
VTSA summer school 2015

Exploiting SMT for Verification
of Infinite-State Systems

Alberto Griggio
Fondazione Bruno Kessler – Trento, Italy

Agenda

Part 1: Introduction to SMT

Part 2: Interpolation in SMT and in Verification

Part 3: SMT-based Verification with IC3

VTSA summer school 2015

Exploiting SMT for Verification
of Infinite-State Systems

1. Introduction to SMT

Alberto Griggio
Fondazione Bruno Kessler – Trento, Italy

Some material courtesy of R. Sebastiani

Outline

Introduction

CDCL-based SAT solvers

The DPLL(T) architecture

Some relevant T-solvers

Combination of theories

Boolean Satisfiability (SAT)

 Given a formula in propositional logic, with predicates (aka
variables) , find an assignment to the variables

that makes the formula true, or prove that none exists

Boolean Satisfiability (SAT)

 Given a formula in propositional logic, with predicates (aka
variables) , find an assignment to the variables

that makes the formula true, or prove that none exists

 Example

SAT, with solution (model)

The SMT problem

 Satisfiability Modulo Theories

 Given a (quantifier-free) FOL formula and a (decidable)
combination of theories , is there an assignment
to the free variables that makes the formula true?

 Example:

The SMT problem

 Satisfiability Modulo Theories

 Given a (quantifier-free) FOL formula and a (decidable)
combination of theories , is there an assignment
to the free variables that makes the formula true?

 Example:

Linear Integer
Arithmetic (LIA)

The SMT problem

 Satisfiability Modulo Theories

 Given a (quantifier-free) FOL formula and a (decidable)
combination of theories , is there an assignment
to the free variables that makes the formula true?

 Example:

Linear Integer
Arithmetic (LIA)

Equality (EUF)

The SMT problem

 Satisfiability Modulo Theories

 Given a (quantifier-free) FOL formula and a (decidable)
combination of theories , is there an assignment
to the free variables that makes the formula true?

 Example:

Linear Integer
Arithmetic (LIA)

Equality (EUF) Arrays (A)

The SMT problem

 Satisfiability Modulo Theories

 Given a (quantifier-free) FOL formula and a (decidable)
combination of theories , is there an assignment
to the free variables that makes the formula true?

 Example:

SMT: some history

The “early days”

 The Simplify theorem prover [Detlefs, Nelson, Saxe]

 The grandfather of SMT solvers

 Efficient decision procedures

 Equality logic + extensions (Congruence Closure)

 Linear arithmetic (Simplex)

 Theory combination (Nelson-Oppen method)

 Quantifiers (E-matching with triggers)

 Inefficient boolean search

SMT: some history - 2

The SAT breakthrough

 late '90s - early 2000: major progress in SAT solvers

 CDCL paradigm: Conflict-Driven Clause-Learning DPLL

 Grasp, (z)Chaff, Berkmin, MiniSat, ...

 combine strengths of model search and proof search
in a single procedure

 Model search: efficient BCP and variable selection heuristics

 Proof search: conflict analysis, non-chronological backtracking,
clause learning

 Smart ideas + clever engineering “tricks”

SMT: some history - 3

From SAT to SMT

 exploit advances in SAT solving for richer logics

 Boolean combinations of constraints over (combinations of)
background theories

 The Eager approach (a.k.a. “bit-blasting”)

 Encode an SMT formula into propositional logic

 Solve with an off-the-shelf efficient SAT solver

 Pioneered by UCLID

 Still the dominant approach for bit-vector arithmetic

SMT: some history - 4

The Lazy approach and DPLL(T) (2002 – 2004)

 (non-trivial) combination of SAT (CDCL) and T-solvers

 SAT-solver enumerates models of boolean skeleton of formula

 Theory solvers check consistency in the theory

 Most popular approach (e.g. Barcelogic, CVC4, MathSAT,
SMTInterpol, Yices, Z3, VeriT, ...)

 Yices 1.0 (2006)

 The first efficient “general-purpose” SMT solver

 Z3 1.0 (2008)

 > 1600 citations, most influential tool paper at TACAS

Some notation and definitions

 Signature , functions and predicates

 Variables , quantifier-free formulas

 Structure ,

 Assignment

 Evaluation

 is satisfiable in iff (is a model of)

 is valid in () iff satisfiable for all (is a model)

 A theory T is a set of -structures

Some notation and definitions

 Signature , functions and predicates

 Variables , quantifier-free formulas

 Structure ,

 Assignment

 Evaluation

 is satisfiable in iff (is a model of)

 is valid in () iff satisfiable for all (is a model)

 A theory T is a set of -structures

 Example:

is unsatisfiable

is satisfiable is a model

Outline

Introduction

CDCL-based SAT solvers

The DPLL(T) architecture

Some relevant T-solvers

Combination of theories

CDCL-based SAT solvers

 Conflict-Driven Clause-Learning paradigm

 Architecture of modern SAT solvers (e.g. Minisat, Lingeling, ...)

 The “DPLL” part of DPLL(T)

 Combine efficient model search and conflict analysis

 Model search

 Stack-based representation of partial truth assignment (trail),
extended by performing deductions and decisions
 When all variables are assigned, retur SAT with trail as model

 Conflict analysis

 When a conflict is detected, apply boolean resolution to
generate a new implied clause that contradicts the trail
 learn the blocking clause and use it for non-chronological backtracking
 when the empty clause is derived, return UNSAT

The CDCL algorithm for SAT

CDCL(F)
 A = [], decision_level = 0
while (true)
 if (deduce(F, A))
 if (!all_assigned(F, A))
 lit = decide(F, A)
 decision_level++
 A = A + (lit, -)
 else return SAT
 else
 lvl, cls = analyze(F, A)
 if (lvl < 0) return UNSAT
 else
 backtrack(F, A, lvl)
 learn(cls)
 decision_level = lvl

The CDCL algorithm for SAT

CDCL(F)
 A = [], decision_level = 0
while (true)
 if (deduce(F, A))
 if (!all_assigned(F, A))
 lit = decide(F, A)
 decision_level++
 A = A + (lit, -)
 else return SAT
 else
 lvl, cls = analyze(F, A)
 if (lvl < 0) return UNSAT
 else
 backtrack(F, A, lvl)
 learn(cls)
 decision_level = lvl

Conflict
Analysis

Model
Search

Trail of
assignments
(lit, reason)

CDCL: model search

 Explore search space by adding elements to the trail

 Trail encodes a set of partial assignments

 deductions using unit propagation

 If a clause has one unassigned literal and all the others set to
false, propagate the value of the missing one

 All literals assigned by unit propagation have an associated
reason clause in the trail

 The unit clause that forced the assignment to the literal

:A;B;C 7! f¾ j ¾(A) = ? ^ ¾(B) = ¾(C) = >g

Trail:
Clause:

:A;B;C
A _ :B _ :D :A;B;C;:D

¾

CDCL: model search

 if a clause has all literals assigned to false, deduce returns
false and marks the clause as conflicting

 otherwise, if no more deduction is possible, decide picks an
unassigned literal to add to the trail

 No reason is attached to the literal in this case

 Decisions partition the trail into decision levels

 When all literals are assigned, SAT is returned

 The trail is a model for the input CNF

Example

Input clauses Trail

Example

Input clauses Trail

Decide

Example

Input clauses Trail

Deduce

Example

Input clauses Trail

Example

Input clauses Trail

Decide

Example

Input clauses Trail

Deduce

Example

Input clauses Trail

Deduce

Example

Input clauses Trail

Deduce

Example

Input clauses Trail

Deduce

Example

Input clauses Trail

Example

Input clauses Trail

Conflict!

CDCL: conflict analysis

 Goal: backtrack from inconsistent assignment, and avoid
repeating the same mistake in the future

 Naive approach: collect all decisions in the trail, and learn a
blocking clause implying that at least one of them must be
flipped

 Proof-based approach: exploit the information in the trail to
generate an explanation for the conflict

 Generate a new lemma, using boolean resolution, that blocks the
current assignment and all those sharing the same reason for
inconsistency

 Resolution rule

CDCL: conflict analysis

 Goal: backtrack from inconsistent assignment, and avoid
repeating the same mistake in the future

 Naive approach: collect all decisions in the trail, and learn a
blocking clause implying that at least one of them must be
flipped

 Proof-based approach: exploit the information in the trail to
generate an explanation for the conflict

 Generate a new lemma, using boolean resolution, that blocks the
current assignment and all those sharing the same reason for
inconsistency

 Resolution rule Antecedents

ResolventPivot Variable

 Example - “1st UIP” learning strategy

Input clauses Trail

Input clauses TrailInput clausesInput clauses

 Example - “1st UIP” learning strategy

 Example - “1st UIP” learning strategy

Input clauses Trail

 Example - “1st UIP” learning strategy

Input clauses Trail

 Example - “1st UIP” learning strategy

Input clauses Trail

 Example - “1st UIP” learning strategy

Input clauses Trail

Reached
level limit

Example – “decision” learning strategy

Input clauses Trail

Example – “decision” learning strategy

Input clauses Trail

Outline

Introduction

CDCL-based SAT solvers

The DPLL(T) architecture

Some relevant T-solvers

Combination of theories

The lazy approach to SMT

 Deciding the satisfiability of modulo can be reduced
to deciding -satisfiability of conjunctions (sets) of
constraints

 Can exploit efficient decision procedures for sets of constraints,
existing for many important theories

 Naive approach: convert to an equivalent in disjunctive
normal form (DNF), and check each conjunction separately

 Main idea of lazy SMT: use an efficient SAT solver to
enumerate conjuncts without computing the DNF explicitly

A basic approach

 Offline lazy SMT

F = CNF_bool()
while true:

res, M = check_SAT(F)
if res == true:

M' = to_T(M)
res = check_T(M')
if res == true:

return SAT
else:

F += !M
else:

return UNSAT

A basic approach

 Offline lazy SMT

F = CNF_bool()
while true:

res, M = check_SAT(F)
if res == true:

M' = to_T(M)
res = check_T(M')
if res == true:

return SAT
else:

F += !M
else:

return UNSAT

Boolean
reasoning

A basic approach

 Offline lazy SMT

F = CNF_bool()
while true:

res, M = check_SAT(F)
if res == true:

M' = to_T(M)
res = check_T(M')
if res == true:

return SAT
else:

F += !M
else:

return UNSAT

Boolean
reasoning

Theory
reasoning

A basic approach

 Offline lazy SMT

F = CNF_bool()
while true:

res, M = check_SAT(F)
if res == true:

M' = to_T(M)
res = check_T(M')
if res == true:

return SAT
else:

F += !M
else:

return UNSAT

Boolean
reasoning

Theory
reasoning

Block bad solutions

Example

Example

Example

UNSAT → add and continue

DPLL(T)

 Online approach to lazy SMT

 Tight integration between a CDCL-like SAT solver (“DPLL”)
and the decision procedure for T (“T-solver”), based on:

 T-driven backjumping and learning

 Early pruning

 T-solver incrementality

 T-propagation

 Filtering of assignments to check

 Creation of new T-atoms and T-lemmas “on-demand”

 ...

T-backjumping and T-learning

 When unsat, T-solver can produce reason for inconsistency

 T-conflict set: inconsistent subset of the input constraints

 T-conflict clause given as input to the CDCL conflict analysis

 Drives non-chronological backtracking (backjumping)

 Can be learned by the SAT solver

 The less redundant the T-conflict set, the more search is
saved

 Ideally, should be minimal (irredundant)

 Removing any element makes the set consistent
 But for some theories might be expensive to achieve

 Trade-off between size and cost

Example

Example

T-conflict set

Example

Conflict analysis:

Example

Conflict analysis:

Early pruning

 Invoke T-solver on intermediate assignments, during the
CDCL search

 If unsat is returned, can backtrack immediately

 Advantage: can drastically prune the search tree

 Drawback: possibly many useless (expensive) T-solver calls

SAT

SAT

SAT

SAT

SAT

SAT

SAT

SAT SAT

SAT SAT

SAT

SAT

SAT

UNSAT

UNSAT

UNSAT UNSAT

UNSAT

UNSAT

UNSAT

UNSATUNSAT

UNSATUNSAT

UNSAT

UNSAT

UNSAT

UNSAT UNSAT

WITH EARLY−PRUNING

WITHOUT EARLY−PRUNING
T−solver calls

Early pruning

 Different strategies to call T-solver

 Eagerly, every time a new atom is assigned

 After every round of BCP

 Heuristically, based on some statistics (e.g. effectivenes, …)

 No need of a conclusive answer during early pruning calls

 Can apply approximate checks

 Trade effectiveness for efficiency

 Example: on linear integer arithmetic, solve only the real
relaxation during early pruning calls

Example

Example

SAT

Example

SAT

Example

UNSAT

T-conflict =

T-solver incrementality

 With early pruning, T-solvers invoked very frequently on
similar problems

 Stack of constraints (the assignment stack of CDCL)
incrementally updated

 Incrementality: when a new constraint is added, no need to
redo all the computation “from scratch”

 Backtrackability: support cheap (stack-based) removal of
constraints without “resetting” the internal state

 Crucial for efficiency

 Distinguishing feature for effective integration in DPLL(T)

T-propagation

 T-solvers might support deduction of unassigned constraints

 If early pruning check on M returns sat, T-solver might also return
a set D of unsassigned atoms such that for all

 T-propagation: add each such l to the CDCL stack

 As if BCP was applied to the (T-valid) clause (T-reason)

 But do not compute the T-reason clause explicitly yet

 Lazy explanation: compute T-reason clause only if needed
during conflict analysis

 Like T-conflicts, the less redundant the better

Example

Example

Example

Example

Example

Example

Conflict analysis →
compute

T-reason for

Example

Example

 not involved in
conflict analysis →

 no need to compute
T-reason

Filtering of assignments

 Remove unnecessary literals from current assignment M

 Irrelevant literals: (arbitary, not CNF)

 Ghost literals: occurs only in clauses satisfied by

 Pure literals: and occurs only positively in
 Note: this is not the pure-literal rule of SAT!

 Pros:

 reduce effort for T-solver

 increases the chances of finding a solution

 Cons:

 may weaken the effect of early pruning (esp. with T-propagation)

 may introduce overhead in SAT search

 Typically used for expensive theories

Example

Example

Ghost!

Example

SAT

T-atoms and T-lemmas on demand

 Some T-solvers might need to perform internal case splits to
decide satisfiability

 Example: linear integer arithmetic

 Splitting on-demand: use the SAT solver for case splits

 Encode splits as T-valid clauses (T-lemmas) with fresh T-atoms

 Generated on-the-fly during search, when needed

 Benefits: reuse the efficient SAT search

 simplify the implementation
 exploit advanced search-space exploration techniques

(backjumping, learning, restarts, ...)
 Potential drawback: “pollute” the SAT search

T-atoms and T-lemmas on demand

 T-solver can now return unknown also for complete checks

 In this case, it must also produce one or more T-lemmas

 SAT solver learns the lemmas and continues searching

 eventually, T-solver can decide sat/unsat

 Termination issues

 If SAT solver drops lemmas, might get into an infinite loop

 similar to the Boolean case (and the “basic” SMT case), similar
solution (e.g. monotonically increase # of kept lemmas)

 T-solver can generate an infinite number of new T-atoms!

 For several theories (e.g. linear integer arithmetic, arrays)
enough to draw new T-atoms from a finite set
(dependent on the input problem)

T-solver interface example

class TheorySolver {

 bool tell_atom(Var boolatom, Expr tatom);

 void new_decision_level();
 void backtrack(int level);

 void assume(Lit l);
 lbool check(bool approx);

 void get_conflict(LitList &out);

 Lit get_next_implied();
 bool get_explanation(Lit implied, LitList &out);

 bool get_lemma(LitList &out);

 Expr get_value(Expr term);
};

DPLL(T) example

def DPLL-T():
 while True:
 conflict = False
 if unit_propagation():
 res = T.check(!all_assigned())
 if res == False: conflict = True
 elif res == True: conflict = theory_propagation()
 elif learn_T_lemmas(): continue
 elif !all_assigned(): decide()
 else:
 build_model()
 return SAT
 else: conflict = True
 if conflict:
 lvl, cls = conflict_analysis()
 if lvl < 0: return UNSAT
 else:
 backtrack(lvl)
 learn(cls)

DPLL(T) example

def DPLL-T():
 while True:
 conflict = False
 if unit_propagation():
 res = T.check(!all_assigned())
 if res == False: conflict = True
 elif res == True: conflict = theory_propagation()
 elif learn_T_lemmas(): continue
 elif !all_assigned(): decide()
 else:
 build_model()
 return SAT
 else: conflict = True
 if conflict:
 lvl, cls = conflict_analysis()
 if lvl < 0: return UNSAT
 else:
 backtrack(lvl)
 learn(cls)

call T.assume(lit)

call T.get_next_implied()

call T.get_lemma()

call T.new_decision_level()
 T.assume(lit)

call T.get_value(e)

call T.get_conflict(c)
 T.get_explanation(l, e)

call T.backtrack(lvl)

An example lazy SMT architecture (MathSAT)

Preprocessor

DPLL Engine

Model Generator Proof Engine

T-solver 1

T-solver n

Proofs

Truth assignment

T-lemmas

New atoms

Outline

Introduction

CDCL-based SAT solvers

The DPLL(T) architecture

Some relevant T-solvers

Combination of theories

Equality (EUF)

 Polynomial time O(n log n) congruence closure procedure

 Fully incremental and backtrackable (stack-based)

 Supports efficient T-propagation

 Exhaustive for positive equalities

 Incomplete for disequalities

 Lazy explanations and conflict generation

 Typically used as a “core” T-solver

 Supports efficient extensions, e.g.

 Integer offsets

 Bit-vector slicing and concatenation

Example

Example

Example

Example

Example

Example

Example

Example

get_conflict():

Example

get_conflict():

Example

get_conflict():

Example

get_conflict():

Example

get_conflict():

Example

get_conflict():

Example

get_conflict():

Example

get_conflict():

Example: redundant explanations

Example: redundant explanations

Example: redundant explanations

Example: redundant explanations

Example: redundant explanations

Example: redundant explanations

Here we connect the
equivalence classes of

But the representative for

might be

and

Example: redundant explanations

Example: redundant explanations

Example: redundant explanations

Example: redundant explanations

 Constraints of the form

 Variant of simplex specifically designed for DPLL(T)

 Very efficient backtracking

 Incremental checks

 Cheap deduction of unassigned literals

 Minimal explanations generation

 Can handle efficiently also strict inequalities

 Rewrite to , treat symbolically
 Worst-case exponential (although LRA is polynomial),

but fast in practice

Linear Rational Arithmetic (LRA)

Simplex for DPLL(T)

Preprocessing:

Tableau of equations (fixed) + bounds (added/removed)

Candidate solution always consistent with the tableau

x
slack 1

x
slack 2

.

.

.
x

slack i

.

.

.
x

slack n

-
l
2

.

.

.
l
i

.

.

.
l
n

u
1

+
.
.
.
u

i

.

.

.
u

n

x
slack 1

=
x

slack 2
=

.

.

.
x

slack i
=

.

.

.
x

slack n
=

ai1x1 + ai2x2 + : : :+ aimxm

¯

Simplex for DPLL(T)

Preprocessing:

Tableau of equations (fixed) + bounds (added/removed)

Candidate solution always consistent with the tableau

x
slack 1

x
slack 2

.

.

.
x

slack i

.

.

.
x

slack n

-
l
2

.

.

.
l
i

.

.

.
l
n

u
1

+
.
.
.
u

i

.

.

.
u

n

 x
j
=

x
slack 2

=
.
.
.

x
slack i

=
.
.
.

 x
h

=

X

a0ij>0

a0ijxslack j +
X

a0
ik<0

a0ikxslack k

Pivoting steps to make
 satisfy the bounds¯

¯

Simplex for DPLL(T)

Preprocessing:

Tableau of equations (fixed) + bounds (added/removed)

Candidate solution always consistent with the tableau

x
slack 1

x
slack 2

.

.

.
x

slack i

.

.

.
x

slack n

-
l
2

.

.

.
l
i

.

.

.
l
n

u
1

+
.
.
.
u

i

.

.

.
u

n

 x
j
=

x
slack 2

=
.
.
.

x
slack i

=
.
.
.

 x
h

=

X

a0ij>0

a0ijxslack j +
X

a0
ik<0

a0ikxslack k

and for the others can
not change conflict!

¯(xslack i) < li
¯

 l
i
 > x

slack i

¯

Simplex for DPLL(T)

Preprocessing:

Tableau of equations (fixed) + bounds (added/removed)

Candidate solution always consistent with the tableau

x
slack 1

x
slack 2

.

.

.
x

slack i

.

.

.
x

slack n

-
l
2

.

.

.
l
i

.

.

.
l
n

u
1

+
.
.
.
u

i

.

.

.
u

n

 x
j
=

x
slack 2

=
.
.
.

x
slack i

=
.
.
.

 x
h

=

X

a0ij>0

a0ijxslack j +
X

a0
ik<0

a0ikxslack k

get_conflict():

for

for

for xslack i

and for the others can
not change conflict!

¯(xslack i) < li
¯

¯

Example

Example

tableau bounds candidate solution

Example

tableau bounds candidate solution

Find a bound violation

Example

tableau bounds candidate solution

Pick a variable for pivoting

Example

tableau bounds candidate solution

Pivot and update

Example

tableau bounds candidate solution

Find a bound violation

Example

tableau bounds candidate solution

Pick a variable for pivoting

Example

tableau bounds candidate solution

Pivot and update

Example

tableau bounds candidate solution

Find a bound violation

Example

tableau bounds candidate solution

Pick a variable for pivoting

Example

tableau bounds candidate solution

Pivot and update

Example

tableau bounds candidate solution

Find a bound violation

Example

tableau bounds candidate solution

No suitable variable for pivoting!
Conflict

Example

tableau bounds candidate solution

Explanation:

Example

tableau bounds candidate solution

Explanation:

Example

tableau bounds candidate solution

Explanation:

Example

tableau bounds candidate solution

Explanation:

Linear Integer Arithmetic (LIA)

 NP-complete problem

 Popular approach: simplex + branch and bound

 Approximate checks solve only over the rationals

 In complete checks, force integrality of variables by adding either:

 Branch and bound lemmas
 Cutting plane lemmas

 Inequalities entailed by the current constraints,
excluding only non-integer solutions

 Gomory cuts commonly used
 Using splitting on-demand

 Might also include other specialized sub-solvers for tractable
fragments

 E.g. specialized equational reasoning

Layered architecture for LIA (MathSAT)

 Cooperation of several sub-modules organized as a layered
hierarchy

DPLL

LIA-solver

Layered architecture for LIA (MathSAT)

 Cooperation of several sub-modules organized as a layered
hierarchy

LRA-solver
(simplex)

DPLL

sat

conflict

LIA-conflict

1

LIA-model 1

LIA-solver

Layered architecture for LIA (MathSAT)

 Cooperation of several sub-modules organized as a layered
hierarchy

Diophantine
equations

Handler

LRA-solver
(simplex)

DPLL

sat

No conflict
conflict

LIA-conflict

1
1

LIA-model 1

LIA-solver

Layered architecture for LIA (MathSAT)

 Cooperation of several sub-modules organized as a layered
hierarchy

Diophantine
equations

Handler

LRA-solver
(simplex)

DPLL

sat

No conflict

No conflict

Eq elim + tightening

conflict

LIA-conflict

1

2

1 2

LIA-model 1

LIA-solver

Layered architecture for LIA (MathSAT)

 Cooperation of several sub-modules organized as a layered
hierarchy

Diophantine
equations

Handler

Internal
Branch and Bound

LRA-solver
(simplex)

DPLL

sat

No conflict

No conflict

Eq elim + tightening

conflict conflict

No conflict

LIA-conflict

1

2

1 3 2

3 LIA-model 1

LIA-solver

Layered architecture for LIA (MathSAT)

 Cooperation of several sub-modules organized as a layered
hierarchy

Diophantine
equations

Handler

Internal
Branch and Bound

LRA-solver
(simplex)

DPLL

sat

No conflict

No conflict

Eq elim + tightening

conflict conflict

No conflict

LIA-model

LIA-conflict

1

2

1 3 2

3

4
conflict

LIA-model 1

LIA-solver

4

Layered architecture for LIA (MathSAT)

 Cooperation of several sub-modules organized as a layered
hierarchy

Diophantine
equations

Handler

Internal
Branch and Bound

LRA-solver
(simplex)

DPLL

sat

No conflict

No conflict

Eq elim + tightening

conflict conflict

No conflict

LIA-model

LIA-conflict

B&B lemma

1

2

1 3 2

3

4

5 Branch and Bound
Lemmas generator

conflict timeout

LIA-model 1

LIA-solver

4 5

The Diophantine equation handler

 Polynomial-time procedure for solving systems of equations in
LA(Z) (Diophantine)

 Similar to the first part of the Omega test [Pug91]

 Extension of Gaussian elimination to integer constraints

 Given where is the smallest:

 Rewrite into
where

 Introduce a fresh var and add the equation
 to the system

 Substitute with
in the other equations

 Return unsat when there is an equation
such that does not divide

 Return sat when the system is in triangular form

jaikj
P
j aijxj + aikxk + ci

aik ¢ (xk +
P
j 6=k a

q
ijxj + c

q
i) + (

P
j 6=k a

r
ijxj + c

r
i)

aij = aik ¢ aqij + arij
xt

xt = xk +
P

j 6=k a
q
ijxj + c

q
i

aikxt + (
P
j 6=k a

r
ijxj + c

r
i)xk

P
j ahjxj + ch

The Diophantine equation handler

 Features:

 Can generate T-lemmas when unsat is detected

 Can actually generate detailed proofs of unsatisfiability as
linear combinations of the input constraints

 When sat is detected, the solution can be used to eliminate
equalities

 Allows for performing tightening of inequalities, with which the
simplex solver can discover more conflicts

 Can be performed incrementally with efficient backtracking

Tightening - Example

 Give E to the Diophantine equations handler

 Obtain (parametric) solution , t fresh

 Substitute in I, obtaining

 Tighten, obtaining

E :=

½
2x1 ¡ 5x3 = 0
x2 ¡ 3x4 = 0 I :=

½
¡2x1 ¡ x2 ¡ x3 · ¡7
2x1 + x2 + x3 · 8

S :=

8
<
:
x1 = 2x3 + t
x2 = 3x4
x3 = 2t

x1; x2; x3 I 0 :=

½
¡3x4 ¡ 12t · ¡7
3x4 + 12t · 8

I 00 :=

½
¡ 3
3
x4 ¡ 12

3
t · b¡ 7

3
c

3
3x4 +

12
3 t · b 83 c

Tightening - Example

 Give E to the Diophantine equations handler

 Obtain (parametric) solution , t fresh

 Substitute in I, obtaining

 Tighten, obtaining

 Give I'' to the LRA-solver conflict

E :=

½
2x1 ¡ 5x3 = 0
x2 ¡ 3x4 = 0 I :=

½
¡2x1 ¡ x2 ¡ x3 · ¡7
2x1 + x2 + x3 · 8

S :=

8
<
:
x1 = 2x3 + t
x2 = 3x4
x3 = 2t

x1; x2; x3 I 0 :=

½
¡3x4 ¡ 12t · ¡7
3x4 + 12t · 8

I 00 :=

½
¡x4 ¡ 4t · ¡3
x4 + 4t · 2

Branch and Bound

 Given an LRA-model for the current set of constraints S

 If there is an integer variable such that

 S is LIA-consistent iff either
or is

 Branch and Bound idea: recursively solve subproblems

until either a LIA-model is found or all of them are
LA(Q)-inconsistent

 Implementation: a popular approach is to use “splitting on-
demand”

 Create new clause (lemma)
and send it to DPLL, and continue searching

¹

z

S [f(z · b¹(z)c)g
S [f(z ¸ d¹(z)e)g

(z · b¹(z)c) _ (z ¸ d¹(z)e)

Si [f(zj · b¹i(zj)c)g Si [f(zj ¸ d¹i(zj)e)g

Branch and Bound with splitting on-demand

 Advantages:

 Ease of implementation

 No need to support case splits within the theory solver, can
reuse DPLL

 Exploit “for free” all the search space pruning techniques of
modern DPLL solvers

 Backjumping
 Learning
 …

 However, in our setting splitting on-demand has also some
drawbacks

Splitting on-demand: drawbacks - 1

 Can not fully exploit equality elimination and tightening

 New variables introduced by the Diophantine equations handler
and tightened inequalities are invisible to DPLL

 New variables can't be used in branch-and-bound lemmas
 Tighened inequalities are thrown away when returning to DPLL

Splitting on-demand: drawbacks - 1

 Can not fully exploit equality elimination and tightening

 New variables introduced by the Diophantine equations handler
and tightened inequalities are invisible to DPLL

 New variables can't be used in branch-and-bound lemmas
 Tighened inequalities are thrown away when returning to DPLL

Example

Splitting on-demand: drawbacks - 1

 Can not fully exploit equality elimination and tightening

 New variables introduced by the Diophantine equations handler
and tightened inequalities are invisible to DPLL

 New variables can't be used in branch-and-bound lemmas
 Tighened inequalities are thrown away when returning to DPLL

S0 :=

8
<
:
y · ¡1
2x+ 2y ¡ 3w ¸ 1
x+ w · 0

Example After substitution of z and tightening:

Splitting on-demand: drawbacks - 1

 Can not fully exploit equality elimination and tightening

 New variables introduced by the Diophantine equations handler
and tightened inequalities are invisible to DPLL

 New variables can't be used in branch-and-bound lemmas
 Tighened inequalities are thrown away when returning to DPLL

Example After substitution of z and tightening:

If we branch on (i.e.)
Then the simplex finds a LIA-model for

However, the model found for is not good in LA(Z)

(x · b 35c)

S0 :=

8
<
:
y · ¡1
2x+ 2y ¡ 3w ¸ 1
x+ w · 0

(x · 0)

Splitting on-demand: drawbacks - 2

 Branch and bound lemmas might cease to be useful upon
backtracking

 Branch and bound aimed at finding a LIA-model for the
constraints in the current branch

 Splitting on-demand adds “global” lemmas

 They might “pollute” the search space
 Overhead in DPLL

Splitting on-demand: drawbacks - 3

 Non-chronological backtracking (backjumping) might hurt
sometimes

 Example: Set of constraints S in the current DPLL
branch

LA(Q)-model for S s.t.

Branch and bound lemma:

Suppose the LA(Q)-model for
is also a LA(Z)-model, but we branch on
 first

¹(xk) = qk 62 Z

S

(xk · bqkc) _ (xk ¸ dqke)

S [f(xk ¸ dqke)g

(xk · bqkc)

Splitting on-demand: drawbacks - 3

 Non-chronological backtracking (backjumping) might hurt
sometimes

 Example:

¹(xk) = qk 62 Z

S

(xk · bqkc) _ (xk ¸ dqke)

S [f(xk ¸ dqke)g

Set of constraints S in the current DPLL
branch

LA(Q)-model for S s.t.

Branch and bound lemma:

Suppose the LA(Q)-model for
is also a LA(Z)-model, but we branch on
 first(xk · bqkc)

(xk · bqkc)

Splitting on-demand: drawbacks - 3

 Non-chronological backtracking (backjumping) might hurt
sometimes

 Example:

¹(xk) = qk 62 Z

S

(xk · bqkc) _ (xk ¸ dqke)

S [f(xk ¸ dqke)g

(xk · bqkc)

(xk · bqkc) Conflict!

Set of constraints S in the current DPLL
branch

LA(Q)-model for S s.t.

Branch and bound lemma:

Suppose the LA(Q)-model for
is also a LA(Z)-model, but we branch on
 first

Splitting on-demand: drawbacks - 3

 Non-chronological backtracking (backjumping) might hurt
sometimes

 Example:

¹(xk) = qk 62 Z

S

(xk · bqkc) _ (xk ¸ dqke)

S [f(xk ¸ dqke)g

(xk · bqkc)

(xk · bqkc)
Backjumping after

conflict analysis

Set of constraints S in the current DPLL
branch

LA(Q)-model for S s.t.

Branch and bound lemma:

Suppose the LA(Q)-model for
is also a LA(Z)-model, but we branch on
 first

Splitting on-demand: drawbacks - 3

 Non-chronological backtracking (backjumping) might hurt
sometimes

 Example:

¹(xk) = qk 62 Z

(xk · bqkc) _ (xk ¸ dqke)

S [f(xk ¸ dqke)g

(xk · bqkc)

After backjumping, might need to redo a lot of expensive computations
(equality elimination, tightening) before finding S again

Set of constraints S in the current DPLL
branch

LA(Q)-model for S s.t.

Branch and bound lemma:

Suppose the LA(Q)-model for
is also a LA(Z)-model, but we branch on
 first

Splitting on-demand: drawbacks - 4

 Difficult to use dedicated heuristics for exploring the branch-
and-bound search tree

 Several sophisticated heuristics developed in the ILP community,
crucial for performance

 Might not be straightforward to integrate with those commonly
used in DPLL

Internal branch and bound

 Possible solution (MathSAT): perform branch and bound
search within the LIA-solver

 Start from the result of equality elimination + tightening

 Use dedicated heuristics for selecting the variables on which to
branch

 Do not backjump past the starting point

 Remove redundant constraints before starting branch and bound
 E.g. by exploiting polarity of variables

 Only perform a bounded (small) number of case splits, and
then revert to splitting on-demand

 Keep the benefits of splitting on-demand for hard problems

Bit-vectors (BV)

 Most solvers use an eager approach for BV, not DPLL(T)

 Heavy preprocessing based on rewriting rules + SAT encoding
(“bit-blasting”)

 Example:

 Alternative: lazy bit-blasting, compatible with DPLL(T)

 Use a second SAT solver as T-solver for BV

 bit-blast only BV-atoms, not the whole formula
 Boolean skeleton of the formula handled by the main SAT solver

 Easier integration with other T-solvers and DPLL(T)

 Can integrate additional specialized sub-solvers

 Eager still better performance-wise

Lazy bit-blasting: implementation

 For each BV-atom occurring in the input formula, create a
fresh Boolean “label” variable , and bit-blast to SAT-BV
the formula

 Exploit SAT solving under assumptions

 When the main solver generates the BV-assignment

 Invoke SAT-BV with the assumptions

 If unsat, generate an unsat core of the assumptions

 From its negation, generate a BV-lemma
and send it to the main solver as a blocking clause, like in
standard DPLL(T)

®
l®

(l® $ ®)

®1 : : : ®n

:®i _ : : : _ :®j

SAT solving under assumptions

Modern CDCL-based SAT solvers allow for solving a CNF
formula under assumptions on the values of some literals

 Logically equivalent to checking

 But are assumed only temporarily

 A limited but very useful form of incremental solving

 If is unsat under the assumptions
we can ask the SAT solver to compute an unsatisfiable core of
the assumptions

 A subset
that is sufficient for proving unsatisfiability

SAT under assumptions - implementation

 Modify the branching heuristics of the CDCL solver to always
pick the next unassigned literal from
before other literals

 The first n decision levels of the trail always correspond to the
assumptions

 If an assumption literal is assigned to false, return unsat

 Can only happen by unit propagation at a level < n

 Unsat core: start conflict analysis from the falsified assumption
literal , and use the “decision” strategy to collect all the
involved assumptions

Example

Input clauses TrailAssumptions

Example

Input clauses TrailAssumptions

Example

Input clauses TrailAssumptions

Example

Input clauses TrailAssumptions

Example

Input clauses TrailAssumptions

Example

Input clauses TrailAssumptions

Example

Input clauses TrailAssumptions

Example

Input clauses TrailAssumptions

Example

Input clauses TrailAssumptions

Example

Input clauses TrailAssumptions

Example

Input clauses TrailAssumptions

Example

Input clauses TrailAssumptions

Example

Input clauses TrailAssumptions

Example

Input clauses TrailAssumptions

Example

Input clauses TrailAssumptions

Example

Input clauses TrailAssumptions

Example

Input clauses TrailAssumptions

Example

Input clauses TrailAssumptions

Arrays (A)

 Read (rd) and write (wr) operations over arrays

 Equality over array variables (extensionality)

 Example:

 Common approach: reduction to EUF via lazy axiom
instantiation

 read-over-write:

 extensionality:

 Add lemmas on-demand by instantiating the quantified variables
with terms occurring in the input formula

 Using smart “frugal” strategies: check candidate solution,
instantiate only (potentially) violated axioms

Example

EUF solution (equivalence classes):

Example

EUF solution (equivalence classes):

Add violated lemma:

Example

EUF solution (equivalence classes):

Add violated lemma:

EUF solution (equivalence classes):

Example

EUF solution (equivalence classes):

Add violated lemma:

EUF solution (equivalence classes):

Add violated lemma:

Example

EUF solution (equivalence classes):

Add violated lemma:

EUF solution (equivalence classes):

Add violated lemma:

EUF solver returns UNSAT

Outline

Introduction

CDCL-based SAT solvers

The DPLL(T) architecture

Some relevant T-solvers

Combination of theories

Combination of theories

 Very often in practice more than one theory is needed

 Example (from intro):

 How to build solvers for SMT(T
1
 … T

n
) that are both

efficient and modular?

 Can we reuse T
i
-solvers and combine them?

 Under what conditions?

 How do we go from DPLL(T) to DPLL(T
1
 … T

n
)?

The Nelson-Oppen method

 A general technique for combining T
i
-solvers

 Requires:

 T
i
's to have disjoint signatures, i.e. no symbols in common

(other than =)

 T
i
's to be stably-infinite, i.e. every quantifier-free T

i
-satisfiable

formula is satisfiable in an infinite model of T
i

 Examples: EUF, LIA, LRA, A
 Counterexample: BV
 (Extensions exist to deal with some non-stably-infinite theories)

The Nelson-Oppen method

How it works (for)

 Preprocessing purification step on the input formula

 Pure formula: no atom containing symbols of different T
i
's

(except =)

 By labeling subterms

 Example:

The Nelson-Oppen method

How it works (for)

 Preprocessing purification step on the input formula

 Pure formula: no atom containing symbols of different T
i
's

(except =)

 By labeling subterms

 Example:

 T
i
-solvers cooperate by exchanging (disjunctions of)

entailed interface equalities

 I.e., equalities between shared variables

The Nelson-Oppen method

How it works (for)

 Preprocessing purification step on the input formula

 Pure formula: no atom containing symbols of different T
i
's

(except =)

 By labeling subterms

 Example:

 T
i
-solvers cooperate by exchanging (disjunctions of)

entailed interface equalities

 I.e., equalities between shared variables
Interface variables

Example

LIA EUF

Example

LIA EUF

Example

LIA EUF

Example

LIA EUF

Example

LIA EUF

Example

LIA EUF

Example

LIA EUF

No more
deductions possible

 Traditional approach:
a single combined
Nelson-Oppen T-solver

 T
i
-solvers exchange

(disjunctions of) implied
interface equalities
internally

 Interface equalities
invisible to the SAT solver

SAT solver

T1 T2Deduce

Assignment -lemmaT1 [T2

T1 [T2

 Drawbacks: T
i
-solvers need to:

 be deduction complete for interface equalities
 be able to perform case splits internally

DPLL(T) for combined theories

 Alternative to traditional approach

 Each T
i
-solver interacts directly and only with the SAT solver

 SAT solver takes care of (all or part of) the combination

 Augment the Boolean search space with the possible
interface equalities

 Advantages:

 No need of complete
deduction of interface
equalities

 Case analysis via
splitting on-demand

SAT solver

T1 T2

Assignment

 -lemmaT2 -lemmaT1

Delayed Theory Combination

Delayed theory combination in practice

 Model-based heuristic:

 Initially, no interface equalities generated

 When a solution is found, check against all the possible interface
equalities

 If T
1
 and T

2
 agree on the implied equalities, return SAT

 Otherwise, branch on equalities implied by T
1
-model

but not by T
2
-model

 Optimistic approach, similar to axiom instantiation

 Still allow T
i
-solvers to exchange equalities internally

 But no requirement of completeness

 Avoids “polluting” the SAT space with equality deductions leading
to conflicts

Example

LIA EUF

Example

LIA EUF

LIA-model: EUF-model:

Branch on

Example

LIA EUF

LIA-model: EUF-model:

...

Example

LIA EUF

LIA-model: EUF-model:

...

Selected bibliography

DISCLAIMER: this is not meant to be complete, just a starting
point. Apologies to missing authors/works

 SMT in general and DPLL(T)

 Nieuwenhuis, Oliveras, Tinelli. Solving SAT and SAT Modulo
Theories: From an abstract Davis--Putnam--Logemann--
Loveland procedure to DPLL(T). J. ACM 2006

 Sebastiani. Lazy Satisfiability Modulo Theories. JSAT 2007

 Barrett, Sebastiani, Seshia, Tinelli. Satisfiability Modulo
Theories. SAT handbook 2009

 Theory solvers

 Detlefs, Nelson, Saxe. Simplify: a theorem prover for program
checking. J. ACM 2005

 Nieuwenhuis, Oliveras. Fast congruence closure and
extensions. Inf. Comput. 2007

Selected bibliography

 Theory solvers (cont'd)

 Dutertre, de Moura. A Fast Linear-Arithmetic Solver for
DPLL(T). CAV 2006

 de Moura, Bjørner. Model-based Theory Combination. Electr.
Notes Theor. Comput. Sci. 2008

 Brummayer, Biere. Lemmas on Demand for the Extensional
Theory of Arrays. JSAT 2009

 de Moura, Bjørner. Generalized, efficient array decision
procedures. FMCAD 2009

 Jovanovic, de Moura. Cutting to the Chase - Solving Linear
Integer Arithmetic. J. Autom. Reasoning 2013

 Hadarean, Bansal, Jovanovic, Barrett, Tinelli. A Tale of Two
Solvers: Eager and Lazy Approaches to Bit-Vectors. CAV
2014

Thank You

VTSA summer school 2015

Exploiting SMT for Verification
of Infinite-State Systems

2. Interpolation in SMT
and in Verification

Alberto Griggio
Fondazione Bruno Kessler – Trento, Italy

Outline

Introduction

Interpolants in Formal Verification

Computing interpolants in SMT

Introduction

 (Craig) Interpolant for an ordered pair (A, B) of formulae s.t.

 is a formula I s.t.

 All the uninterpreted (in) symbols of I
are shared between A and B

 Why are interpolants useful?

 Overapproximation of A relative to B

 Overapprox. of

 “Local” explanation of why A is inconsistent with B

Importance of interpolation

Several important applications in formal verification:

 Approximate image computation for model checking of
infinite-state systems

 Predicate discovery for Counterexample-Guided Abstraction
Refinement

 Approximation of transition relation for infinite-state systems

 An alternative to (lazy) predicate abstraction for program
verification

 Automatic generation of loop invariants

 ...

Outline

Introduction

Interpolants in Formal Verification

Computing interpolants in SMT

Background

Symbolic transition systems

 State variables

 Initial states formula

 Transition relation formula

 A state is an assignment to the state vars

 A path of the system S is a sequence of states
such that and

 A k-step (symbolic) unrolling of S is a formula

 Encodes all possible paths of length up to k

 A state property is a formula over

 Encodes all the states such that

Forward reachability checking

 Forward image computation

 Compute all states reachable from in one transition:

 Prove that a set of states is not reachable:

Forward reachability checking

 Forward image computation

 Compute all states reachable from in one transition:

 Prove that a set of states is not reachable:

Forward reachability checking

 Forward image computation

 Compute all states reachable from in one transition:

 Prove that a set of states is not reachable:

Forward reachability checking

 Forward image computation

 Compute all states reachable from in one transition:

 Prove that a set of states is not reachable:

Forward reachability checking

 Forward image computation

 Compute all states reachable from in one transition:

 Prove that a set of states is not reachable:

Forward reachability checking

 Forward image computation

 Compute all states reachable from in one transition:

 Prove that a set of states is not reachable:

Interpolation-based reachability

 Image computation requires quantifier elimination, which is
typically very expensive (both in theory and in practice)

 Interpolation-based algorithm (McMillan CAV'03): use
interpolants to overapproximate image computation

 much more efficient than the previous algorithm

 interpolation is often much cheaper than quantifier elimination
 abstraction (overapproximation) accelerates convergence

 termination is still guaranteed for finite-state systems

Interpolation-based reachability

 Set

 Check satisfiability of

T07!1 Tk¡1 7!k

Interpolation-based reachability

 Set

 Check satisfiability of

 If SAT:

 If , return REACHABLE the unrolling hits Bad

 else, increase k and repeat

T07!1 Tk¡1 7!k

Interpolation-based reachability

 Set

 Check satisfiability of

 If UNSAT:

 Set

 is an abstraction of the forward image
 guided by the property

T07!1 Tk¡1 7!k

A

Interpolation-based reachability

 Set

 Check satisfiability of

 If UNSAT:

 Set

 is an abstraction of the forward image
 guided by the property

 If , return UNREACHABLE fixpoint found

 else, set and continue

T07!1 Tk¡1 7!k

A

