

EUF solution (equivalence classes): 

Add violated lemma:



Example

EUF solution (equivalence classes): 

Add violated lemma:

EUF solution (equivalence classes): 



Example

EUF solution (equivalence classes): 

Add violated lemma:

EUF solution (equivalence classes): 

Add violated lemma:



Example

EUF solution (equivalence classes): 

Add violated lemma:

EUF solution (equivalence classes): 

Add violated lemma:

EUF solver returns UNSAT



Outline

Introduction

CDCL-based SAT solvers

The DPLL(T) architecture

Some relevant T-solvers

Combination of theories



Combination of theories

 Very often in practice more than one theory is needed

 Example (from intro): 

 How to build solvers for SMT(T
1
 … T

n
) that are both 

efficient and modular?

 Can we reuse T
i
-solvers and combine them?

 Under what conditions?

 How do we go from DPLL(T) to DPLL(T
1
 … T

n
)?



The Nelson-Oppen method

 A general technique for combining T
i
-solvers

 Requires:

 T
i
's to have disjoint signatures, i.e. no symbols in common 

(other than =)

 T
i
's to be stably-infinite, i.e. every quantifier-free T

i
-satisfiable 

formula is satisfiable in an infinite model of T
i

 Examples: EUF, LIA, LRA, A
 Counterexample: BV
 (Extensions exist to deal with some non-stably-infinite theories)



The Nelson-Oppen method

How it works (for              )

 Preprocessing purification step on the input formula

 Pure formula: no atom containing symbols of different T
i
's 

(except =)

 By labeling subterms

 Example:

 



The Nelson-Oppen method

How it works (for              )

 Preprocessing purification step on the input formula

 Pure formula: no atom containing symbols of different T
i
's 

(except =)

 By labeling subterms

 Example:

 T
i
-solvers cooperate by exchanging (disjunctions of) 

entailed interface equalities

 I.e., equalities between shared variables 



The Nelson-Oppen method

How it works (for              )

 Preprocessing purification step on the input formula

 Pure formula: no atom containing symbols of different T
i
's 

(except =)

 By labeling subterms

 Example:

 T
i
-solvers cooperate by exchanging (disjunctions of) 

entailed interface equalities

 I.e., equalities between shared variables 
Interface variables



Example

LIA EUF



Example

LIA EUF



Example

LIA EUF



Example

LIA EUF



Example

LIA EUF



Example

LIA EUF



Example

LIA EUF

No more
deductions possible



 Traditional approach: 
a single combined 
Nelson-Oppen T-solver

  T
i
-solvers exchange 

(disjunctions of) implied 
interface equalities 
internally

 Interface equalities 
invisible to the SAT solver

SAT solver

T1 T2Deduce 

Assignment          -lemmaT1 [ T2

T1 [ T2

 Drawbacks: T
i
-solvers need to:

 be deduction complete for interface equalities
 be able to perform case splits internally

DPLL(T) for combined theories



 Alternative to traditional approach

 Each T
i
-solver interacts directly and only with the SAT solver

 SAT solver takes care of (all or part of) the combination

 Augment the Boolean search space with the possible 
interface equalities 

 Advantages:

 No need of complete      
deduction of interface 
equalities

 Case analysis via
splitting on-demand

SAT solver

T1 T2

Assignment
 

        -lemmaT2        -lemmaT1

Delayed Theory Combination



Delayed theory combination in practice

 Model-based heuristic:

 Initially, no interface equalities generated

 When a solution is found, check against all the possible interface 
equalities

 If T
1
 and T

2
 agree on the implied equalities, return SAT

 Otherwise, branch on equalities implied by T
1
-model 

but not by T
2
-model

 Optimistic approach, similar to axiom instantiation

 Still allow T
i
-solvers to exchange equalities internally

 But no requirement of completeness

 Avoids “polluting” the SAT space with equality deductions leading 
to conflicts



Example

LIA EUF



Example

LIA EUF

LIA-model: EUF-model: 

Branch on                  



Example

LIA EUF

LIA-model: EUF-model: 

...  



Example

LIA EUF

LIA-model: EUF-model: 

...  



Selected bibliography

DISCLAIMER: this is not meant to be complete, just a starting 
point. Apologies to missing authors/works

 SMT in general and DPLL(T)

 Nieuwenhuis, Oliveras, Tinelli. Solving SAT and SAT Modulo 
Theories: From an abstract Davis--Putnam--Logemann--
Loveland procedure to DPLL(T). J. ACM 2006

 Sebastiani. Lazy Satisfiability Modulo Theories. JSAT 2007

 Barrett, Sebastiani, Seshia, Tinelli. Satisfiability Modulo 
Theories. SAT handbook 2009

 Theory solvers

 Detlefs, Nelson, Saxe. Simplify: a theorem prover for program 
checking. J. ACM 2005

 Nieuwenhuis, Oliveras. Fast congruence closure and 
extensions. Inf. Comput. 2007



Selected bibliography

 Theory solvers (cont'd)

 Dutertre, de Moura. A Fast Linear-Arithmetic Solver for 
DPLL(T). CAV 2006

 de Moura, Bjørner. Model-based Theory Combination. Electr. 
Notes Theor. Comput. Sci. 2008

 Brummayer, Biere. Lemmas on Demand for the Extensional 
Theory of Arrays. JSAT 2009

 de Moura, Bjørner. Generalized, efficient array decision 
procedures. FMCAD 2009

 Jovanovic, de Moura. Cutting to the Chase - Solving Linear 
Integer Arithmetic. J. Autom. Reasoning 2013

 Hadarean, Bansal, Jovanovic, Barrett, Tinelli. A Tale of Two 
Solvers: Eager and Lazy Approaches to Bit-Vectors. CAV 
2014



Thank You



VTSA summer school 2015

Exploiting SMT for Verification 
of Infinite-State Systems

2. Interpolation in SMT 
and in Verification

Alberto Griggio
Fondazione Bruno Kessler – Trento, Italy



Outline

Introduction

Interpolants in Formal Verification

Computing interpolants in SMT



  

Introduction

 (Craig) Interpolant for an ordered pair (A, B) of formulae s.t.    

                                                    is a formula I s.t.





 All the uninterpreted (in     ) symbols of I 
are shared between A and B

 Why are interpolants useful?

 Overapproximation of A relative to B

 Overapprox. of 

 “Local” explanation of why A is inconsistent with B



  

Importance of interpolation

Several important applications in formal verification:

 Approximate image computation for model checking of 
infinite-state systems 

 Predicate discovery for Counterexample-Guided Abstraction 
Refinement 

 Approximation of transition relation for infinite-state systems 

 An alternative to (lazy) predicate abstraction for program 
verification 

 Automatic generation of loop invariants

 ...



Outline

Introduction

Interpolants in Formal Verification

Computing interpolants in SMT



  

Background

Symbolic transition systems

 State variables

 Initial states formula

 Transition relation formula

 A state     is an assignment to the state vars

 A path of the system S is a sequence of states
such that                and

 A k-step (symbolic) unrolling of S is a formula

 Encodes all possible paths of length up to k

 A state property is a formula     over

 Encodes all the states      such that



  

Forward reachability checking

 Forward image computation

 Compute all states reachable from     in one transition:

 Prove that a set of states                is not reachable:



  

Forward reachability checking

 Forward image computation

 Compute all states reachable from     in one transition:

 Prove that a set of states                is not reachable:



  

Forward reachability checking

 Forward image computation

 Compute all states reachable from     in one transition:

 Prove that a set of states                is not reachable:



  

Forward reachability checking

 Forward image computation

 Compute all states reachable from     in one transition:

 Prove that a set of states                is not reachable:



  

Forward reachability checking

 Forward image computation

 Compute all states reachable from     in one transition:

 Prove that a set of states                is not reachable:



  

Forward reachability checking

 Forward image computation

 Compute all states reachable from     in one transition:

 Prove that a set of states                is not reachable:



  

Interpolation-based reachability

 Image computation requires quantifier elimination, which is 
typically very expensive (both in theory and in practice)

 Interpolation-based algorithm (McMillan CAV'03): use 
interpolants to overapproximate image computation

 much more efficient than the previous algorithm

 interpolation is often much cheaper than quantifier elimination
 abstraction (overapproximation) accelerates convergence

 termination is still guaranteed for finite-state systems



  

Interpolation-based reachability

 Set

 Check satisfiability of

T07!1 Tk¡1 7!k



  

Interpolation-based reachability

 Set

 Check satisfiability of

 If SAT:

 If            , return REACHABLE     the unrolling hits Bad

 else, increase k and repeat  

T07!1 Tk¡1 7!k



  

Interpolation-based reachability

 Set

 Check satisfiability of

 If UNSAT:

 Set 

              is an abstraction of the forward image 
         guided by the property

T07!1 Tk¡1 7!k

A



  

Interpolation-based reachability

 Set

 Check satisfiability of

 If UNSAT:

 Set 

              is an abstraction of the forward image 
         guided by the property

 If              , return UNREACHABLE      fixpoint found

 else, set                                            and continue

T07!1 Tk¡1 7!k

A


