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Boolean Satisfiability (SAT)

 Given a formula      in propositional logic, with predicates (aka 
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that makes the formula true, or prove that none exists
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The SMT problem

 Satisfiability Modulo Theories

 Given a (quantifier-free) FOL formula and a (decidable) 
combination of theories                         , is there an assignment
to the free variables                     that makes the formula true?

 Example:



SMT: some history

The “early days”

 The Simplify theorem prover [Detlefs, Nelson, Saxe]

 The grandfather of SMT solvers

 Efficient decision procedures

 Equality logic + extensions (Congruence Closure)

 Linear arithmetic (Simplex)

 Theory combination (Nelson-Oppen method)

 Quantifiers (E-matching with triggers)

 Inefficient boolean search



SMT: some history - 2

The SAT breakthrough

 late '90s - early 2000: major progress in SAT solvers

 CDCL paradigm: Conflict-Driven Clause-Learning DPLL

 Grasp, (z)Chaff, Berkmin, MiniSat, ...

 combine strengths of model search and proof search 
in a single procedure

 Model search: efficient BCP and variable selection heuristics

 Proof search: conflict analysis, non-chronological backtracking, 
clause learning

 Smart ideas + clever engineering “tricks”



SMT: some history - 3

From SAT to SMT

 exploit advances in SAT solving for richer logics

 Boolean combinations of constraints over (combinations of) 
background theories

 The Eager approach (a.k.a. “bit-blasting”)

 Encode an SMT formula into propositional logic

 Solve with an off-the-shelf efficient SAT solver

 Pioneered by UCLID

 Still the dominant approach for bit-vector arithmetic



SMT: some history - 4

The Lazy approach and DPLL(T) (2002 – 2004)

 (non-trivial) combination of SAT (CDCL) and T-solvers

 SAT-solver enumerates models of boolean skeleton of formula

 Theory solvers check consistency in the theory

 Most popular approach (e.g. Barcelogic, CVC4, MathSAT, 
SMTInterpol, Yices, Z3, VeriT, ...)

 Yices 1.0 (2006)

 The first efficient “general-purpose” SMT solver

 Z3 1.0 (2008)

 > 1600 citations, most influential tool paper at TACAS



Some notation and definitions

 Signature    , functions                  and predicates

 Variables                  , quantifier-free formulas

 Structure                   , 

 Assignment

 Evaluation

     is satisfiable in         iff                     (        is a model of    ) 

     is valid in     (            ) iff satisfiable for all    (    is a model)

 A theory T is a set of    -structures
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 A theory T is a set of    -structures

 Example:

                                                                    
is unsatisfiable

is satisfiable is a model
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CDCL-based SAT solvers

 Conflict-Driven Clause-Learning paradigm

 Architecture of modern SAT solvers (e.g. Minisat, Lingeling, ...)

 The “DPLL” part of DPLL(T)

 Combine efficient model search and conflict analysis

 Model search

 Stack-based representation of partial truth assignment (trail), 
extended by performing deductions and decisions
 When all variables are assigned, retur SAT with trail as model

 Conflict analysis

 When a conflict is detected, apply boolean resolution to 
generate a new implied clause that contradicts the trail
 learn the blocking clause and use it for non-chronological backtracking
 when the empty clause is derived, return UNSAT



  

The CDCL algorithm for SAT

CDCL(F)
  A = [], decision_level = 0
while (true)
  if (deduce(F, A))
     if (!all_assigned(F, A))
       lit = decide(F, A)
       decision_level++
       A = A + (lit, -)
     else return SAT
  else
    lvl, cls = analyze(F, A)
    if (lvl < 0) return UNSAT
    else
       backtrack(F, A, lvl)
       learn(cls)
       decision_level = lvl



  

The CDCL algorithm for SAT

CDCL(F)
  A = [], decision_level = 0
while (true)
  if (deduce(F, A))
     if (!all_assigned(F, A))
       lit = decide(F, A)
       decision_level++
       A = A + (lit, -)
     else return SAT
  else
    lvl, cls = analyze(F, A)
    if (lvl < 0) return UNSAT
    else
       backtrack(F, A, lvl)
       learn(cls)
       decision_level = lvl

Conflict
Analysis

Model
Search

Trail of 
assignments
(lit, reason)



  

CDCL: model search

 Explore search space by adding elements to the trail

 Trail encodes a set of partial assignments

 deductions using unit propagation

 If a clause has one unassigned literal and all the others set to 
false, propagate the value of the missing one

 All literals assigned by unit propagation have an associated 
reason clause in the trail

 The unit clause that forced the assignment to the literal

:A;B;C 7! f¾ j ¾(A) = ? ^ ¾(B) = ¾(C) = >g

Trail:
Clause:

:A;B;C
A _ :B _ :D :A;B;C;:D

¾



  

CDCL: model search

 if a clause has all literals assigned to false, deduce returns 
false and marks the clause as conflicting

 otherwise, if no more deduction is possible, decide picks an 
unassigned literal to add to the trail

 No reason is attached to the literal in this case

 Decisions partition the trail into decision levels

 When all literals are assigned, SAT is returned

 The trail is a model for the input CNF



  

Example

Input clauses Trail
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CDCL: conflict analysis

 Goal: backtrack from inconsistent assignment, and avoid 
repeating the same mistake in the future

 Naive approach: collect all decisions in the trail, and learn a 
blocking clause implying that at least one of them must be 
flipped

 Proof-based approach: exploit the information in the trail to 
generate an explanation for the conflict

 Generate a new lemma, using boolean resolution, that blocks the 
current assignment and all those sharing the same reason for 
inconsistency

 Resolution rule



  

CDCL: conflict analysis

 Goal: backtrack from inconsistent assignment, and avoid 
repeating the same mistake in the future

 Naive approach: collect all decisions in the trail, and learn a 
blocking clause implying that at least one of them must be 
flipped

 Proof-based approach: exploit the information in the trail to 
generate an explanation for the conflict

 Generate a new lemma, using boolean resolution, that blocks the 
current assignment and all those sharing the same reason for 
inconsistency

 Resolution rule Antecedents

ResolventPivot Variable



  

 Example - “1st UIP” learning strategy

Input clauses Trail
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 Example - “1st UIP” learning strategy

Input clauses Trail

Reached
level limit



  

Example – “decision” learning strategy

Input clauses Trail



  

Example – “decision” learning strategy

Input clauses Trail
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The lazy approach to SMT

 

 Deciding the satisfiability of     modulo      can be reduced
to deciding    -satisfiability of conjunctions (sets) of 
constraints

 Can exploit efficient decision procedures for sets of constraints, 
existing for many important theories

 Naive approach: convert     to an equivalent      in disjunctive 
normal form (DNF), and check each conjunction separately

 Main idea of lazy SMT: use an efficient SAT solver to 
enumerate conjuncts without computing the DNF explicitly



A basic approach

 Offline lazy SMT

F = CNF_bool(  )
while true:

res, M = check_SAT(F)
if res == true:

M' = to_T(M)
res = check_T(M')
if res == true:

return SAT
else:

F += !M
else:

return UNSAT
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A basic approach

 Offline lazy SMT

F = CNF_bool(  )
while true:

res, M = check_SAT(F)
if res == true:

M' = to_T(M)
res = check_T(M')
if res == true:

return SAT
else:

F += !M
else:

return UNSAT

Boolean 
reasoning

Theory
reasoning

Block bad solutions
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Example

UNSAT → add        and continue



DPLL(T)

 Online approach to lazy SMT

 Tight integration between a CDCL-like SAT solver (“DPLL”) 
and the decision procedure for T (“T-solver”), based on:

 T-driven backjumping and learning

 Early pruning

 T-solver incrementality

 T-propagation

 Filtering of assignments to check

 Creation of new T-atoms and T-lemmas “on-demand”

 ...



T-backjumping and T-learning

 When unsat, T-solver can produce reason for inconsistency

 T-conflict set: inconsistent subset of the input constraints

 T-conflict clause given as input to the CDCL conflict analysis

 Drives non-chronological backtracking (backjumping)

 Can be learned by the SAT solver

 The less redundant the T-conflict set, the more search is 
saved

 Ideally, should be minimal (irredundant)

 Removing any element makes the set consistent
 But for some theories might be expensive to achieve

 Trade-off between size and cost



Example
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T-conflict set



Example

Conflict analysis:



Example

Conflict analysis:



Early pruning

 Invoke T-solver on intermediate assignments, during the 
CDCL search

 If unsat is returned, can backtrack immediately

 Advantage: can drastically prune the search tree

 Drawback: possibly many useless (expensive) T-solver calls

SAT 

SAT 

SAT 

SAT 

SAT 

SAT 

SAT 

SAT SAT 

SAT SAT 

SAT 

SAT 

SAT 

UNSAT 

UNSAT 

UNSAT UNSAT 

UNSAT 

UNSAT 

UNSAT 

UNSATUNSAT 

UNSATUNSAT 

UNSAT 

UNSAT 

UNSAT 

UNSAT UNSAT 

WITH EARLY−PRUNING

WITHOUT EARLY−PRUNING
T−solver calls



Early pruning

 Different strategies to call T-solver

 Eagerly, every time a new atom is assigned

 After every round of BCP

 Heuristically, based on some statistics (e.g. effectivenes, …)

 No need of a conclusive answer during early pruning calls

 Can apply approximate checks

 Trade effectiveness for efficiency

 Example: on linear integer arithmetic, solve only the real 
relaxation during early pruning calls
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Example

SAT



Example

SAT



Example

UNSAT

T-conflict = 



T-solver incrementality

 With early pruning, T-solvers invoked very frequently on 
similar problems

 Stack of constraints (the assignment stack of CDCL) 
incrementally updated

 Incrementality: when a new constraint is added, no need to 
redo all the computation “from scratch”

 Backtrackability: support cheap (stack-based) removal of 
constraints without “resetting” the internal state

 Crucial for efficiency

 Distinguishing feature for effective integration in DPLL(T)



T-propagation

 T-solvers might support deduction of unassigned constraints

 If early pruning check on M returns sat, T-solver might also return 
a set D of unsassigned atoms such that                  for all

 T-propagation: add each such l to the CDCL stack

 As if BCP was applied to the (T-valid) clause                (T-reason)

 But do not compute the T-reason clause explicitly yet

 Lazy explanation: compute T-reason clause only if needed 
during conflict analysis

 Like T-conflicts, the less redundant the better
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Conflict analysis → 
compute 

T-reason for   
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     not involved in
conflict analysis → 

 no need to compute 
T-reason   



Filtering of assignments

 Remove unnecessary literals from current assignment M

 Irrelevant literals:                                    (    arbitary, not CNF)

 Ghost literals:    occurs only in clauses satisfied by

 Pure literals:                and    occurs only positively in   
 Note: this is not the pure-literal rule of SAT!

 Pros:

 reduce effort for T-solver

 increases the chances of finding a solution

 Cons:

 may weaken the effect of early pruning (esp. with T-propagation)

 may introduce overhead in SAT search

 Typically used for expensive theories
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Ghost!



Example

SAT



T-atoms and T-lemmas on demand

 Some T-solvers might need to perform internal case splits to 
decide satisfiability

 Example: linear integer arithmetic

 Splitting on-demand: use the SAT solver for case splits

 Encode splits as T-valid clauses (T-lemmas) with fresh T-atoms

 Generated on-the-fly during search, when needed

 Benefits: reuse the efficient SAT search

 simplify the implementation
 exploit advanced search-space exploration techniques 

(backjumping, learning, restarts, ...)
 Potential drawback: “pollute” the SAT search



T-atoms and T-lemmas on demand

 T-solver can now return unknown also for complete checks

 In this case, it must also produce one or more T-lemmas

 SAT solver learns the lemmas and continues searching

 eventually, T-solver can decide sat/unsat

 Termination issues

 If SAT solver drops lemmas, might get into an infinite loop

 similar to the Boolean case (and the “basic” SMT case), similar 
solution (e.g. monotonically increase # of kept lemmas)

 T-solver can generate an infinite number of new T-atoms!

 For several theories (e.g. linear integer arithmetic, arrays) 
enough to draw new T-atoms from a finite set 
(dependent on the input problem)



T-solver interface example

class TheorySolver {

    bool tell_atom(Var boolatom, Expr tatom);

    void new_decision_level();
    void backtrack(int level);

    void assume(Lit l);
    lbool check(bool approx);
    
    void get_conflict(LitList &out);
    
    Lit get_next_implied();
    bool get_explanation(Lit implied, LitList &out);

    bool get_lemma(LitList &out);

    Expr get_value(Expr term);
};



DPLL(T) example

def DPLL-T():
 while True:
    conflict = False
    if unit_propagation():
       res = T.check(!all_assigned())
       if res == False: conflict = True
       elif res == True: conflict = theory_propagation()
       elif learn_T_lemmas(): continue
       elif !all_assigned(): decide()
       else:
          build_model() 
          return SAT
    else: conflict = True
    if conflict:
       lvl, cls = conflict_analysis()
       if lvl < 0: return UNSAT
       else:
          backtrack(lvl)
          learn(cls)



DPLL(T) example

def DPLL-T():
 while True:
    conflict = False
    if unit_propagation():
       res = T.check(!all_assigned())
       if res == False: conflict = True
       elif res == True: conflict = theory_propagation()
       elif learn_T_lemmas(): continue
       elif !all_assigned(): decide()
       else:
          build_model() 
          return SAT
    else: conflict = True
    if conflict:
       lvl, cls = conflict_analysis()
       if lvl < 0: return UNSAT
       else:
          backtrack(lvl)
          learn(cls)

call T.assume(lit)

call T.get_next_implied()

call T.get_lemma()

call T.new_decision_level()
   T.assume(lit)

call T.get_value(e)

call T.get_conflict(c)
   T.get_explanation(l, e)

call T.backtrack(lvl)



An example lazy SMT architecture (MathSAT)

Preprocessor

DPLL  Engine

Model Generator Proof Engine

T-solver 1

T-solver n

Proofs

Truth assignment

T-lemmas

New atoms
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Equality (EUF)

 Polynomial time O(n log n) congruence closure procedure

 Fully incremental and backtrackable (stack-based)

 Supports efficient T-propagation

 Exhaustive for positive equalities

 Incomplete for disequalities

 Lazy explanations and conflict generation

 Typically used as a “core” T-solver

 Supports efficient extensions, e.g.

 Integer offsets

 Bit-vector slicing and concatenation
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Here we connect the
equivalence classes of

But the representative for
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 Constraints of the form

 Variant of simplex specifically designed for DPLL(T)

 Very efficient backtracking

 Incremental checks

 Cheap deduction of unassigned literals

 Minimal explanations generation

 Can handle efficiently also strict inequalities 

 Rewrite               to                     , treat    symbolically
 Worst-case exponential (although LRA is polynomial), 

but fast in practice

Linear Rational Arithmetic (LRA)



Simplex for DPLL(T)

Preprocessing:

Tableau of equations (fixed) + bounds (added/removed) 

Candidate solution      always consistent with the tableau
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tableau                                 bounds                   candidate solution    

No suitable variable for pivoting!
Conflict
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Linear Integer Arithmetic (LIA)

 NP-complete problem

 Popular approach: simplex + branch and bound

 Approximate checks solve only over the rationals

 In complete checks, force integrality of variables by adding either:

 Branch and bound lemmas
 Cutting plane lemmas

 Inequalities entailed by the current constraints, 
excluding only non-integer solutions

 Gomory cuts commonly used
 Using splitting on-demand

 Might also include other specialized sub-solvers for tractable 
fragments

 E.g. specialized equational reasoning



  

Layered architecture for LIA (MathSAT)

 Cooperation of several sub-modules organized as a layered 
hierarchy

DPLL

LIA-solver
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Layered architecture for LIA (MathSAT)

 Cooperation of several sub-modules organized as a layered 
hierarchy

Diophantine 
equations 

Handler

Internal
Branch and Bound

LRA-solver
(simplex)

DPLL

sat

No conflict

No conflict

Eq elim + tightening

conflict conflict

No conflict

LIA-model

LIA-conflict

B&B lemma

1

2

1 3 2

3

4

5 Branch and Bound
Lemmas generator

conflict timeout

LIA-model 1

LIA-solver

4 5



  

The Diophantine equation handler

 Polynomial-time procedure for solving systems of equations in 
LA(Z) (Diophantine)

 Similar to the first part of the Omega test [Pug91]

 Extension of Gaussian elimination to integer constraints

 Given                                                 where           is the smallest:

 Rewrite into
where 

 Introduce a fresh var      and add the equation
                                                      to the system

 Substitute       with                                                     
in the other equations

 Return unsat when there is an equation
such that                                  does not divide

 Return sat when the system is in triangular form
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The Diophantine equation handler

 Features:

 Can generate T-lemmas when unsat is detected

 Can actually generate detailed proofs of unsatisfiability as 
linear combinations of the input constraints

 When sat is detected, the solution can be used to eliminate 
equalities

 Allows for performing tightening of inequalities, with which the 
simplex solver can discover more conflicts

 Can be performed incrementally with efficient backtracking



  

Tightening - Example

 Give E to the Diophantine equations handler

 Obtain (parametric) solution                                       , t fresh

 Substitute                  in I, obtaining 

 Tighten, obtaining

E :=

½
2x1 ¡ 5x3 = 0
x2 ¡ 3x4 = 0 I :=

½
¡2x1 ¡ x2 ¡ x3 · ¡7
2x1 + x2 + x3 · 8

S :=

8
<
:
x1 = 2x3 + t
x2 = 3x4
x3 = 2t

x1; x2; x3 I 0 :=

½
¡3x4 ¡ 12t · ¡7
3x4 + 12t · 8

I 00 :=

½
¡ 3
3
x4 ¡ 12

3
t · b¡ 7

3
c

3
3x4 +

12
3 t · b 83 c



  

Tightening - Example

 Give E to the Diophantine equations handler

 Obtain (parametric) solution                                       , t fresh

 Substitute                  in I, obtaining 

 Tighten, obtaining

 Give I'' to the LRA-solver         conflict

E :=

½
2x1 ¡ 5x3 = 0
x2 ¡ 3x4 = 0 I :=

½
¡2x1 ¡ x2 ¡ x3 · ¡7
2x1 + x2 + x3 · 8

S :=

8
<
:
x1 = 2x3 + t
x2 = 3x4
x3 = 2t

x1; x2; x3 I 0 :=

½
¡3x4 ¡ 12t · ¡7
3x4 + 12t · 8

I 00 :=

½
¡x4 ¡ 4t · ¡3
x4 + 4t · 2



  

Branch and Bound

 Given an LRA-model      for the current set of constraints S 

 If there is an integer variable     such that

 S is LIA-consistent iff either
or                                      is

 Branch and Bound idea: recursively solve subproblems 

until either a LIA-model is found or all of them are 
LA(Q)-inconsistent

 Implementation: a popular approach is to  use “splitting on-
demand”

 Create new clause (lemma)
and send it to DPLL, and continue searching

¹

z

S [ f(z · b¹(z)c)g
S [ f(z ¸ d¹(z)e)g

(z · b¹(z)c) _ (z ¸ d¹(z)e)

Si [ f(zj · b¹i(zj)c)g Si [ f(zj ¸ d¹i(zj)e)g



  

Branch and Bound with splitting on-demand

 Advantages:

 Ease of implementation

 No need to support case splits within the theory solver, can 
reuse DPLL

 Exploit “for free” all the search space pruning techniques of 
modern DPLL solvers

 Backjumping
 Learning
 …

 However, in our setting splitting on-demand has also some 
drawbacks



  

Splitting on-demand: drawbacks - 1

 Can not fully exploit equality elimination and tightening

 New variables introduced by the Diophantine equations handler 
and tightened inequalities are invisible to DPLL

 New variables can't be used in branch-and-bound lemmas
 Tighened inequalities are thrown away when returning to DPLL
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 Can not fully exploit equality elimination and tightening

 New variables introduced by the Diophantine equations handler 
and tightened inequalities are invisible to DPLL

 New variables can't be used in branch-and-bound lemmas
 Tighened inequalities are thrown away when returning to DPLL

Example



  

Splitting on-demand: drawbacks - 1

 Can not fully exploit equality elimination and tightening

 New variables introduced by the Diophantine equations handler 
and tightened inequalities are invisible to DPLL

 New variables can't be used in branch-and-bound lemmas
 Tighened inequalities are thrown away when returning to DPLL

S0 :=

8
<
:
y · ¡1
2x+ 2y ¡ 3w ¸ 1
x+ w · 0

Example After substitution of z and tightening:



  

Splitting on-demand: drawbacks - 1

 Can not fully exploit equality elimination and tightening

 New variables introduced by the Diophantine equations handler 
and tightened inequalities are invisible to DPLL

 New variables can't be used in branch-and-bound lemmas
 Tighened inequalities are thrown away when returning to DPLL

Example After substitution of z and tightening:

If we branch on                 (i.e.            )
Then the simplex finds a LIA-model for

However, the model found for                       is not good in LA(Z) 

(x · b 35c)

S0 :=

8
<
:
y · ¡1
2x+ 2y ¡ 3w ¸ 1
x+ w · 0

(x · 0)



  

Splitting on-demand: drawbacks - 2

 Branch and bound lemmas might cease to be useful upon 
backtracking

 Branch and bound aimed at finding a LIA-model for the 
constraints in the current branch

 Splitting on-demand adds “global” lemmas

 They might “pollute” the search space
 Overhead in DPLL



  

Splitting on-demand: drawbacks - 3

 Non-chronological backtracking (backjumping) might hurt 
sometimes

 Example: Set of constraints S in the current DPLL 
branch

LA(Q)-model for S s.t. 

Branch and bound lemma:

Suppose the LA(Q)-model for 
is also a LA(Z)-model, but we branch on          
                      first

¹(xk) = qk 62 Z

S

(xk · bqkc) _ (xk ¸ dqke)

S [ f(xk ¸ dqke)g

(xk · bqkc)



  

Splitting on-demand: drawbacks - 3

 Non-chronological backtracking (backjumping) might hurt 
sometimes

 Example: 

¹(xk) = qk 62 Z

S

(xk · bqkc) _ (xk ¸ dqke)

S [ f(xk ¸ dqke)g

Set of constraints S in the current DPLL 
branch

LA(Q)-model for S s.t. 

Branch and bound lemma:

Suppose the LA(Q)-model for 
is also a LA(Z)-model, but we branch on          
                      first(xk · bqkc)

(xk · bqkc)



  

Splitting on-demand: drawbacks - 3

 Non-chronological backtracking (backjumping) might hurt 
sometimes

 Example: 

¹(xk) = qk 62 Z

S

(xk · bqkc) _ (xk ¸ dqke)

S [ f(xk ¸ dqke)g

(xk · bqkc)

(xk · bqkc) Conflict!

Set of constraints S in the current DPLL 
branch

LA(Q)-model for S s.t. 

Branch and bound lemma:

Suppose the LA(Q)-model for 
is also a LA(Z)-model, but we branch on          
                      first



  

Splitting on-demand: drawbacks - 3

 Non-chronological backtracking (backjumping) might hurt 
sometimes

 Example: 

¹(xk) = qk 62 Z

S

(xk · bqkc) _ (xk ¸ dqke)

S [ f(xk ¸ dqke)g

(xk · bqkc)

(xk · bqkc)
Backjumping after 

conflict analysis

Set of constraints S in the current DPLL 
branch

LA(Q)-model for S s.t. 

Branch and bound lemma:

Suppose the LA(Q)-model for 
is also a LA(Z)-model, but we branch on          
                      first



  

Splitting on-demand: drawbacks - 3

 Non-chronological backtracking (backjumping) might hurt 
sometimes

 Example: 

¹(xk) = qk 62 Z

(xk · bqkc) _ (xk ¸ dqke)

S [ f(xk ¸ dqke)g

(xk · bqkc)

After backjumping, might need to redo a lot of expensive computations 
(equality elimination, tightening) before finding S again

Set of constraints S in the current DPLL 
branch

LA(Q)-model for S s.t. 

Branch and bound lemma:

Suppose the LA(Q)-model for 
is also a LA(Z)-model, but we branch on          
                      first



  

Splitting on-demand: drawbacks - 4

 Difficult to use dedicated heuristics for exploring the branch-
and-bound search tree

 Several sophisticated heuristics developed in the ILP community, 
crucial for performance

 Might not be straightforward to integrate with those commonly 
used in DPLL



  

Internal branch and bound

 Possible solution (MathSAT): perform branch and bound 
search within the LIA-solver

 Start from the result of equality elimination + tightening

 Use dedicated heuristics for selecting the variables on which to 
branch

 Do not backjump past the starting point

 Remove redundant constraints before starting branch and bound
 E.g. by exploiting polarity of variables

 Only perform a bounded (small) number of case splits, and 
then revert to splitting on-demand

 Keep the benefits of splitting on-demand for hard problems



Bit-vectors (BV)

 Most solvers use an eager approach for BV, not DPLL(T)

 Heavy preprocessing based on rewriting rules + SAT encoding 
(“bit-blasting”)

 Example: 

 Alternative: lazy bit-blasting, compatible with DPLL(T)

 Use a second SAT solver as T-solver for BV

 bit-blast only BV-atoms, not the whole formula
 Boolean skeleton of the formula handled by the main SAT solver

 Easier integration with other T-solvers and DPLL(T)

 Can integrate additional specialized sub-solvers

 Eager still better performance-wise



Lazy bit-blasting: implementation

 For each BV-atom     occurring in the input formula, create a 
fresh Boolean “label” variable     , and bit-blast to SAT-BV 
the formula

 Exploit SAT solving under assumptions

 When the main solver generates the BV-assignment 

 Invoke SAT-BV with the assumptions

 If unsat, generate an unsat core of the assumptions 

 From its negation, generate a BV-lemma 
and send it to the main solver as a blocking clause, like in 
standard DPLL(T)

®
l®

(l® $ ®)

®1 : : : ®n

:®i _ : : : _ :®j



SAT solving under assumptions

Modern CDCL-based SAT solvers allow for solving a CNF 
formula      under assumptions on the values of some literals

 Logically equivalent to checking

 But                  are assumed only temporarily

 A limited but very useful form of incremental solving

 If     is unsat under the assumptions
we can ask the SAT solver to compute an unsatisfiable core of 
the assumptions

 A subset                                            
that is sufficient for proving unsatisfiability



SAT under assumptions - implementation

 Modify the branching heuristics of the CDCL solver to always 
pick the next unassigned literal from
before other literals

 The first n decision levels of the trail always correspond to the 
assumptions

 If an assumption literal is assigned to false, return unsat

 Can only happen by unit propagation at a level < n

 Unsat core: start conflict analysis from the falsified assumption 
literal      , and use the “decision” strategy to collect all the 
involved assumptions



Example

Input clauses TrailAssumptions
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Input clauses TrailAssumptions



Example

Input clauses TrailAssumptions



Arrays (A)

 Read (rd) and write (wr) operations over arrays

 Equality over array variables (extensionality)

 Example: 

 Common approach: reduction to EUF via lazy axiom 
instantiation

 read-over-write:

 extensionality:

 Add lemmas on-demand by instantiating the quantified variables 
with terms occurring in the input formula

 Using smart “frugal” strategies: check candidate solution, 
instantiate only (potentially) violated axioms



Example

EUF solution (equivalence classes): 



Example

EUF solution (equivalence classes): 

Add violated lemma:
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EUF solution (equivalence classes): 

Add violated lemma:

EUF solution (equivalence classes): 



Example

EUF solution (equivalence classes): 

Add violated lemma:

EUF solution (equivalence classes): 

Add violated lemma:



Example

EUF solution (equivalence classes): 

Add violated lemma:

EUF solution (equivalence classes): 

Add violated lemma:

EUF solver returns UNSAT
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Combination of theories

 Very often in practice more than one theory is needed

 Example (from intro): 

 How to build solvers for SMT(T
1
 … T

n
) that are both 

efficient and modular?

 Can we reuse T
i
-solvers and combine them?

 Under what conditions?

 How do we go from DPLL(T) to DPLL(T
1
 … T

n
)?



The Nelson-Oppen method

 A general technique for combining T
i
-solvers

 Requires:

 T
i
's to have disjoint signatures, i.e. no symbols in common 

(other than =)

 T
i
's to be stably-infinite, i.e. every quantifier-free T

i
-satisfiable 

formula is satisfiable in an infinite model of T
i

 Examples: EUF, LIA, LRA, A
 Counterexample: BV
 (Extensions exist to deal with some non-stably-infinite theories)



The Nelson-Oppen method

How it works (for              )

 Preprocessing purification step on the input formula

 Pure formula: no atom containing symbols of different T
i
's 

(except =)

 By labeling subterms

 Example:
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 Example:
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entailed interface equalities

 I.e., equalities between shared variables 



The Nelson-Oppen method

How it works (for              )

 Preprocessing purification step on the input formula

 Pure formula: no atom containing symbols of different T
i
's 

(except =)

 By labeling subterms

 Example:

 T
i
-solvers cooperate by exchanging (disjunctions of) 

entailed interface equalities

 I.e., equalities between shared variables 
Interface variables
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LIA EUF
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Example

LIA EUF

No more
deductions possible



 Traditional approach: 
a single combined 
Nelson-Oppen T-solver

  T
i
-solvers exchange 

(disjunctions of) implied 
interface equalities 
internally

 Interface equalities 
invisible to the SAT solver

SAT solver

T1 T2Deduce 

Assignment          -lemmaT1 [ T2

T1 [ T2

 Drawbacks: T
i
-solvers need to:

 be deduction complete for interface equalities
 be able to perform case splits internally

DPLL(T) for combined theories



 Alternative to traditional approach

 Each T
i
-solver interacts directly and only with the SAT solver

 SAT solver takes care of (all or part of) the combination

 Augment the Boolean search space with the possible 
interface equalities 

 Advantages:

 No need of complete      
deduction of interface 
equalities

 Case analysis via
splitting on-demand

SAT solver

T1 T2

Assignment
 

        -lemmaT2        -lemmaT1

Delayed Theory Combination



Delayed theory combination in practice

 Model-based heuristic:

 Initially, no interface equalities generated

 When a solution is found, check against all the possible interface 
equalities

 If T
1
 and T

2
 agree on the implied equalities, return SAT

 Otherwise, branch on equalities implied by T
1
-model 

but not by T
2
-model

 Optimistic approach, similar to axiom instantiation

 Still allow T
i
-solvers to exchange equalities internally

 But no requirement of completeness

 Avoids “polluting” the SAT space with equality deductions leading 
to conflicts
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LIA EUF



Example

LIA EUF

LIA-model: EUF-model: 

Branch on                  



Example

LIA EUF

LIA-model: EUF-model: 

...  



Example

LIA EUF

LIA-model: EUF-model: 

...  
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Introduction

 (Craig) Interpolant for an ordered pair (A, B) of formulae s.t.    

                                                    is a formula I s.t.





 All the uninterpreted (in     ) symbols of I 
are shared between A and B

 Why are interpolants useful?

 Overapproximation of A relative to B

 Overapprox. of 

 “Local” explanation of why A is inconsistent with B



  

Importance of interpolation

Several important applications in formal verification:

 Approximate image computation for model checking of 
infinite-state systems 

 Predicate discovery for Counterexample-Guided Abstraction 
Refinement 

 Approximation of transition relation for infinite-state systems 

 An alternative to (lazy) predicate abstraction for program 
verification 

 Automatic generation of loop invariants

 ...
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Background

Symbolic transition systems

 State variables

 Initial states formula

 Transition relation formula

 A state     is an assignment to the state vars

 A path of the system S is a sequence of states
such that                and

 A k-step (symbolic) unrolling of S is a formula

 Encodes all possible paths of length up to k

 A state property is a formula     over

 Encodes all the states      such that



  

Forward reachability checking

 Forward image computation

 Compute all states reachable from     in one transition:

 Prove that a set of states                is not reachable:
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Forward reachability checking

 Forward image computation

 Compute all states reachable from     in one transition:

 Prove that a set of states                is not reachable:



  

Forward reachability checking

 Forward image computation

 Compute all states reachable from     in one transition:

 Prove that a set of states                is not reachable:



  

Interpolation-based reachability

 Image computation requires quantifier elimination, which is 
typically very expensive (both in theory and in practice)

 Interpolation-based algorithm (McMillan CAV'03): use 
interpolants to overapproximate image computation

 much more efficient than the previous algorithm

 interpolation is often much cheaper than quantifier elimination
 abstraction (overapproximation) accelerates convergence

 termination is still guaranteed for finite-state systems



  

Interpolation-based reachability

 Set

 Check satisfiability of

T07!1 Tk¡1 7!k



  

Interpolation-based reachability

 Set

 Check satisfiability of

 If SAT:

 If            , return REACHABLE     the unrolling hits Bad

 else, increase k and repeat  

T07!1 Tk¡1 7!k



  

Interpolation-based reachability

 Set

 Check satisfiability of

 If UNSAT:

 Set 

              is an abstraction of the forward image 
         guided by the property

T07!1 Tk¡1 7!k

A



  

Interpolation-based reachability

 Set

 Check satisfiability of

 If UNSAT:

 Set 

              is an abstraction of the forward image 
         guided by the property

 If              , return UNREACHABLE      fixpoint found

 else, set                                            and continue

T07!1 Tk¡1 7!k

A


